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An algebra A is arithmetical if the congruence lattice Con A is distributive and 
every two congruences 0 , $ G Con A permute, i.e. 0 o $ = $ o 0 . It is easy to see 
that A is arithmetical if and only if the identity 

(*) 0 n ( $ o $ ) c ( 0 n $ ) o ( e n $ ) 

holds for every Q,$,$ G Con A, see e.g. [3], [4] (the symbol o denotes relational 
product). As was shown in [3], an algebra A is arithmetical if and only if it sat
isfies the Chinese remainder theorem. The famous characterization was given by 
A. F. Pixley [3] for finite algebras: 

Proposition 1. A finite algebra A is arithmetical if and only if there exists a 

ternary function t: A3 -» A compatible with Con A satisfying 

(**) t(x,x,z) = z, t(x,y,x) = x, t(x,z,z) = x. 

This function t is called a Pixley function. Recall that an n-ary function / : 
An —> A is compatible with Con A if for each 0 G Con A, (xi,yi) G 0 for i = 1 , . . . , n 
imply 

(f(xi,...,xn),f(yi,...,yn)) G 0 . 

A similar characterization was given by A. F. Pixley also for varieties of arithmetical 
algebras. Using it, we gave in [1] a characterization of algebras in such a variety 
as algebras whose every two-element subset forms a (semi)lattice with respect to 
polynomial operations. This cannot be immediately used for a single algebra since 
the proof depends on the construction of the free algebra Fy(x, y). However, we can 
modify it to 
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Theorem 1. Let A be a finite algebra. The following conditions are equivalent: 
(1) A is arithmetical; 
(2) for every element b of A there exists a binary function A compatible with Con A 

such that for each a e A the algebra ({a, b},A) is a semilattice with the greatest 

element b. 

P r o o f . (l)-=>(2): Put x A y = t(x,b,y) for a Pixley function t(x,y,z). It is 
routine to show that for any a e A, ({a,b},A) is a semilattice with the greatest 
element b. 

(2)-=->(l): Suppose 0 , $ , Vl> e Con A and 

(a,c) E 0 f l ( $ o $ ) 

for some a, c of A, i.e. there exists an element b e A such that 

(a,c)eS, (a,b)e$, ( 6 , c ) € * . 

Let A: A2 —•> A be a binary function compatible with Con A such that ({a,b},A), 
({c, b}, A) are A-semilattices with the (common) greatest element b. Then 

(a, a A c) = (a A a, a A c) G 0(a, c) C 6 , 

(a,aAc) = (aAb,aAc) e Q(b, c) C # , 

i.e. (a, a Ac) G 0 n # , 

and further 

(a A c, c) = (a Ac,c Ac) e 0(a, c) C 0, 

(a A c, c) = (a A c, b A c) G 0(a, b) C $, 

i.e. (aAc,c) G 0 f l $ 

whence (a,c) G (0 n #) o (0 n $). By the above quoted result of [3], [4] concerning 
(*) we obtain (1). • 

Remark 1. Theorem 1 can be paraphrased: A finite algebra A is arithmetical 
iff A is the union of two-element A-semilattices with a common greatest element, 
where the semilattice operation is compatible with Con A. This can be considered a 
description of the structure of a finite arithmetical algebra. 

Remark 2. If A is a finite arithmetical algebra and a,b,c G A and if A is defined 
as above, then ({a, b}, A), ({c, b}, A) are semilattices with the greatest element b but 
the four-element subset {a A c, a, c, b} is not a lattice in general since the operation 
A need be neither commutative nor associative for the elements a, c. 

660 



Another nice characterization was established by K. Kaarli [2]: 

Proposition 2. An algebra A is arithmetical if and only if the following compat

ible function property holds: For any positive integer k and finite subsets X, Y C Ak 

with X CY, any function f: X -» A compatible with Con .4 has an extension from 
Y to A which is also compatible with Con A. 

A ternary function d(x,y,z) satisfying d(x,x,z) = z and d(x,y,z) = x for x ^ y 
is called a discriminator. 

If A is an algebra and a, b are different elements of A, then we can uniquely 

define a discriminator d on {a, b}, and it is evidently a partial function compatible 

with Con A We are going to show that in a finite case the extension property of 

discriminator on two non-disjoint two-element subsets characterizes the arithmeticity 

as well: 

Theorem 2. For a finite algebra A, the following conditions are equivalent: 

(1) A is arithmetical; 

(2) for every three elements x, y, z of A and the discriminator d\ on {x,y} and 

d2 on {y,z} there exists a common extension t: A3 -» A of d\, d2 which is 

compatible with Con A. 

P r o o f . (1)=>(2): It is easy to show that a Pixley function compatible with 
Con A is an extension of both d\, d2. 

(2)=>(1): Similarly to the proof of Theorem 1, if (x, z) G 0 fl ($ o vj>) for some 
0,<I>,\I> G Con A, i.e. (x,z) G 0 , (x,y) G $, (y,z) G $ for some y G A, we conclude 

(x,t(x,y,z)) = (dx(x,y,x),t(x,y,z)) = (t(x,y,x),t(x,y,z)) G 0 , 

(x,t(x,y,z)) = (dx(x,y,y),t(x,y,z)) = (t(x,y,y),t(x,y,z)) G # , 

(t(x,y,z),z) = (t(x,y,z),d2(z,y,z)) = (t(x,y,z),t(z,y,z)) G 0 , 

(t(x,y,z),z) = (t(x,y,z),d2(y,y,z)) = (t(x,y,z),t(y,y,z)) G $ , 

thus (x,z) G ( 0 n ^ ) o ( 0 n <£), where t(x,y,z) is the extension of d\, d2 which is 
compatible with Con A. By the above quoted result of [3], [4] concerning (*) we 
obtain (1). • 
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