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r—SYSTEMS OF UNARY ALGEBRAS II
(Maximal and minimal subalgebras of

the direct products of unary algebras)

IMRICH ABRHAN* — LADISLAV SATKO **

(Commaunicated by Tibor Katrindk)

ABSTRACT. Maximal and minimal subalgebras of the direct product of an
r -system of unary algebras are studied. They are characterized by J-simple sub-
algebras and J-subalgebras. These algebras are also studied in the direct product
of an r-system of unary algebras.

1. Introduction

We continue in our investigation from [1]. All concepts and definitions are
from this work. We only repeat notions which are most frequently used. Let
A = (A; F) be a unary algebra. Then P(A) is the set of all subsets N € A
such that N # 0 and (N; F) is a subalgebra of the algebra A . If A = (A; F) is
a unary algebra and x € A, then F*(x) is the set of all y € A which have the
following property: There exist fi,...,fx € F such that y = fi(... f1(z)...).

In [1], we have described maximal and greatest J-classes in the direct prod-
uct of an r-system of unary algebras. Now we shall describe maximal, greatest
and minimal subalgebras in this direct product. We make use of the notion of
J-subalgebra of an algebra A . This is the generalization of the notion of the
maximal subalgebra. (See [4].) [1; Examples 2 and 3] show how to derive well-
known results concerned minimal and maximal left ideals of the direct product
of semigroups from our results.

In this introduction, we prove one theorem dealing with subalgebras gener-
ated by one element in the direct product of an r-system of unary algebras. It
is convenient to start with the following lemma.

ANS Subject Classification (1991): Primary 08A60.
Kev words: Unary algebra. Direct product. Maximal subalgebra.
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IMRICH ABRHAN — LADISLAV SATKO

LEMMA 1.1. Let {A,; = (A F) | i€ 1} be an arbitrary system of unany
dgebras, o € A=TI(A; |1 € 1). Then [o] S [(0()] |7 € 1)

Proof. Let 3 € [a]. Then either 3 = a or 3 € F*(a). Hence either
}( ) = a(i) or (i) € F*(a(i)) for any 7 € I. (See [1: Lemma 2.1].) Thus,
)€ {a(i)}u Fr(a(i) = [(r(é)] for any 7€ I. 0

THEOREM 1.1. Let {A,' =(A;F) | i€ ]} be an r-system of unary algchras,
o€ A=T[(A; | i€ I). Then [o] = H([ (} | i€ ) if and only if cither
a € FH(a), or there crists j € I such that o(j) ¢ F'(a(j)). and [[a(i) =1
forany iel, i# ).

Proof.

a) Let us suppose [a] = [T([a(i)] | i € I) . Obviously. either a (i) € 177 (al/))
for any i € I, or there exists such j € I that o)) ¢ F"(a())). Thus. for the
r-systemn of unary algebras we have only to prove there does not exist j. b« [.
j # k., such that o(j) ¢ F* ((r(/)) and H(} H > 2. Suppose. to the contrary.
the existence of such elements. Let 3 be an arbitrary element of H([n (el
such that 3(j) = a(j) and 3(k) # (k). Evidently. such element exists. and
3 # . An assumption [o] = [[([a(i)] | i € I) implies 3 € I77(a). However.
in an r-system, 3 € F+((x) if and only if 3(i) € F*(a(i)) for any i€ [. This
contradicts 3(j) = «(j) ¢ F*((y( )) Thus, if there exists j € [ such that

) & FT(a(j)), then I[u D=1 forany iel.i#].

b) Let a € FT(a). From this, a(i) € F*(a(i)) for any i€ [. Let 3 be an
arbitrary element of []([a(i)] [i € I). Then 3(i) € [a(i)] = {a(i)}UF T (ali)
= Ft ((y(z)) for any ¢ € . It means, for an r-system. 3 € F'(a) = o . and
thus [[([a()] | i€ ) C [a].

