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r -SYSTEMS OF UNARY ALGEBRAS II 

( M a x i m a l a n d m i n i m a l s u b a l g e b r a s o f 

t h e d i r e c t p r o d u c t s o f u n a r y a l g e b r a s ) 

IMRICH ABRHAN* — LADISLAV SATKO ** 

(Communicated by Tibor Katrindk) 

ABSTRACT. Maximal and minimal subalgebras of the direct product of an 
r -system of unary algebras are studied. They are characterized by J-simple sub­
algebras and J-subalgebras. These algebras are also studied in the direct product 
of an r-system of unary algebras. 

1. I n t r o d u c t i o n 

We continue in our investigation from [1]. All concepts and definitions are 

from this work. We only repeeit not ions which are most frequently used. Let 

A — (A; F) be a unary algebra . T h e n V(A) is the set of all subsets N Q A 

such t h a t N ̂  0 and (TV; F) is a subalgebra of t he a lgebra A . If A = (A; F) is 

a unary algebra and x £ A, then F + ( x ) is the set of all y £ A which have the 

following proper ty : There exist / l 5 . . . , /*. £ F such t h a t y = f^(.. . f\(x). . . ) . 

In [1], we have described maximal and greates t J-classes in the direct prod­
uct of an r - sys tem of una ry algebras. Now we shall describe maximal , greatest 
and minimal subalgebras in this direct p roduc t . We make use of the not ion of 
j - s u b a l g e b r a of an algebra A . This is the generalization of the notion of the 
maximal subalgebra . (See [4].) [1; Examples 2 and 3] show how to derive well-
known results concerned minimal and maximal left ideals of the direct p roduc t 
of semigroups from our resul ts . 

In this in t roduct ion , we prove one theorem dealing wi th subalgebras gener­
ated by one element in the direct p roduc t of an r - sys tem of unary a lgebras . It 
is convenient to s ta r t with the following lemma . 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 08A60. 
Key w o r d s : Unary algebra. Direct product, Maximal subalgebra. 
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LEMMA 1 .1 . Let {A.; = (Af, F) \ i G / } be an arbitrary system of unuiy 

algebras, a eA = U(Ai I ^ I) • Then [a] Q I I ( M O ] I l ^ J) • 

P r o o f . Let /? G [a ] . Then either /j = a or J G F+(a). Hence either 

/j(z) = a(i) or /3(z) G F+(a(i)) for any / G / . (See [1; Lemma 2.1].) Thus . 

3(i) G {a(i)} U F+(a(z)) = [a(z)j for any / G / • • 

THEOREM 1.1 . Fe£ { A / = (A,:; F) | i G / } be an r-system of unary ahj(bras. 

a G A = [](A; I i £ / ) • T/i™ H = n([«(0] I > G 7) 7/ a" r / ""'.v '/ (/th(r 

a G F+(a) . or there exists J G I such that a(j) £ F+(a(j)) . and j[o(/)] = 1 

for any i G / , i ^ j . 

P r o o f . 

a) Let us suppose [a] = Yl([a(i)] \ i G / ) . Obviously, ei ther o ( / ) G F~" (o ( / ) ) 

for any / G / , or there exists such j G / t ha t a(j) ^ F+(r>(y)) . Thus , for the 

r-sys tem of unary algebras we have only to prove there does not exist j . k G / . 

j ^ k , such that a(j) £ F+(a(j)) and | [a(k)] | > 2 . Suppose, to the contrary. 

the exis tence of such elemen ts. Let 3 be an arb i t rary element of n ( [ 0 ( / - ) ! ! / ' - ^ 

such that /3(j) = a(j) and 3(k) ^ a(k). Evidently, such element exists, and 

3 ^ a. An assump t ion [a] = Yl([a(i)] \ i G / ) implies 3 G F + ( o ) . However. 

in an r-sys tem, /3 G F+(a) if and only if ft(i) G F+(o(/')) for any / G / . This 

con t radic ts /3(j) = a(j) £ F+(a(j)). Thus , if there exists j G / such that 

a(j) £ F+(a(j)) , then | [a(i)] | = 1 for any i G I, i ^ j . 

b) Let a G F+(a). From this, a(i) G F+(a(/)) for any / G / . Let 3 be an 

a rb i t ra ry element of l l ( [ a ( 0 ] I ?: e / ) • Then /3(z) G [a(/')] = { o ( / ) } U F+((>(/)) 

= F+(a(i)) for any z G / . It means, for an r -system, 3 G F+(o) = u\] . and 

timsn(["(>)] h - e / ) g M . 

