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and A . B . THAHEEM, Dhah ran 

(Received March 31, 1994) 

1. INTRODUCTION 

Let X be a commutative BCK-algebra and A an ideal of X. To any subset B of X 

we associate the set (A : B) = {x G X: x A B C A}, where x A B = {x A y: y € B}. 

We show that (A : B) is an ideal of X and define it as the generalized annihilator of 
B (relative to A). If A = {0}, then (A : B) coincides with the usual annihilator of 
B (see for instance [4]). These and some other properties of generalized annihilators 
are contained in Section 3 of this paper. Section 4 contains some applications of 
generalized annihilators in quotient BCK-algebras and in the theory of prime ideals 
of BCK-algebras. Using the technique of generalized annihilators, we show that the 
quotient BCK-algebra of an involutory BCK-algebra is again an involutory BCK-
algebra. We also obtain a characterization of prime ideals: A categorical ideal A 

is prime if and only if (A : B) = A (see Proposition 4.9). Section 2 contains some 
preliminary material for the development of our results. 

2. PRELIMINARIES 

A BCK-algebra is a system (X, *,0, ^) (denoted simply by X), satisfying 
(i) (x * y) * (x * z) ^ z * y; (ii) x * (x * y) ^ y\ (iii) x ^ x\ (iv) 0 ^ x; (v) x ^ y. 
y ^ x imply that x = y and (vi) x ^ y if and only if x * y = 0 for all x,y, z G X. 
If X contains an element 1 such that x ^ 1 for all x G X, then X is said to be 
bounded. X is said to be commutative if x A y = y A x for all x,y G X, where 
xAy = y*(y*x). A BCK-algebra X is called implicative if x * (H * x) = x for all 
x,g G X. Every implicative BCK-algebra is commutative and positive implicative. 

: Principle au thor 
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In any commutative BCK-algebra X the inequality (x A y) * (x A z) ^ x A (y * z) 
holds for all x,y,2: G X (see [5, 6]). This inequality will be repeatedly used. A 
proper ideal A of a BCK-algebra X is prime if x A y G A implies that x G A or 
y G A (see [11]). If X is a BCK-algebra and A is an ideal of X, then we define an 
equivalence relation ~ on X by x ~ y if and only if x * H, ?/ * a; G A Let Cx denote 
the equivalence class containing x. Then one can see that Co = A, Cx = Cy if and 
only if x ~ y. Let X/A denote the set of all equivalence classes Cx, x G X. Then 
X/A is a BCK-algebra (known as the quotient BCK-algebra) with Cx * Cy = Cx*y 

and Cx ^ Cy if and only if x * y G A, and Co = A is the zero of X/A (see for instance 
[13]). If X is a commutative BCK-algebra, then X/A is commutative [2]. Let X be 
a commutative BCK-algebra, and let A be a subset of X. Then following [4], we 
define A* = {x G X: x A a = 0 for all a G A} and call it the annihilator of A; A* is 
an ideal of X. If A = {a}, then we write (a)* instead of ({a})*. In general, for any 
ideal A,Af)A* = {0} and A C A** where A** = (A*)* is the double annihilator of 
A. If A = A**, then yl is called an involutory ideal. A commutative BCK-algebra all 
of whose ideals are involutory is called an involutory BCK-algebra. For instance, any 
finite commutative BCK-algebra or any implicative BCK-algebra is an involutory 
BCK-algebra (see [4]). For more information on annihilators and involutory ideals 
we refer to [4]. A commutative BCK-algebra X is cancellative if x A y = 0 implies 
x = 0 or y = 0 for x, y G X (see [2]), that is (x)* = 0 for all x G X with x ^ 0. An 
ideal A of a commutative BCK-algebra X is categorical if (x A y) A z G A implies 
that x A z,y A z G A (see [2]). If the zero ideal is categorical, then X is said to be 
categorical. Recently, Aslam and Thaheem [5] introduced an ideal a;-1,4 = {y G X: 

y Ax G A} associated with an element x G X and an ideal A. It follows from [5] that 
A C x~lA. An ideal A is prime if and only if A = x~l A for all x G X — A (see [5, 
6]). For an ideal A, x~lA = X if and only if x G A (see [5]). For the general theory 
of the BCK-algebra we refer to [13], and for an ideal theory of the BCK-algebra we 
may refer to [1, 3, 6, 7, 8, 9, 10, 11, 14]. 

3. GENERALIZED ANNIHILATORS 

Throughout this section X denotes a commutative BCK-algebra unless mentioned 
otherwise explicitly. First, we give the definition of the generalized annihilator. 