As the second possibility, we suppose the existence of j € [ such that a()) ¢
I (a(j)) and |[(y ” =1 forany ¢ € [, i# j.Let 3 be an arbitrary element
of TT([ew(é)] | i € I). Of course, if 3 = «, then 3 € [a]. The case 3 # a is
possible only if 3()) # a()) An(l {13 )} = { } = [ n( 1)) - [n(/’)} for any
el i#7. Obviousl), 3(i) € F*(a(i) )) for any i€ I i # j.For [ = j we
have: 3(j) € [a(j)] and d(.) # «(j). Thus, 8(j) € F"(a(j)). It is evident
that 3(i) € F*(a(i)) for any i € I. Therefore, for an r-syvstem this implics
3 e Ft(a) and consequently 3 € [a]. It means that. also in this case. we have
[T([«()] | i € I) € [a]. This completes the proof of our theorem. .
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r-SYSTEMS OF UNARY ALGEBRAS i

2. Minimal ( J-simple) subalgebras

Let A = (A; F) be a (unary) algebra without proper subalgebras. It means
that N € P(A) muplies N = A and P(A) = {A}. In such a case, for anv
e Al o] = A0 Thus, A/J is a one-element set. Such an algebra is called a
J-simple algebra.

Let N = (N: F) be a subalgebra of a unary algebra A = (A; I) such that
for any N € P(A) the condition N' € N implies N’ = N . Then the algehra
N is called a minimal subalgebra of A . Tt means that {N' e P(A)| N"C N}

(N},

Let A == (A7) be a unary algebra, and N = (N; F') be a subalgebra of the
algebra AL Let N' € N. Then N’ = (N’; F) is a subalgebra of A if and only
il it is a subalgebra of N . Hence, for any N’ € N, N’ € P(A) if and only if
N e P(N). Thus, N = (N:F) is a minimal subalgebra of A if and only if
P(N) = {N}. From this it follows that N = (N; F') is a minimal subalgebra of
a unary algebra A = (A; F) if and only if N is a J-simple subalgebra of A.

Lett A = (A:F) be a unary algebra, and K = ({N | N € P(A)}. If
N A 0. then (K;F) is a J-simple subalgebra of A, and the algebra (K [7) is
called the kernel of A

Now we focus on the connection between minimal J-classes and minimal
algebras in unary algebras. The Lemmas 2.1 and 2.3 are valid also for an arbitrary
universal algebra. As the definition of the set FT(z) for universal algebras is
rather complicated, we state these lemmas only for unary algebras.

LEMMA 2.1. Let A = (A; F) be a (unary) algebra and a € A. Then the class
[al] is minimal in ALT if and only if [a]J = [a] .

Proof.

a) The class [a]J is minimal if and only if, for any b € [a], [b] = [a]. Let
[b] = [a] for any b€ [a]. Since [a].] € [a], for any b € [a], b e [b]] = [a]J C [a].
Therefore. [a] € [a]J < [a].

bh) Let [a]d = [a]. Then, for any b € [a] = [a]J, [b] = [a]. This completes
the proof. O

1

LEMMA 2.2. Let A = (A; F) be a (unary) algebra. Then for any nonempty
subscel N of A the following conditions are equivalent:

a) (N F) is a J-simple subalgebra of A .

by N =[r]=F*"a) forany v € N .

¢) There exists x € A such that N = [x]J € P(A).
d) There exists v € A such that N = [x]J, and [x]J is a minimal class

in the set A/ .
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Proof.

1) Obviously, a) implies b). :

2) Let, for any 2 € N, N = [z]. Then we have [z]J C [¢] = N C [¢]J.
Therefore, N = [z]J € P(A), and b) implies c).

3) Assume an existence of x € A such that N = [z]J € P(A),and let y € A
be such that [y]J < [z]J = N € P(A). Thus, [y E N and y € N = [r]J.
Therefore, [y]J = [z]J, which implies that N = [z]J is a minimal element in
the partially ordered set A/J. We have proved c) implies d).

4) Let x € A be such that N = [z]J, and [z]J be a minimal element of
A/J. By Lemma 2.1, N = [z]J = [z]. Clearly, this is true for any v € N.
Let N’ € P(A) have the property 0 # N’ € N. Then, for any = € N'.
lz] € N" € N = [z]. Thus, N' = N, and (N;F) is a J-simple subalgebra ot
A . Therefore d) implies a), and the proof is complete. O

LEMMA 2.3. Let A = (A; F) be a (unary) algebra and O # K S A. Then
{K; F) is the kernel of A if and only if there exists a € A such that [a]J 1is
the smallest element of AJ/J and K = [a]J . (See also [3].)

Proof.

1) Let (K; F) be the kernel of the algebra A . By Lemma 2.2 c), there exists
a € A such that K = [a]J. Let b € A be an arbitrary element. Then a € [a]J =
K C [b]. Thus, [a] € [b] and K = [a]J < [b]J for any b € A. From this it easily
follows that K is the smallest element of the partially ordered set A/J.