As the second possibility, we suppose the existence of j G / such that (\(j) G 

F+(a(j)) and | [a(i)] | = 1 for any i G / , i / j . Let ,/J be an a rb i t ra ry element 

of n ( f a ( 0 ] I i £ / ) . Of course, if 3 = a, then /j G [a] . The case 3 ^ a is 

l)ossible only if 3(j) / o(.y) and {j3(i)} = {a(i)} = F+(o(/)) = (n(/)] for any 

z G / , i ^ j • Obviously, /j(i) G F+(a(z)) for any / G / , i ^ J • For / = / we 

have: /3(j) G [a ( j ) j and /3(j) + a(j) . Thus , f5(j) G F+(o(.;)). It is evident 

tha t ft(i) G F+(a(i)) for any z G / . Therefore, for an / '-system this implies 

3 G F+(a) and consequen t ly 3 G [a] . It means that, also in this case, we have 

W([a(i)] I l ^ / ) = [Q] • This comple tes the proof of our theorem. • 
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2. M i n i m a l ( J - s i m p l e ) s u b a l g e b r a s 

Lot A = (A; F) be a (unary) algebra wi thout proper subalgebras . It means 
that N G V(A) implies V -= A and V(A) = {A}. In such a case, for any 
./• G A. [x]J = A. Thus , A/J is a one-element set. Such an algebra is called a 
J -s imple algebra. 

Let N = (V; F ) be a subalgebra of a unary algebra A = (A; J1) such that 

lor any N' G V(A) t he condit ion IV' Q N implies N' = N . Then the algebra 

N is called a minimal subalgebra of A . It means t h a t {N' G V(A) \ N' g N} 

{X}. 

Let A = (.4; A) be a unary algebra, and N = (V; F) be a subalgebra of the 

algebra A . Let N' Q N . Then N ' = (IV'; F ) is a subalgebra of A if and only 
if it is a subalgebra of N . Hence, for any IV' ^ IV , N' G V(A) if and only if 
X' G ' P ( N ) . Thus , N = (IV; F ) is a minimal subalgebra of A if and only if 
P ( N ) = {N} . From this it follows t h a t N = (IV; F) is a minimal subalgebra of 
a unary algebra A = (A\F) if and only if N is a J - s imple subalgebra of A . 

Let A = (A\F) be a unary algebra, and K = f]{N I N € ^ ( A ) } . If 

I\ / 0 . then (A'; F) is a J -s imple subalgebra of A , and the algebra (A; J1) is 

called the kernel of A . 

Now we focus on the connection between minimal J-classes and minimal 
algebras in unary algebras. T h e Lemmas 2.1 and 2.3 are valid also for an arb i t ra ry 
universal algebra,. As the definition of the set F^(x) for universal algebras is 
ra ther complicated, we s ta te these lemmas only for unary algebras. 

L E M M A 2 . 1 . Let A — (A;F) be a (unary) algebra and a G A . Then the class 

[a]J is minimal in A!J if and only if [a]J = [a] . 

P r o o f . 

a) The class [a] J is minimal if and only if, for any b G [a] , [b] — [a] . Let 
[b] -- [a] for any b G [a] . Since [a] J ^ [a] , for any b G [a] , b G [b]J -- [a] J Q [a] . 

Therefore, [a] ^ [a] J ^ [a] . 

h) Let [a]J = [a]. Then , for any b G [a] = [a]J, [b] = [a]. This completes 
t he proof. • 

L E M M A 2 . 2 . Let A = (A] F) be a (unary) algebra. Then for any nonempty 
subset N of A the following conditions are equivalent: 

a) (V; F) is a J-simple subalgebra of A . 

h) N = [x] = F+(x) for any x G V . 
c) There exists x G A such that N = [x]J G V(A) . 
d) There exists x G A such that N = [x]J , and [x]J is a minimal class 

in the set A/J . 
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P r o o f . 

1) Obviously , a) implies b) . 

2) Let , for any x E IV, IV = [x]. T h e n we have [x]J g [x] = IV C [. r]J. 

Therefore, IV = [x] J E ' P ( A ) , and b) implies c). 

3) Assume an exis tence of x E'-.A such that IV = [x] J E V(A), and let ( /G.4 
be such that [y]J < [x]J = IV E V(A). Thus , [y] C jV and ,<y E IV = [x] J . 
Therefore, [y]J = [x ]J , which implies that IV = [x]J is a minimal elemen t in 
the par t ia l ly ordered set A/J. We have proved c) implies d) . 

4) Le t x E A be such that IV = [x ] J , and [x]J be a minimal elemen t of 

A/J. B y L e m m a 2.1, IV = [x]J = [x] . Clearly, this is true for any x E IV. 

Le t IV' E P ( A ) have the proper ty 0 ^ IV7 ^ IV. Then , for any x E IV\ 

[x] ^ IV' g IV = [x]. Thus , IV' = IV, and (IV; F) is a J - s imple subalgebra of 

A . Therefore d) implies a) , and the proof is comple te . • 

L E M M A 2 . 3 . Let A = (A; F) be a (unary) algebra and 0 / K Q A . Thcv 
\K\F) is the kernel of A if and only if there exists a E A such that [a] J is 
the smallest element of A/J and K = [a] J . (See also [3].) 

P r o o f . 

1) Le t (K]F) be the kernel of the algebra A . B y L e m m a 2.2 c), there exists 

a E A such that K — [a] J. Le t b E A be an arbi t rary e lemen t . T h e n a E [a] J = 

K Q [b]. Thus , [a] C [b] and K = [a] J < [b]J for any be A. From this it easily 

follows that K is the smalles t elemen t of the par t ia l ly ordered set A/J. 