Definition 3.1. Let X be a commutative BCK-algebra and let A be an ideal of 
X. Suppose that B is a subset of X. Then we define the set (A : B) = {x G X: 

x A B C A} as the generalized annihilator of B (relative to A). We observe that if 
A = {0}, then B* = (0 : B) and (A : B) is non-empty because 0e (A: B). 
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R e m a r k 3.2. One can observe that if x G (A : B), then x A B C A and hence 
B C x~lA. This implies that (A : B) = {x G X: B C x~lA}. 

Proposition 3.3. Let A be an ideal of X. If B C X, then (A : B) is an ideal of 

X containing A. 

P r o o f . Let x * y, y G (A : B). Then (x * y) A B C A, y A B C A. This implies 
that (x*y)Ab G -A, HAb G .4 for all b G B. Since (xAb)*(yAb) ^ (x*y)Ab (cf. Section 
2), (x * i/) A b G A, and .4 being an ideal implies that (x A b) * (y A b) G .4. Again by 
the definition of an ideal and the fact that y A b G A, it follows that x A b G A for all 
b e B. Thus x A H C A and consequently x G (-4. : H). This proves that (A : B) is 
an ideal of X. To show that A C (A : B), let a G A. Then a A b ^ a for all b G L? 
and .4 being an ideal implies that a A b G A. This shows that a A B C A and hence 
AC (A: B). D 

Corollary 3.4 [4, Proposition 3.3]. Let B C X. Then B* is an ideal of X. In 

the following proposition, we collect the properties of generalized annihilators. 

Proposition 3.5. Let A be an ideal of X, let B and C be subsets of X. Then 

the following hold: 

(i) ifB C C, then (A : C) C (A : B), 

(ii) BC(A:(A: B)), 

(iii) (A:B) = (A:(A:(A: B))), 

(iv) if B is an ideal of X and AC B, then (A : B) n B = A, 

(v) (A: (A: B)) n(A:B)=A, 

(vi) (A:X) = A. 

P r o o f , (i) If x G (A : C), then x A C C A AS B C C, we get x A B C x A C 

and consequently (A : C) C (A : B). 

(ii) Let x G -5 and y e (A : B). Then B C f M (Remark 3.2) and hence 
x G i/_1-4. This implies that x Ay G .4 for all y £ (A : B) and hence xA(A : B) C A. 

This proves that x e (A : (A : B)) and consequently, H C (A : (A : B)). This 
proves (ii). 

(iii) By (ii), (A : B) C (A : (A : (A : B))). The opposite inclusion (A : (A : 

(A : B))) C (A : B) can be obtained by combining (i) and (ii). This proves that 
(A:B) = (A:(A:(A:B))). 

(iv) Let x E (A : B)nB. Then B C x - 1 A and x G B. This implies that x G A and 
hence (A : B)nB C A. The opposite inclusion follows from the fact that A C (A : B) 

(Proposition 3.3) and AC B. This proves that (A : B) n B = A. 

(v) The proof of (v) follows directly from (iv) and Proposition 3.3. 
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(vi) Let x G X. Then x G {A : X) if and only if x~l A = X and only if x G _4 

(cf. Section 2). This proves that (A : X) = A. D 

If we take A = {0}, then we obtain 

Corollary 3.6 [4]. Let B and C be subsets of X. Then the following hold: 
(i) IfB C C thenC* C B*, 
(ii) B C £**. 
(iii) B* =£***, 

(iv) ifB is and ideal ofX, then B n B* = {0}, 
(v) X* = {0}, 
(vi) _5* = X if and only ifB = {0}. 

Proposition 3.7. Let A,B be ideals of X and let C be a subset of X. Then 

(A:C)n(B:C) = (AnB:C). 

P r o o f . Let x G X. Then x G (_4 n B : C) if and only if x A C C A n _5 if and 
only if x A C C A and x A C C H if and only if x G (_4 : C) n (H : C). This proves 
that (A : C)n(B :C) = (AnB: C). D 

Proposition 3.8. Let A be an ideal of X, and let B,C be subsets of X. Then 

(A:BUC) = (A:B)n(A:C). 

P r o o f . Let x G X. Then rr G (_4 : _5 U C) if and only if B U C C a r M if and 
only if B C x~lA and C C re-1 A if and only if x G (A : B) U (A : C). This proves 
that (A:C)n(A:C) = (A:BU C). D 

If we choose A = {0}. then we obtain 

Corollary 3.9 [4, Proposition 3.5]. Let B and C be subsets ofX. Then (BuC)* = 

£*nc*. 

Proposition 3.10. If A is a categorical ideal of X and B is any subset of X, then 
(A : B) is a prime ideal of X. 