2) Let [a]J = K be the smallest element in A/J. By Lemma 2.2d).a).
(K; F) is a J-simple subalgebra of A. Then, by Lemma 2.2b), K = [a]. Let
N be an arbitrary element of P(A) and b € N . Since K = [a].J is the smallest
element of A/J, we have K = [a]J < [b]J. Therefore K = [a] € [b] € N. It
means that (K; F') is the kernel of the algebra A . O

Now we focus on J-simple subalgebras in a direct product of unary algebras.

THEOREM 2.1. Let {A,Lv =(A;F)| i€ I} be an r-system of unary algebras.
A=T[(A;|i€l). Let N € P(A). Then N = (N; F) is a J-simple subalgebra
of the algebra A if and only if for any i € I there exists a J-simple subalgebra
N; = (N;; F) of the algebra A; such that N =][(N; |ie ).

Proof.

1) Let N = (N; F) be a J-simple subalgebra of A. By Lemma 2.2h). .\ =
|a] = F*(a) for any o € N. From this it follows « € F"(a). By Theorem 1.1.
N = [ao] = [T([a(i)] | i € I). Now we show that ([a(i)]: F) is a J-simple
subalgebra of A; for any i € I. Suppose to the contrary that there exists j < /
such that <[(1(J‘)};F> is not a .J-simple subalgebra of A ;. Then there exists
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Mj € P(A;) such that M; C [a(j)]. If we denote M = [](X; | X; = [o(i))
forany 7€ I, i# j,and X; = M;), then M C [[([a(i)] | i € I) = [a]. Since
M € P(A), this contradicts the assumption that [«] is a J-simple subalgebra
of A. Tlms‘ for any i € I, ([a(i)]; F) is a J-simple subalgebra of A, and
N = [T(([«(@)]; F) |i € T).

2) Let N = H( i |i€l), where N; = (N;; F) is a J-simple subalgebra
of A; for any i € I. By Lemma 2.2b), N; = [z;] = F'(z;) for any z;, € N;.
Let @« € A = [[(4; | ¢+ € I) be an element such that a(i) € N; for any
i€ l.Then N; = [a(i)] = F*(a(i)) for any i € I. From this it easily follows
that a(i) € F'(a(i)) for any i € I. As {A; = (A F) | i € I} is an
r-system of unary algebras, a € F (). By Theorem 1.1, N = H(N,-, liel) =
[T([x(D)] | i € I) = [a] = F*(a). By Lemma 2.2b) and a), N = (N; F) is a
J-simple subalgebra of an algebra A. O

THEOREM 2.2. Let {A,,; =(A;F)| i€ I} be an r-system of unary algebras,
A=T[(A;|iel). Let 0 # K C A=][(A; |i€l). Then K = (K;F) is the
kernel of A if and only if for any i € I there exists the kernel K; = (K;; F) of
A and K=T[(K; |iel).

Proof.

1) Let us suppose that K = (K; F) be the kernel of A. Then (K;F) is a
J-simple subalgebra of A. By Theorem 2.1, K = [[(K; | i € I) and K,
(K;; F) is a J-simple subalgebra of A; for any i € I. Let a be an element of
A such that «(i) € K; for any i € I. By Lemma 2.2¢), K; = [a(i)]J € P(A;)

for any i € I. We prove that [a(i)]J is the smallest element of the set A;/J
forany i € 1.

Let j € I be fixed, and choose an arbitrary y; € A;. Let 3 € A be such
that 8(j) = y;. Since K = [[(K; | i € I) = [[([e(d)] | i € I), we have
a € K. Therefore, K = [a]J. However, [a]J is the smallest element of A/J.
Hence [o]J < [B]J. According to [1; Lemma 2.3], [a(i)]J < [3(i)]J for any
i € I. Obviously, also [a(j)]J < [8(j)]J = [y;]J - It means that [(4)]J is the
smallest element of Aj;/J. Since j € I was an arbitrary index from I, we get
[«(j)]J is the smallest element of A;/J for any j € I. Thus, (K;; F) is the
kernel of A; forany je .

2) Let (K;; F') be the kernel of A; for any i € I. Let a € A be such that
a(l) € K; for any ¢« € I. Then K; = [a(i)]J, and [a( )] J is the smallest
clement of A;/J for every i € I. Let K = [](K; |t € I). According to Theo-
rem 2.1, (K; F) is a J-simple subalgebra of A . Since o € K, by Lemma 2.2,
N = |a]J = [o] = F'{a). Hence « € F*(«). Let 3 be an arbitrary element of
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A. As [a(i)]J is the smallest element of A;/J, we have {n(i)],/ < [J’(/)}.I for
any ¢ € 1. In this case, by [1; Lemma 2.4], we have [a]J < [J]J. and [o]J = K
is the smallest element of A/J. Hence (K;F) is the kernel of A. 0

3. J-Subalgebras
Let A = (A; F) be a (unary) algebra, b € A. Set

Nb)={xe Al [b]J £z]J}.