2) Let [a]J = K be the smalles t elemen t in A/J. B y L e m m a 2.2 d) . a) . 
\K\F) is a J -s imple subalgebra of A . Then , by L e m m a 2 .2b) , K = [a] . Let 
IV be an arbi t rary elemen t of V(A) and b E IV. Since K = [a] J is the smallest 
elemen t of A/J, we have K = [a] J < [b]J. Therefore K = [a] Q [b] g IV. It 
means that (K;F) is the kernel of the algebra A . • 

Now we focus on J-s imple subalgebras in a direc t p roduc t of unary algebras. 

T H E O R E M 2 . 1 . Let {A^ = (A^F) \ i E 1} be an r-system of unary algebras, 

A = I l ( A i I i E I) . Let N E V(A) . Then N = (IV; F) is a J-simple subalgebra 

of the algebra A if and only if for any i E I there exists a J-simple subalgebra 

N?: = (IV ;̂ F) of the algebra A ; such that N = [ [ ( N , | i G / ) . 

P r o o f . 

1) Le t N = (N;F) be a J -s imple subalgebra of A . B y L e m m a 2.2 b) . V = 

\a] = F+(a) for any a E IV. From this it follows a E F+(a) . B y Theorem l .L 

N = [a] = ] l ( [ a ( 0 ] M E / ) . NOW we show that ([a(i)]\ F) is a J -s imple 

subalgebra of A? for any i E I. Suppose to the con trary that there exists j E / 

such that ([<^(j)];F) is no t a J -s imple subalgebra of A y . Then there exists 
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M, G V(A;j) such t h a t M3 c [a(j)] . If we denote M = [ ] ( ^ I X{ = [a(i)] 

for any ? G l , i 7̂  j , and X3 = M3) , t hen M C n ( [ a ( ? ' ) ] I l ^ I) = M • Since 

A/ £ ' P ( A ) , th is cont radic ts t he assumpt ion t h a t [a] is a J - s imple subalgebra 

of A . Thus , for any i G 7 , ([ev(i)];F) is a J - s imple subalgebra of A ; , and 

N = n((W*)];F)h;GI). 
2) Let N = n(N>: \ i £ I) . where N?; = (Nf, F) is a J-simple subalgebra 

of A/ for any i G 7 . By L e m m a 2.2 b) , jVz = [x2] = F+(xi) for any xz G 1V.; . 

Let a G A = n ( ^ i I * ^ -0 be a n element such t h a t a(i) G jV?; for any 

/ G 7 . Then jV?; = [a(i)] = F+(a(i)) for any i £ F From this it easily follows 

tha t a(i) G F + ( a ( i ) ) for any i G J . As { A , = (A; ;K ) | i G / } is an 

E-system of unary algebras, ev G F + (ev) . By Theorem 1.1, jV = f l ( ^ ' I l' ^ I) ~ 

n ( h ( / ) ] \i e I) = [a] = F + ( a ) . By L e m m a 2 .2b) and a) , N = (N;F) is a 

J -s imple subalgebra of an algebra A .. • 

T H E O R E M 2 . 2 . Let {A?; = (A^F) \ i G / } 6e an r-system of unary algebras, 

A = [](A?; I i G I) . Fel 0 7̂  Iv g A = H(Ai \ i G I) . Then K = (iv; F) is the 

kernel of A if and only if for any i G I there exists the kernel K 2 = (Kt\ F) of 

A ? , and K = [ ] ( K , | i G I) . 

P r o o f . 

1) Let us suppose t h a t K = (K;F) be the kernel of A . T h e n (K;F) is a 

. /-simple subalgebra of A . By Theorem 2.1 , K = n ( K z | i G I) and K?; = 

(Iv?; F) is a J -s imple subalgebra of Az- for any i G I. Let ev be an element of 

A such t h a t ev(i) G Kh for any i G 7 . By L e m m a 2.2 c), 7C2 = [a(i)]j G /^(A,;) 

for any i G 7 . We prove t h a t [ev(z)] J is the smallest element of the set Ai/J 

for any i G 7 . 

Let j G 7 be fixed, and choose an a rb i t r a ry y3 G Aj . Let /J G A be such 

t ha t /3(j) = y3. Since K = [\(Ki I * € 7 ) = l l ( [ a ( 0 ] | * G I) , we have 

a £ Iv . Therefore, A" = [ev]J. However, [a] J is t he smallest element of A/J. 

Hence [a] J < [/3]J. According to [1; L e m m a 2.3], [ev(i)] J < [/3(i)] J for any 

/ G 7 . Obviously, also [a(j)] J < [f3(j)]j = [yj]J. I t means t h a t [a(j)] J is the 

smallest element of A3/J. Since j G 7 was an a rb i t ra ry index from 7 , we get 

[o ;0 ' ) ] j i s the smallest element of Aj/J for any j G 7 . Thus , (K3;F) is the 

kernel of A 7 for any I G 7 . 