P r o o f . Assume that x, y G X and x Ay £ (A : B). Then B % (x A y)~l A and 
hence there exists b G B such that b §_ (x A y)~l A. This means that b A (x A y) £ A. 
Since A is categorical (cf. Section 2), we have b A x £ A and b A y £ A. Thus 
B 2 x~lA and B % y~lA. Consequently x £ (A : B) and y £ (A : B). This proves 
that (A : B) is a prime ideal of X. D 
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The following example shows that the converse of Proposition 3.10 is not true in 

general. 

Example 3.11. Let X = {0,a,b, c, d, e,/, 1}. Define the binary operation * in 

X as in the following table: 

* 0 a b c d e f 1 
0 0 0 0 0 0 0 0 0 
a a 0 a a 0 0 a 0 
b b b 0 b 0 b 0 0 
c c c c 0 c 0 0 0 
d d b a d 0 b a 0 
e e c e a c 0 a 0 

f f f c b c ь 0 0 
1 1 f e d c b a 0 

Table 1 

Then X is a bounded commutative BCK-algebra, and (c)* = {0,a, 6, d}, (/)* = 

{0, a} are ideals of X. Let A = {0, a} and B = {c}. Then A is not a categorical ideal 

because/A (d Ac) = 0 G A but / Ad = 6 £ -4, /Ac = c £ A. Also (A : B) = {x e X: 

B C x~lA} = {x G X: x Ac G A} = {0, a, b, d} (see Table 2), which is a prime ideal. 

Л 0 a b c d e / 1 
0 0 0 0 0 0 0 0 0 
a 0 a 0 0 a a 0 a 
b 0 0 b 0 b 0 ь b 
c 0 0 0 c 0 c c c 
d 0 a b 0 d a Ь d 
e 0 a 0 c a e c e 

f 0 0 b c b c / f 
1 0 a b c d e / 1 

Table 2 

4. SOME APPLICATIONS 

This section is devoted to some applications of generalized annihilators. We prove 

some properties of the involutory BCK-algebra. We also obtain a characterization 

for a categorical ideal to be prime. 
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Let A be an ideal of a BCK-algebra X. Consider the quotient BCK-algebra X/A. 
If J/A is a subset of X/A, then we have 

(J I A)* = {Cx: Cx A J/A = A} (cf. Section 2) 

= {Cx : Cx A Cy = A for all Cy G J/A} 

= {Cx: CxAy = A for all Cy G J/A} 

= {Cx : x A y G A for all y G J} 

= {Cx: x A J C A} = {Cx: x e (A : J)} 

= {CX: J C x~lA} (by Remark 3.2). 

Now we discuss the annihilator of an element of X/A. Let Cx G X/A. Then 

(Cxy = {Cy: CxACy = A} = {Cy: CxAy = A} 

= {Cy: x A y G A} = {Cy: y G x~lA}. 

If x € A, then x~lA = X (cf. Section 2) and hence (Cx)* = X/A. If A is a prime 

ideal of X and Cx is a non-zero element of J/A, then x $. A and hence x~l A = A 

(cf. Section 2). This implies that (Cx)* = A (the zero element of X/A). All these 

observations lead to 

Proposition 4.1. Let A be an ideal of a BCK-algebra X, let J/A be a subset of 

X/A and Cx an element of X/A. Then the following statements hold: 

(i) (J / A)* = {Cx :x£(A: J)} = {Cx: J C x~lA}, 

(ii) (Cx)* = {Cy:yex~lA}, 

(iii) if A is a prime ideal of X and Cx ^ A (non-zero element of X/A), then 

(Cx)* = A (zero of X/A), 

(iv) (J/A)** = {Cx:xE(A:(A:J))}. 

Part (iii) of the above proposition can be reformulated as 

Corollary 4.2 [3, Proposition 3.2]. If A is a prime ideal of a BCK-algebra X, 

then X/A is cancellative. 

Observe that if X is a cancellative involutory BCK-algebra, then it is simple. 

Indeed, if A is an ideal of X, then 

A = A**= fì *(.т)\ 
xЄA 

Since X is cancellative, therefore (x)* = {0} for all non-zero elements x G X and 

hence A = {0} or A = X. This proves that X is simple. In fact, we have 
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Proposition 4.3. Let X be an involutory BCK-algebra. Then X is cancellative 

if and only if X is simple. 

If 4 and B are ideals of a BCK-algebra X, then we have seen that B C (4 : 
(4 : B)) (Proposition 3.5 (ii)). The following theorem says that for certain classes 
of BCK-algebras the equality may occur. 

Theorem 4.4. Let X be an involutory BCK-algebra, and let 4 , B be ideals in X 

such that ACB. Then B = (4 : (4 : B)). 