The set N(b) is of great importance for this section. (See also [4].) Clearly.
r € N(b) if and only if either [z]J < [b]J, or the classes [x]J and [b].J are
incomparable.

LEMMA 3.1. Let A = (A; F) be a unary algebra. Then for any a € A. a #b.
a € N(b) if and only if b ¢ F*(a).

Proof.

a) Let a # b and a € N(b). Then [b]J £ [a]J. It follows immediately that
either [a]J < [b]J, or classes [a]J and [b]J are incomparable. In the first case.
la] C [b] holds. It means that a € F*(b) and b ¢ F*(a). For the other case.
[a] € [b] and [b] € [a]. Hence, in both cases, b ¢ F*(a).

b) Let a # b and a ¢ N(b). Then [b]J < [a]J, and thus [b] € [a]. From
the last inclusion we conclude b € F*(a) U {a}, and, by the condition a # b.
b€ F*(a). This completes our proof. O

Remark. Let A = (A;F) be a unary algebra. Then, for any b € A,
b ¢ N(b), and we get the next proposition:

Let A = (A;F) be a unary algebra, b € A, and b € F*(b). Then, for any
a€ A, ae N(b) if and only if b ¢ F*(a).

DEFINITION 3.1. (See also [3].) Let N = (N; F) be a subalgebra of a unary
algebra A = (A; F). Let there exist b € A such that N = N(b). Then N is
called a J-subalgebra of A .

Now we formulate three lemmas in which some useful properties of the ser

N(b) are stated.

LEMMA 3.2. Let A = (A;F) be a unary algebra. *

a) Let be A and N(b) #0. Then (N(b); F) is a J-subalgebra of A .
b) If N € P(A) and N # A, then (N(b); F) is a J-subalgebra of A for
any be A\ N.
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Proof. (See also [4].)

a) Let A = (A; F') be a unary algebra, b € A, and N(b) # 0. For any r € A
and any [ e I7, f(r) € [x], and thus [f(z)] C [2]. It means for .J-classes that
)T < [

Now we prove (N(b); F) is a suba‘lgel)ra of A. Suppose that there exist
r e N() and f € F such that f(x) ¢ N( ). From this it follows that
0].] < [f(x)].J. However, [b]J < [f(x)]J < [z]J contradicts our assumption
+ € N(b). From this we conclude that (N(b) ) is a subalgebra of A . Clearly.
H is a .J-subalgebra.

h) Let N e P(A), N# A.and b€ A\ N. Then, for any z € N, [x] C N,
and thus [b] € [2]. Now there are two possibilities. Either [x] C [b] or [x] ,@ [b] .

These conditions imply @ € N(b), and therefore N(b) # (). The rest of the proof
follows from a). O

LEMMA 3.3. Let A = (A;F) be a unary algebra, and b € A. Then the fol-
lowing conditions are equivalent:

a) NB)=0.

b) [b]J is the smallest element of AT .

c) ([bJ; F) is the kernel of A .

Proof. We have N(b) = 0 if and only if, for any a € A, [b]J < [a]J].
This is true if and only if [b]J is the smallest element of A/J. This proves the
equivalence of a) and b).

The equivalence of b) and ¢) is proved in Lemma 2.3. O

LEMMA 3.4. Let A = (A;F) be a unary algebra and b € A. If N(b) = 0,
then b e F*t(b).

Proof. Suppose to the contrary that N(b) =0 and b ¢ F*(b). Then, for
any f € F, f(b) € F*(b) C [b]. Therefore [f(b)] C [b] and thus [f(b)]J < [b].J
Hence f(b) € N(b) and N(b) # 0, which is a contradiction to our assumption
N(b)=0. O

Now we concentrate on the set N(«) in a direct product of an r-system of
unary algebras.