2) Let (Kt\F) be the kernel of A 2 for any i G I. Let ev G Ai be such t h a t 

n ( / ) G Iv? for any i G I. T h e n Iv^ = [ev( i)]J , and [a( i)] J is the smallest 

element of AjJJ for every i G 7 . Let 7£~ = ]~ | (^ ' H ^ -0 • According to Theo­

rem 2.1, (K;F) is a J - s imple subalgebra of A . Since ev G K, by L e m m a 2.2, 

K = [(\]J = [a] = F+(cv) . Hence ev G F+(ev) . Let /? be an a rb i t ra ry element of 
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A. As [o'(z)] J is the smallest elemen t of A.\jJ, we have [a( / ) ] J < [J(/')] J for 

any i E I. In this case, by [1; L e m m a 2.4], we have [a] J < [/?]J, and [a] J = K 

is the smalles t elemen t of A/J . Hence (K; F) is the kernel of A . D 

3 . J - S u b a l g e b r a s 

Let A = (A; F) be a (unary) algebra, b E A. Set 

N(b) = {xeA\ [b]J i [x]j}. 

The set N(b) is of grea t impor tance for this section. (See also [4].) Clearly. 

x E N(b) if and only if ei ther [x]J < [6]J, or the classes [x]J and [6]J are 

incomparable. 

L E M M A 3 . 1 . Let A = (A; F) be a unary algebra. Then for any a E A , a ^ b . 

a <G N(b) if and only if b £ F+(a) . 

P r o o f . 

a) Le t a ^ b and a £ IV(6). Then [6]J ^ [ a ] J . It follows immedia tely thai 

ei ther [a]J < [6]J, or classes [a]J and [6]J are incomparable . In the first case, 

[a] C [6] holds. It means that a E F+(b) and 6 ^ F+(a). For the o ther case. 

[a] ^ [6] and [6] ^ [a] . Hence, in bo th cases, 6 ^ F+(a). 

b) Le t a ^ 6 and a ^ IY(6). T h e n [6] J < [a]J, and thus [6] C [a] . From 

the last inclusion we conclude 6 E F+(a) U { a } , and, by the condi t ion a ^ b. 

b E F+(a). This comple tes our proof. D 

R e m a r k . Let A = (A; F) be a unary algebra. Then , for any 6 E A, 

& ^ IV(6), and we get the nex t proposi t ion: 

Let A = (A]F) be a unary algebra, 6 E A , and 6 E F+(b). Then , for any 

a£A, ae N(b) if and only if 6 £ F + ( a ) . 

DEFINITION 3 . 1 . (See also [3].) Let N = (IV; F ) 6e a subalgebra of a unary 
algebra A = (A; F) . Let there exist 6 E A such that N = N(b) . Then N is 
called a J-subalgebra of A . 

Now we formula te three lemmas in which some useful proper t ies of the set 
V(6) are s ta ted. 

L E M M A 3 .2 . Let A = (A;F) be a unary algebra. " 

a) Let 6 E A and N(b) / 0 . Flien (IV(6); F) is a J-subalgebra of A . 
b) If IV E V(A) and N ^ A, then (IV(6);F) is a J-subalgebra of A for 

any b <E A\N . 
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P r o o f . (See also [4].) 

a) Let A = (A; F) be a unary algebra, b £ A, and N(b) / 0 . For any ./• £ A 

and any / £ F , /(./ ') £ [x] , and thus [/(.x)] ^ [x] . It means for J-classes that 

Now we prove (IV(b);F) is a subalgebra of A . Suppose t h a t there exist 

./• £ N(b) and / £ F such t h a t f(x) g N(b). From this it follows that 

[b]J < [/(./')] J . However, [b]J < [f(x)]J < [x]J cont radic ts our assumpt ion 

./• £ N(b) . From this we conclude t h a t (IV(6); F ) is a subalgebra of A . Clearly, 

H is a J -subalgebra . 

b) Pet N £ V(A), N ± A. and b £ A \ IV. Then , for any x £ IV , [x] Q N , 
and thus [b] ^ [.;:] . Now there are two possibilities . E i ther [x] C [b] or [x] ^ [6] . 
These condit ions imply x £ IV (b) , and therefore IV(6) ^ 0 . The rest of the proof 
follows from a) . D 

LEMMA 3 . 3 . Let A = (A; F) be a unary algebra, and b £ A . Then the fol­

lowing conditions are equivalent: 

a) IV(b) = 0 . 
b) [b] J is the smallest element of A/J . 

c) ( [6 ] J ;F) is the kernel of A. 

P r o o f . We have N(b) = 0 if and only if, for any a £ A, [b]J < [a] J . 

This is t rue if and only if [b] J is t he smallest element of A/J. This proves the 

equivalence of a) and b) . 

T h e equivalence of b) and c) is proved in L e m m a 2.3. D 

LEMMA 3 . 4 . Let A = (A;F) be a unary algebra and b £ A . If N(b) = 0 , 

then be F + ( 6 ) . 

P r o o f . Suppose to t he cont rary t h a t IV(6) = 0 and b ^ T+(b). Then , for 

any / £ F , f(b) £ F+(b) C [b]. Therefore [/(b)] C [b] and thus [/(b)] J < [b]J. 