P r o o f . B C (A : (A : B)) follows from Proposition 3.5 (part (ii)). To prove 
that (4 : (4 : B)) C B, assume that x <£ B. If we show that x g (A : (A : B)), then 
the proof is complete. Since X is an involutory BCK-algebra, therefore B = B** 

(cf. [5]). This implies that x A y ^ 0 for some y G B* and hence x Ay G B*, because 
B* is an ideal of X (cf. Section 2). Since B n B* = {0}, therefore x A y £ B and 
consequently x Ay ^ 4 ( 4 C B). The expression (x A y) A B = {0} C A follows from 
the fact that xAy G B*. This implies that B C (xAy)~xA and hence xAy G (A : B). 

Since (4 : (4 : B))D(A : B) = A (Proposition 3.5 (v)), therefore xAy £ (A : (A : B)) 

because x A y £ A and x A y G (4 : B). It follows that x ^ (4 : (4 : B)), because if 
x G (A : (A : B)), then (4 : (A : B)) being an ideal implies that x Ay G (4 : (4 : B)), 

a contradiction. Thus we have shown that x £ B implies that x £ (A : (A : B)). In 
other words, (4 : (4 : B)) C B and hence (4 : (4 : B)) = B. 

It is well-known that the quotient algebra of a commutative BCK-algebra is com­
mutative [3]. If 4 is an ideal of X then there is a one to one correspondence between 
ideals of X containing 4 and ideals of X/A (see [3, Theorem 2.3]). Thus an ideal 
X/A is of the form B/A for an ideal B of X and such that 4 C B. By Proposition 44 
(iv), we have (B/A)** = (B : (B : 4 ) ) / 4 . This observation and the above theorem 
lead to • 

Corollary 4.5. If X is an involutory BCK-algebra, then every quotient BCK-
algebra of X is an involutory BCK-algebra. 

The following proposition gives a characterization of the prime ideal. 

Corollary 4.6. Let A be an ideal of involutory BCK-algebra X. Then X/A is 
simple if and only if A is prime. 

P r o o f . Let 4 be a prime ideal of X. Then X/A is a cancellative (Corollary 4.2) 
and involutory BCK-algebra (Proposition 4.5). This implies that X/A is simple 
(Proposition 4.3). Conversely, assume that X/A is simple. This implies that X/A is 
cancellative (Proposition 4.3). Let x Ay G 4 . Then CxAy = 4 , Cx A Cy = 4 . Since 
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X/A is cancellative, therefore Cx = A or Cy = A. Consequently, x G A or y G A 

and this implies that A is prime. This completes the proof. D 

Now, we obtain another characterization of prime ideals by using the notion of 
generalized annihilators. First, we prove 

Proposition 4.7. Let X be a BCK-algebra, let A be an ideal in X and B C X. 
Then (A : B) = X if and only if B C A. 

P r o o f . Let B C A. Since A is an ideal of A, therefore x A B C A for all x G X. 

This proves that A C (A : B) and consequently (A : B) = X. Conversely, assume 
that (A : B) = X. We will show that B C A. Suppose that B £ A. Then there 
exists b G B such that b £ A. Since (A : B) = X, therefore x A B C A for all x G A. 
In particular, b A B C A. This implies that b A b = b G A, which is a contradiction, 
and hence B C A. D 

Proposition 4.8. If A is a prime ideal and (A : B) is a proper ideal of a BCK-
algebra X, then (A : B) = A. 

P r o o f . Assume on the contrary that (A : B) ^ A. Since A C (A : B) 

(Proposition 3.3) therefore there exists x G (A : B) such that x ^ A and hence 
B C x~xA. A being prime ideal implies that A = x~l A (Proposition 3.4). This shows 
that B C A and hence by Proposition 4.7, (A : B) = X, which is a contradiction 
because (A : B) is a proper subset of A. This proves that (A : B) = A. D 

Proposition 4.9. Let A be a categorical ideal of a BCK-algebra A. Then A is 

prime if and only if (A : B) = A for B C A. 

P r o o f . Let A be a prime ideal of A. Then (A : B) = A follows from Proposition 
4.8. Conversely, assume that (A : B) = A. We shall show that A is prime. Suppose 
that x,y G X and x A y <£ A. Since (A : B) = A, therefore x A y £ (A : B). This 
implies that B % (x A y)~lA and there exists b G B such that b £ (x A y)~l A. This 
means that b A (x A y) (£ A. Since A is a categorical ideal, therefore b A x £ A, 

b A y £ A. As b A x ^ x if x G A, A being an ideal implies that b A x G A, which is 
not possible, and hence x fi A. Similarly y <£ A and this proves that A is a prime 
ideal. D 
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