THEOREM 3.1. Let {A; = (A;;F) | i € I} be an r-system of unary algebras,
A=T[(Ailiel) and a € A=T[(A; |i € ). Then N(a) =0 if and only if
N(a(i)) =0 forany i€ 1.
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Proof.

a) Let N(a)=0.By Lemma 3.3, ([]J = K; F) is the kernel of A. Accord-
ing to Theorem 2.2, for any 7 € I there exists the kernel K; = (K;; F') of the al-
gebra A;,and K = (K; F) =[(K; |i € I). Thus, K = [a]J = [[(K; | i< I).
Hence, for any 7 € I, a(i) € K;. Since (K;; F) is the kernel of the algebra A, .
by Lemma 2.3, [a(i)]J = K; for any ¢ € I, and thus, by Lemma 3.3. we have
N(a(i)) =0 for any i € I.

b) If N(a(i)) = 0 for any i € I. then, by Lemma 3.3. ((a())].J: F) is
the kernel of the algebra A; for any i € I. Let K = []([a(i)].J | i€ I). Then
a € K, and, by Theorem 2.2, (K;F) is the kernel of A. Therefore. by

Lemma 2.3, K = [a]J, and, by Lemma 3.3, N(«) = 0. =)

THEOREM 3.2. Let {A.i =(A;F)| i€ I} be an r-system of unary algcbras.

and A =T[(A;|ie€l). Let a« € A=T][(A; | i€ I) be such that a € F*(a).
Then

N(a) =U{TI(Xi| Xi=A; foranyiel, i#j.

and X; = N(a(j)))| jel}.

Proof. If N(a) =0, the proof follows from Theorem 3.1.

1) Let N(a) # 0. According to Theorem 3.1, there exists k € I such that
N (a(k)) # (. Let us denote U{H(XI | X;=A; forany i €I, i+ j.aund
X;=N(a(j)) | jelI} by Q.Clearly, Q# 0 and Q € P(A).

2) In both cases o € F*(a) or @« ¢ FT(a), we show that Q € N(a).
Let 3 € Q. Then there exists k € I such that B(k) € N(a(k)). According to
the definition of the set N(a(k)) and Lemma 3.1, B(k) # a(k) and a(k) ¢
F*(B(k)). Hence o # 3, and, as {A; = (A;;F) | i € I} is an r-gystem of
unary algebras, a ¢ F*(3). By Lemma 3.1, 3 € N(a), and thus Q € N(a).

3) Finally we show that a € FT(a) implies Q@ = N(a). Let 3 ¢ N(a).
Obviously, 8 # a and o ¢ F*(3). Hence, there exists k € [ such that
a(k) ¢ F*(B(k)). According to o € F*(a), we have a(k) # 3(k). Therefore
B(k) € N(a(k)). It follows that 3 € Q and thus N(a) € Q. Hence N(a) = Qj

L

In the following theorem, we describe N(a) in the case o ¢ F ().

76



r-SYSTEMS OF UNARY ALGEBRAS II

THEOREM 3.3. Let {A; = (4;F) | i € I} be an r-system of unary algebras,
A=TJlA; |ielD), A=A |iel), aec A, and « ¢ Ft(a). Let
I ={iel] a(i) ¢ F*(of )}.Then

a) = (U{H(X, | X, = A; forany iel, i#j, and
X; = N(a(j)) for j €I\, whereas

X; = N(a() U{a)}for jen) | j€T})\ {a}.

Proof.
1) Let a ¢ F*(«).By Lemma 3.4, N(«) # (. Since we consider an r-system
of unary algebras, there exists at least one k € I such that a(k) ¢ F+ ((x(/s))
Thus, the set I, is nonempty, and, by Lemma 3.4, N( (7 )) # 0 forany i € I, .

Let M, VN(oz )U{a ] for any j € I,, and M —N( (J)) for any
Jje I\ Let Q@ = U{TI(X; ] Xi=A; forany i € I, i # Jj,and X; =

N(a(j)) | j €T}, andlet R = (U{H(X,; | X, = A; forany i €1, i+,
and X; = {a(j)}) | j€ 11}> \ {a}. Evidently, QUR = (U{ (X | Xi = 4,
forany i€, i#j,and X; = M) | j€ I}) \ {a}.

2) We prove QU R € N(«). In the part 2) of the proof of Theorem 3.2, we
have proved @ € N(a). Thus, it is sufficient to prove R € N(«).

Let 3 € R. Clearly, 8 # a. Suppose ¢ N(a).By Lemma 3.1, « € F*(3).
Hence (i) € F(B(i)) for any ¢ € I. However, the condition # € R implies
the existence of k € Iy such that 8(k) = a(k) ¢ FT(a(k)) = F* (B(k)) . This
contradicts the assumption o € F*(8). Thus g € N(a) and R € N(«a).