Hence / ( b ) £ IV(b) and IV(b) '4- 0 , which is a contradic t ion to our assumpt ion 
N(b) = 0. D 

Now we concent ra te on the set N(a) in a direct p roduc t of an r - sys tem of 
unary algebras. 

THEOREM 3 . 1 . Let \Ai = (Ai\F) \ i e J} be an r-system of unary algebras, 

A = I 1 ( A * I i e I) and ot e A = Y\(Ai\i e I) . Then N(a) = 0 if and only if 

N(a(i)) = 0 for any i e I. 
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P r o o f . 

a) Let N(a) = 0 . By Lemma 3.3, ([a] J = IY; F) is the kernel of A . Accord­

ing to Theorem 2.2, for any i E / there exists the kernel K; = (A",-; F) of the al­

gebra A?:, and K = (K\ F) = \[(¥.t \ i E I) . Thus, A = [a] J = U(K> \ ' £ D • 

Hence, for any i E I, a(i) E Kt. Since (AY, F) is the kernel of the algebra A, . 

by Lemma 2.3, [a(i)]J = Kj for any i E / , and thus, by Lemma 3.3. we have 

N(a(i)) = 0 for any i E I. 

b) If N(a(i)) = 0 for any i E / , then, by Lemma 3.3. ([a(i)]J:F) is 

the kernel of the algebra A?; for any i E 7. Let iY = ll([a(0]«^ I l'' ^ -0 • T u e u 

a E A\ and, by Theorem 2.2, (K\F) is the kernel of A. Therefore, by 

Lemma 2.3, K = [a]J, and, by Lemma 3.3, N(a) = 0. • 

THEOREM 3.2. Let {At = (Af, F) | i e 1} be an r-system of unary alycbras. 

and A = Y\(Al \ i E I) . Let a E A = \\(A% \ i E I) be such that a E F+(o) . 

Then 

N(a) = \J{U{Xi I Xi = Ai f°r anV * e I . ^ i • 
and X j = iV(a(j)))| j 6 / } . 

P r o o f . If N(a) = 0, the proof follows from Theorem 3.1. 

1) Let N(a) / 0. According to Theorem 3.1, there exists fc E / such that 

N (a(fc)) ^ 0. Let us denote U j l K ^ I x i = A* for a n y l G I ^ l ^ J ' a n d 

Xj = N(a(j))) | j E / } by Q. Clearly, Q ^ 0 and Q E P(A) . 

2) In both cases a E F+(a) or a ^ A + (a ) , we show that Q C :Y(a). 

Let (3 £ Q . Then there exists fc E I such that /3(fc) E N (a(k)) . According to 

the definition of the set N(a(k)) and Lemma 3.1, (3(k) ^ a(k) and a(k) $ 

F+(/3(fc)) . Hence a ^ /3, and, as {A; = (A?;;F) | ? E / } is an r-system of 

unary algebras, a £ F+(/3). By Lemma 3.1, f3 E N(a), and thus Q g N(^) • 

3) Finally we show that a E F+(a) implies Q = TV (a) . Let J E -V(°)-

Obviously, (3 ^ a and a ^ F+(/3). Hence, there exists fc E / such that 

a(fc) i F+(/3(fc)) . According to a E F+(a), we have a(k) + J(k) . Therefore 

0(k) E 1V(a(fc)) . It follows that p E Q and thus N(a) g Q . Hence N(a) = Q • 

• 

In the following theorem, we describe N(a) in the case o ^ F+(o) • 
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THEOREM 3.3. Let {A, = (Ai;F) \ i e 1} be an r-system of unary algebras, 

A = [](A,: | i e / ) , A = Yl(At | i G I), a G A, and a i F+(a). Let 
U = [i G / | a(i) <£ F+(a(i))} . Then 

lV(«) = ( U { l l ( * . | Xi = At for any i e l , i^j, and 

Xj = N(a(j)) for j e I \ I\, whereas 

X3 = N(a(j)) U {a(j)}for j E h) \ J G J } ) \ {a} . 

P r o o f . 

1) Let a ^ F+(a). By Lemma 3.4, N(a) / 0 . Since we consider an r-system 

of unary algebras, there exists at least one k G J such that a(k) £ F+(a(k)) . 

Thus, the set h is nonempty, cind, by Lemma 3.4, N(a(i)) ^ 0 for any i E h • 

Let Mj = N(a(j)) U {a(j)}> for any j E h , and M3 = N(a(j)) for any 

j E I \h- Let Q = U { I l ( ^ i I Xi = Ai for any i e I, i ^ j , and X3 = 

N(a(j))) | j el}, and let R = ( | J { I Iv* i I ** = -4- for any i E J , t / j , 

and X, = {a(j)} ) | j E / i } ) \ {a} . Evidently, QuR=([j{ U(Xi \ Xt = At 

for any i E J , z / j , and X^ = Mj) \ j G J} ) \ W • 

2) We prove Q U R ^ N(a). In the part 2) of the proof of Theorem 3.2, we 
have proved Q ^ jV(a). Thus, it is sufficient to prove R Q N(a). 