3) Finally we prove that N(a) S QU R. Let 3 € N(«). Obviously, 8 # «,
and. by Lemma 3.1, o ¢ F'(3). Let I, = {i € [ | a(i) ¢ F'(B(i))}.
Fvidently, Ir # 0. Let j € I,. If «(j) # B(j), then, by Lemma 3.1, 3(j) €
N(a(j)) and thus g€ Q.

If a(j) = 3(j) ¢ FT(B()) = F(a(j)), then j € I, and thus 3 € R. So
N(a) € QU R. and the theorem is proved. O

Now we use the obtained results to describe maximal and greatest subalgebras
ol the direct product of an r-system of unary algebras. Let A = (A4; F) be a
cunary) algebra. Let (N1 F) be a subalgebra of A such that N C A, and there
does not exist N € P(A) such that N € N’ C A. In this case, (N;F) is
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called a maximal subalgebra of A. We denote the set of all N € P(A) such
that (N; F) is a maximal subalgebra of A by Piax(A).
We also denote by N* an element from P(A) such that N* # 1. and
N € N* for any N € P(A)\ A. The described set need not exist. If it does.
then the algebra (N*; F) is called the greatest subalgebra of the algebra A
The following lemma is useful for the next part of this section. (For the proof
of this lemma, see [2].)

LEMMA 3.5. Let A = (A, F) be a unary algebra, and A s not J-simple. Lt
h#NCA. Then

a) (N;FY is a marimal subalgebra of A if and only if there ceists a muar-
mal element [@]]  of the partially ordercd sct AT such thal
N =A\[x]J:

bh) N = N* if and only if there crisls a grealest clement el of the scl
AT and N = A\ [x]J.

LEMMA 3.6. Let A = (A F) be a unary algebra and o € A Then J-class
(o] is a mazimal element in the set AJJ if and only if [a]J = A\ Nia).

Proof.

a) Let [a]J be a maximal element in the set A/J. According to the definition
of the set N(a). A\ N(a) = {x e A| [a|J < [2]J}. Obviously. in this case.
we have A\ N(a) = o] .

b) Let A\ N(a) = [a]J. Then we have [a]J = {r € A | [a]l) < ./},
Hence, for any r € A such that [o]J < [2]J, = € [a]J. Thus [a]J = [rl.J. and

J;
[]J is a maximal element in A/J. 3

According to Lemmas 3.5 and 3.6, if N € Pu.(A). then there exists a
maximal J-class [a]J of A/J such that N = A\ [a]J = N(a). Therefore
any maximal subalgebra of a unary algebra is a J-subalgebra of A . Moreover.
N(«) € Puax(A) if and only if N(a) # 0 and N(a) = A\ [a].].

Now we can state the results concerning maximal and greatest subalgebras
of a direct product of an r-system of unary algebras.

THEOREM 3.4. Let {A,- = (A F)| i eI} bean r-system of unary algebras.
A=1J[A;|iel), A=1lA |iel), o€ A, and o« € F'(a). Lot
I, = {i el | N((\'(i)) #* (/)}. Then N(«) € Puax(A) if and only if 1, # W.
N((r(i)) € Puax(A;) for any i € Iy, and A; is a J-simplc algebra for any
iel\I.
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Proof.

a) Let N(a) € Phuax(A). Therefore N(«) # §. By Theorem 3.1, the set
I, = {iel| N(a(i)) # 0} is nonempty. According to Lemma 3.6, A\ N(«)
is a maximal element of A/J. Since o« € A\ N(«), we get A\ N(«) = [a]]. By
[1: Theorem 3.1]. [a(i)].J is a maximal element of a set A;/J for any i € [. By
Lemma 3.6, [a(i )]J = A; \ N(a(i)) for any i € I, and thus, if N(a(i)) # w
then N(n( ) A\ [(y( ]] € Pmax(A;) for each i € I .

Further. N(a(i)) = 0, and [a(i )]J is a maximal element of A;/J for any
i € I\ I. Therefore, for any i € I'\ I, [a(i)]J = A;\ 0 = A, and. by
Lemma 3.3, the algebra <[(t(i)].];1’> = (A;; F) is the kernel of A;. Thus, any
algebra A; is a J-simple unary algebra for any ¢ € I\ I;. Now Theorem 3.2
implies the rest of this part of the proof.

h) Let N(«) U{H( Xi = A; forany i € I, ¢ # 7, and X; =
:\'(u(j))) jel}. N(a 1)) € Pmax(A;) forany i € I} # 0, and A, be a
J- s’imple unary algebra for any i € I'\I; . Then, by Lemma 2.2, for any i € I\, .