Let (3 G R. Clearly, /3 ^ a . Suppose /3 £ X ( a ) . By Lemma 3.1, a E J1 +(/^). 
Hence a( i) E F+(f3(i)) for any z G J . However, the condition /3 E Jt implies 
the existence of k E Jx such that /3(k) = a(fc) <̂  F+(a(fc)) = F+((3(k)) . This 
contradicts the assumption a G F+(/3). Thus (3 G X ( a ) and R Q N(a). 

3) Finally we prove that N(a) Q Q U R. Let /? G 1V(a) . Obviously, (3 ^ a , 
and. by Lemma 3.1, a (̂  F+(/3). Let J2 = {i E J | a( i) £ F+((3(i))}. 
Evidently. I2 ^ 0. Let j E J2 • If a ( j ) ^ /3(j), then, by Lemma 3.1, ft(j) E 
N(<\(j)) and thus /3 G <2 . 

If n(J) = 3(j) ^ F+(f3(j)) = F+(a(j)) , then j E Ji , and thus (3 E R. So 
.V(n ) C Q u i ? , and the theorem is proved. • 

Now we use the obtained results to describe maximal and greatest subalgebras 
of the direct product of an r-system of unary algebras. Let A = (A; F) be a 
[unary) algebra. Let (N: F) be a subalgebra of A such that N C A , and there 
does not exist Nf E V(A) such that N C N' C A. In this case, (X; F) is 
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called a maximal subalgebra of A . We denote the set of all A: G V(A) such 

t ha t (AT; F) is a maximal subalgebra of A by VnrAX(A). 

We also denote by jV* an element from V(A) such tha t A* ^ A. and 
N g N* for any N G V(A) \ A. The described set need not exist. If it doe.,, 
then the algebra (jV*;F) is called the greatest subalgebra of the algebra A . 

The following lemma is useful for the next par t of this section. (For the proof 

of this lemma, see [2].) 

L E M M A 3 . 5 . Let A = (A]F) be a unary algebra, (end A is not J-snnph . L< t 

0 + N C A . Then 

a) (N\F) is a maximal subalgebra, of A if and only if there (xists u maxi­
mal clement [x]J of the partially ordered set A/J such that 

N = A\[x]J ; 
b) N = jV* if and only if there exists a greatest cleni( nt [x]J of tiu s( t 

A/J and N = A\[x]J . 

L E M M A 3 .6 . Let A = {A;F) be a unary algebra and a G A. Then J-class 

[a] J is a maximal clement in the set A/J if and only if [a] J - A \ N((\) . 

P r o o f . 

a) Let [a] J be a maximal element in the set A/J . According to the definition 

of the set N(a) . A \ N(a) = {x G A | [a]J < [x]j} . Obviously, in this case, 

we have A\N(a) = [a] J . 

b) Let A \ N(a) = [a]J. Then we have [a] J = {x G ,1 | [a]J < [.v]J] . 

Hence, for any x G A such tha t [a]J < [x]J , x G [a]J. Thus [o]J = [x]J . and 

[a] J is a maximal element in A/J . 3 

According to Lemmas 3.5 and 3.6, if N G Vmilx(A) . then there exists a 
maximal J-class [a]J of A/J such t h a t N = A \ [a]J = N(a) . Therefore 
any maximal subalgebra of a unary algebra is a J - suba lgebra of A . Moreover. 

N(a) G ? m a x ( A ) if and only if N(a) ^ 0 and N(a) = A \ [a]J . 

Now we can s ta te the results concerning maximal and greatest subalgebras 

of a direct p roduc t of an r -sys tem of unary algebras. 

T H E O R E M 3 .4 . Let { A , = ( A ; ; F ) | i G / } be an r-system of unary algebras. 
A = n ( A * \ i e I), A = U(Ai I i £ I), OL G A, and a G F + ( o ) . Ft 

h - {i G / | N(a(i)) ^ 0} . Then N(a) G ' P m a x ( A ) if and only if I{ / 0-

N(a(i)) G F>max(Av) for any i G h ? and A; is a J-simple algebra for any 

i € l \ h . 
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P r o o f . 

a) Let N(a) G Vnuix(A). Therefore N(a) ^ 0. By Theorem 3.1, the set 
fi = {/' G I | N(a(i)) ^ 0} is nonempty. According to Lemma 3.6, A \ N(a) 

is a maximal element of A/J. Since a G AL\jY(a), we get A\N(a) = [a] J. By 
[1; Theorem 3.1], [o:(z)] J is a maximal element of a set A / I for any i G I. By 
Lemma 3.6, [a(i)]j = A; \ N(a(i)) for any i G I, and thus, if N(a(i)) ^ 0, 
then N(a(i)) = A, \ [a(i)]J G Vm.(lx(At) for each i G IL . 

Further, N(a(i)) = 0, and [a(i)] J is a maximal element of A / J for any 
/ G I \ h- Therefore, for any i G I \ h , [a(i)] J = A; \ 0 = A;, and, by 
Lemma. 3.3, the algebra ( [a( i ) ]J ;F ) = (A ; I7) is the kernel of Ay;. Thus, any 
algebra A, is a J-simple unary algebra for any i G I \ Ii . Now Theorem 3.2 
implies the rest of this part of the proof. 

b) Let N(a) = U { ] 1 ( ^ I X* = A l f o r any i e I, i ^ 3 , and X, = 
-V(nU))) | J G / } , 1V(a(i)) G Pmax(A7;) for any i G h + 0, and Ay be a 
J-simple unary algebra for any i G I\Ii . Then, by Lemma 2.2, for any i G I\Ii , 
[(>(/')] J = A.j_. By Lemmas 3.5 and 3.6, [o:(i)] J is a maximal element in the set 
A,/J . From I, ^ 0 we have 7V(a) / 0. By Lemma 3.6, [a]J = A \ N(a), and 
thus N(a) = ^ \ [ a ] J G P m a x ( A ) . • 

THEOREM 3.5. Let {A? = (A./; F) \ i G I} be aH r-system of unary algebras, 

A = ]\(Ai | i G I). A = [ ] ( ^ - | '̂ G I); a G A7 anrf a G F+(a) . Lei 

/, = {/ G I | AT(a.(i)) / 0} . Then N(a) = TV* (i.e. {N(a);F) is the greatest 

subalgebra of A) if and only if Ii 7-- 0 . N (a(i)) = TV* is the greatest subalgebra 

of A; for any i G Ii , and AL is a J-simple unary algebra for any i G I \ h • 

P r o o f . By Lemmas 3.5 arrd 3.6, it is obvious that N(a) = jV* if and only 
if N((\) 7̂  0 and N(a) = A \ [a] J, where [a] J is the greatest element of A/J . 
Now we can continue similarly as in the proof of Theorem 3.4, only instead of 
[1; Theorem 3.1] we must use [1; Theorem 3.3]. • 

Now we state two theorems which, irr the case a ^ F+(a), describe condi­
tions for N(a) G VnY(lx(A) and N(a) = TV* . These theorems represent direct 
consequences of [1; Theorems 3.2 and 3.4]. 

THEOREM 3.6. Let {A; = ( A ; F ) | i G I} be an r-system of unary algebras, 

A = n (A , I i G I), A = \\(At I i G I). a G A, and a £ F+(a) . Then 
N((\) G Vnuix(A) if and only if there exists i G I such that N (a(i)) G Vmilx(Ai) 

and a(i) (/ F + ( a ( i ) ) . 
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P r o o f . 

a) Let us suppose N(a) G VmQiX(A) and a £ F+(a). Then N(a) / 0, and 
[a]J is a maximal element of A/J. According to [1; Lemma 3.2], there exists 
i G / such that [a( i)]J is a maximal element of Aj/J and a(i) £ F+(a(z)) . 
Thus N(a(i)) + 0 and [a(i)]J = A% \ N(a(i)) . So, N(a(i)) = A, \ [a{i)}j G 
Pmax(A^) and, of course, a(i) ^ F+(a(i)). 

b) Suppose, there is i G / such that N(a(i)) G Vmax(Aj) and a(i) ^ 
F + ( a ( i ) ) . Then N(a(i)) / 0, and [ a ( i ) ] j is a maximal element of At/J . 
As we consider an r-system of unary algebras, a £ F+(a), and, by [1; Theo­
rem 3.2], [a] J is a maximal element of A/J. Obviously, N(a) ^ 0. Therefore 
N(a) = A\[a]JeVm^(A). • 

R e m a r k 2. By [1; Lemma 1.3], from a £ F+(a) it follows that 
[a]J = {a}. Clearly, in this case, N(a) G 79

max(A) if and only if {a} is a 
maximal class of A/J and N(a) = A \ {a} . 

We can derive this result also from Theorem 3.3 in the following way. If j G / 
is such that a(j) £ F+ (a(j)) , and [ct(j)] J — {^(j)} is a maximal element of 
Aj/J, then Mj = N(a(j)) U {a(j)} = (A, \ {a(j)}) U {a(j)} = A3 , and thus 
Yl(Xi | Xi = Ai for any i G / , i •=/=- j , and Xj = Mj) = A. Therefore 

H(*) = (\J{I\(Xi | X% = Ai for any i G / , i ± j , 

and Xj = M^) | j G / } ) \ {a} = A \ {a} . 

The following theorem is the direct consequence of [1; Theorem 3.4]. 

THEOREM 3.7. Let {Ai = (A^F) | i G / } be an r-system of unary algebras, 
A = U(Ai | i G I), A = H(Ai \ i e I), a £ A, and a £ F+(a) . Then 
N(a) = N* is the greatest subalgebra of the algebra A if and only if there exists 
i G l such that a(i) £ F+(a(i)) . N(a(i)) = N* is the greatest subalgebra of 
Ai, and \Aj\ = 1 for any 3 G / , i ^ j . 

In the following, we show how these results can be applied to M-automata 
and direct products of M-automata by describing M-au toma ta as unary alge­
bras. 

Let M be a monoid with a unit element 1, S be a nonempty set. and 
(): S x M —> S be a mapping such that: 

a) <5(s, 1) = s for any s G S, 
b) S(8(s, m), m') = 6(s,mm') for any .s G S , and m, m' G j\/ . 
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Then the couple A = (S; 6) is called an M-automaton. (See for example [5].) 