[u( )] = A, . By Lemmas 3.5 and 3.6, [(y( )] J is a maximal element in the set
A; /). From I} # 0 we have N(a) # 0. By Lemma 3.6, [a]J = A\ N(a), and
thus N(o) = A\ [0]J € Prax(A). O

THEOREM 3.5. Let {A,- ={A;F)| i€ I} be an r-system of unary algebras,
A=A, |ie D, A=A |iel), ac A, and o € F*(a). Let
Iy ={iel| N(a(i)) #0}. Then N(a) = N* (i.e. (N(a);F) is the greatest
subalgebra of A') if and only if Iy # 0, N(a(i)) = N} is the greatest subalgebra
of A; forany i€ Iy, and A; is a J-simple unary algebra for any i € I'\ I, .

Proof. By Lemmas 3.5 and 3.6, it is obvious that N(«) = N* if and only
it N(a)# 0 and N(a) = A\ [a]J, where [«]J is the greatest element of A/J.
Now we can continue similarly as in the proof of Theorem 3.4, only instead of
[I: Theorem 3.1] we must use [1; Theorem 3.3]. O

Now we state two theorems which, in the case o ¢ F*(«a), describe condi-
tions for N(a) € Puax(A) and N(«) = N*. These theorems represent direct
consequences of [1; Theorems 3.2 and 3.4].

THEOREM 3.6. Let {A =(A;; F) | i € I} be an r-system of unary algebras,
A =TIA; | i€l =JI4; |t €eI), a € A, and o ¢ FT(a). Then
N(a) € Pm\x( ) /f(md only /fthuf exists 1 € 1 stuh that N((v( )) € Prax(A;)

and a(i) ¢ F- ( (1) )
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Proof.

a) Let us suppose N(a) € Ppax(A) and o ¢ FT(a). Then N(a) # 0, and
[a]J is a maximal element of A/J. According to [1; Lemma 3.2], there exists
i € I such that [a(i)]J is a maximal element of A;/J and «a(i) ¢ F*(a(i)).
Thus N(a(i)) # 0 and [a(i)]J = A; \ N(a(i)). So, N(a(i)) = A; \ [a(i)]J €
Pmax(A;) and, of course, (i) ¢ F* (a(z))

b) Suppose, there is i € I such that N(a(i)) € Pmax(A;) and a(i) ¢
F*(a(i)). Then N(a(i)) # 0, and [a(i)]J is a maximal element of A;/J.
As we consider an r-system of unary algebras, a ¢ F*(a), and, by [1; Theo-

rem 3.2], [o]J is a maximal element of A/J. Obviously, N(«) # 0. Therefore
N(a) = A\ [@]J € Ppax(A). 0

Remark 2. By [I; Lemma 1.3], from a ¢ F7*(a) it follows that
a]J = {a}. Clearly, in this case, N(a) € Pnax(A) if and only if {a} is a
maximal class of A/J and N(a)= A\ {a}.

We can derive this result also from Theorem 3.3 in the following way. If j € I
is such that o(j) ¢ FT(a(j)), and [a(j)].] = {a(j)} is a maximal element of
A;j /T, then M; = N(a(j)) U{a()} = (4;\ {a@)}) u{a()} = A;, and thus
I(X;| X;=A,; forany i€ I, i+# j,and X; = M;) = A. Therefore

N((1)=<U{H(X¢| X;=A; forany i€, i#],

and X; = M) | jeI})\{a} =4\ {a}.

The following theorem is the direct consequence of [1; Theorem 3.4].

THEOREM 3.7. Let {A; = (A;F)| i€ I} be an r-system of unary algebras.
A=TJA;|iel), A=Jl(4 |ie€el), a e A, and o« ¢ F*(a). Then
N(a) = N* is the greatest subalgebra of the algebra A if and only if there exists
i € I such that (i) ¢ FT(a(i)), N(a(i)) = N/ is the greatest subalgebra of
A, and |Aj| =1 forany jeI, i#].

In the following, we show how these results can be applied to M-automata

and direct products of M-automata by describing A -automata as unary alge-
bras.

Let M be a monoid with a unit element 1, S be a nonempty set. and
6: S x M — S be a mapping such that:

a) 6(s,1)=s forany s€ S,
b) 6(8(s,m),m’') = &(s,mm’) for any s € S, and m.m’ € M.
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Then the couple A = (5;6) is called an M-automaton. (See for example [5].)