Let A = (S; 6) be an M-automaton. Let 0 ^ N C S, 6(s,m) £ N for any 
s £ N, and ra £ Af. Then the couple N = (1V; 6) we call a subautomaton of 
A . We denote by V(A) the set of all subsets N of S such that N = (N; 6) is 
a subautomaton of A . 

Let a £ S and [a]A = {<5(a,ra) £ S | ra £ M } . Obviously, a £ [a]^ . Fur­
ther, for any <5(a, ra) £ [a]A and any m' £ M , <S(<5(a, ra), ra') = <5(O, mm') £ [a]^. 
Therefore, ([a],4; 5) is a subautomaton of A . On the other hand, if (jV; 6) is an 
arbitrary subautomaton of A and a £ TV, then, for any ra £ M , <5(a, ra) £ N . 
Hence [a]A Q N . Thus, we have proved that [a]A = f]{N £ ^ ( A ) I « £ N} • 
Subautomaton ([a]^;<5) is a subautomaton of A which is generated by the 
element a £ S. 

For the set S we define a relation J A in the following way: a JAb if and only 
if [a] A = [b]A. Evidently, JA is an equivalence on the set S. For the set S/JA 
we define a binary operation < by: [a]JA < [b]JA if and only if [a]A ^ [b]A • It 
is obvious that the relation < is a partial order on the set S/JA • 

Let b £ S. By N(b) we denote the set {x £ S | [b]J4 ^ [#]«/A} • In the case 
1V(6) / 0 , it is not too difficult to prove that N(b) £ V(A). 

We call a subautomaton N = (N;8) of an M-automaton A = (S;8) a 
minimal (J A -simple) subautomaton of A if there does not exist an element 
N' £ V(A) such that i V ' C i V . 

Let N = (N; 6) be a subautomaton of the M-automaton A . If N ^ S, and 
there does not exist IV' £ V(A) such that jY C N' C S, the subautomaton N 
will be called a maximal subautomaton of A . 

R e m a r k 3. Let A = (S;8) be an M-automaton. For any ra £ M we 
define a function fm: S —> S such that / m ( s ) = 6(s,m) for any s £ S. Let 
FM = {/m I ra £ M} . Then we can consider a unary algebra S = (S;FM) 
which is assigned to the M-automaton A = (5; 6). 

Let I be a set and |7| > 2. Let A; = (Si;6i) be an M;-automaton for 
any i £ I. Let 5 = J K ^ | i £ 7) and M = n ( ^ i M £ I) b e t n e Cartesian 
product. We denote also by M the direct product of the monoids M«. Define 
the mapping 6: S x M —> S by 6(a,fi) = *y if and only if 6i(a(i), ji(i)) = v(i) 
for any i £ / . Then the couple A = (5; 6) is an M-automaton. We call this 
AI-automaton a direct product of Mi -automata A^ = (Si\8i). This automaton 
will be denoted A = HX^ i I ?" (= I) • 

If the direct product of M] -automata is defined for any i £ / and common 

AI, then to any M*-automaton A-. = (£-.;&) we can assign an M-automaton 

A, = (S^ Si) such that Sifa, n) = s[ if and only if 8t(si,fi(i)) = s- for any 

.s-i £ 5^ and /x £ Af By Remark 3, to any M-automaton A?: = (Si,Si) we 
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assign the unary algebra Ŝ  = (Si, FM) • All of these unary algebras are of the 
same type. In the same way as in [1; Example 1], we can prove that the system 
{Si \ i £ I} is an r-system of unary algebras. Moreover, the direct product 
S = Y\(Si I i £ I) of this r-system is the unary algebra which is assigned, by 
Remark 3, to the direct product of Mi -automata A^ . 

In this way, to any system {A^ | i £ I} of Mi -automata the r-systen 
{S^ | i £ I} of unary algebras is assigned. For this assignment we can formulat 
the following propositions. 

Let A = jf[(Ai M ^ -0 ^ e t n e direct product of Mi -automata A; = (S-,\ <*,•). 
and |I| > 2. Let {S^ | i £ I} be the r-system of unary algebras which is 
assigned to the system {A* | i £ I} of Ml -automata. Let S = \\(^i | i £ I) 
be the direct product of unary algebras S; = (S^ FM) • Then: 

a) for any nonempty subset IV of S , IV £ V(A) if and only if IV £ V(S)\ 
b) for any i £ I and any nonempty subset IV; of the set Si, IV; £ V( A,) 

if and only if IV* £ 7>(S;); 
c) for any nonempty subset IV of S, IV = [a] A if and only if IV = [a] ; 
d) for any i £ I and any nonempty subset Ni of the set Si, IV; = [JC{]A 

if and only if IV^ = [xi]. 

In this way, M-automata can be described as unary algebras and we can use 
our results concerning unary algebras to find e.g. all minimal or maximal sub-
automata, and, if it exists, the greatest subautomaton of a given M-automaton. 
Also, related questions concerning the direct product of M-automata can be 
solved. 
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