Let A = (S;6) be an M-automaton. Let 0 # N € S, §(s,m) € N for any
s € N,and m € M. Then the couple N = (N;6) we call a subautomaton of
A . We denote by P(A) the set of all subsets N of S such that N = (N; ) is
a subautomaton of A.

Let a € S and [a]4 = {6(a,m) € S| m € M}. Obviously, a € [a]4. Fur-
ther, for any &(a,m) € [a]4 and any m’ € M, 6(8(a,m),m’') = 6(a,mm’) € [a] .
Therefore, ([a}A; é) is a subautomaton of A . On the other hand, if (N;é) is an
arbitrary subautomaton of A and a € N, then, for any m € M, é(a,m) € N .
Hence [a]4 € N. Thus, we have proved that [a]4 = {N € P(A)| a € N}.
Subautomaton ([a]4;8) is a subautomaton of A which is generated by the
element a € S.

For the set S we define a relation J4 in the following way: a J4 b if and only
if [a]a = [b]a. Evidently, J4 is an equivalence on the set S. For the set S/J4
we define a binary operation < by: [a]J4 < [b]J4 if and only if [a]s € [b]a. It
is obvious that the relation < is a partial order on the set S/J4.

Let b€ S. By N(b) we denote the set {z € S| [b]J4 £ [x]Ja}. In the case
N(b) # 0, it is not too difficult to prove that N(b) € P(A).

We call a subautomaton N = (N;6) of an M-automaton A = (S5;6) a
minimal (J4-simple) subautomaton of A if there does not exist an element
N’ € P(A) such that N' C N.

Let N = (N;6) be a subautomaton of the M-automaton A.If N # 5, and
there does not exist N’ € P(A) such that N C N’ C S, the subautomaton N
will be called a maximal subautomaton of A .

Remark 3. Let A = (S5;6) be an M-automaton. For any m € M we
define a function f,,: S — S such that f,,(s) = é(s,m) for any s € S. Let
Fy = {fm | m € M}. Then we can consider a unary algebra S = (S; Fy)
which is assigned to the M-automaton A = (S;¥6).

Let I be a set and |I| > 2. Let A; = (S;;6;) be an M;-automaton for
any i € [. Let S =T][(S;|7€ ) and M = [][(M; | i € I) be the Cartesian
product. We denote also by M the direct product of the monoids M;. Define
the mapping é: S x M — S by (o, u) = v if and only if 6;(o(3), u(i)) = v(i)
for any 7 € I. Then the couple A = (S;6) is an M-automaton. We call this
M-automaton a direct product of M;-automata A; = (S;; ;). This automaton
will be denoted A = [[(A; i€ ).

If the direct product of M;-automata is defined for any 7 € I and common
4[, then to any M;-automaton A; = (S;;6;) we can assign an M-automaton
A; = (Si;6;) such that 6;(s;, u) = s, if and only if 6i(si, u(i)) = s} for any
si € Si and p € M. By Remark 3, to any M-automaton A; = (S;,6;) we
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assign the unary algebra S; = (S;, Fjs). All of these unary algebras are of the
same type. In the same way as in [1; Example 1], we can prove that the system
{S,; | 7€ I} is an 7-system of unary algebras. Moreover, the direct product
S =J[(S; | i € I) of this r-system is the unary algebra which is assigned. by
Remark 3, to the direct product of M;-automata A, .

In this way, to any system {A; | i € I} of M;-automata the r-systen
{S;| i € I} of unary algebras is assigned. For this assignment we can formulat
the following propositions.

Let A =][(A; |7 € I) be the direct product of M;-automata A; = (S5;:&;).
and |[I| > 2. Let {S; | i € I} be the r-system of unary algebras which is
assigned to the system {A; | i € I} of M,-automata. Let S = [[(S; | i € I)
be the direct product of unary algebras S; = (S;; Fr) . Then:

a) for any nonempty subset N of S, N € P(A) if and only if N € P(S):

b) for any i € I and any nonempty subset N; of the set S;, N; € P(A,)
if and only if N; € P(S;);

c) for any nonempty subset N of S, N = [a]4 if and only if N = [a]:

d) for any ¢ € I and any nonempty subset N; of the set S;, N; = [r;]
if and only if N; = [z].

In this way, M-automata can be described as unary algebras and we can use
our results concerning unary algebras to find e.g. all minimal or maximal sub-
automata, and, if it exists, the greatest subautomaton of a given M-automaton.

Also, related questions concerning the direct product of M-automata can be
solved.
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