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Czechoslovak Mathemat ica l Journal , 45 (120) 1995, P r a h a 

ASYMPTOTIC PROPERTIES OF THIRD ORDER DELAY 

DIFFERENTIAL EQUATIONS 

J0ZEF DZUR1NA, Kosice 

(Received Ju ly 12, 1993) 

We consider the delay differential equation 

We always assume that 

(i) ri(i), 0 ^ i ^ 2, r(t) and p(t) are continuous on [£0,oo), ri(t) > 0, p(t) > 0, 
r(t) < t, r(t) —> oo as t -» oo and r(t) is increasing; 

y ds 
(ii) Ri(t) = / —— —•> oo as 6 —•> oo for i = 1 and 2. 

Jt„ ri(s) 
For the sake of convenience we introduce the following functions: 

u(t) 
L0u(t) = 

ro(t)' 

L{u(t) = —— — Li-iu{t), i = 1 and 2, 
ri(t) at 

L^u(t) = —L2u(t). 
at 

By a solution of (1) we mean any function u : [Tu, oo) —> 1R satisfying (1) on [Tu, oo) 
such that L{u(t), 0 ^ i ^ 3, exist and are continuous on [Tu,oo). A nontrivial 
solution of (1) is called oscillatory if it has arbitrarily large zeros; otherwise it is 
called nonoscillatory. 

The asymptotic behavior of the solutions of (1) is described in the following lemma 
which is a generalization of a lemma of Kiguradze [2, Lemma 3]. 
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Lemma 1. Let u(t) be a nonoscillatory solution of (1). Then there exist an 

integer t, t G {1,3} and t\ ^ t0 such that 

u(t)Liu(t) > 0, 0 ^ i ^ t, 

(-iy-eu(t)Liu(t) > 0 , t ^ i ^ 3 

for all t^t\. 

A functiQn u(t) satisfying (2) is said to be a function of degree t. The set of all 
nonoscillatory solutions of degree t of (1) is denoted by Mt. If we denote by AT the 
set of all nonoscillatory solutions of (1), then by Lemma 1 

AT = A / i U ^ s . 

Following Kiguradze we say that equation (1) has property (B) if Af = A/3. 
In a recent paper [3] Kusano and Naito have presented a useful comparison prin­

ciple which under conditions (i) and (ii) enables us to deduce property (B) of a delay 
equation of the form (1) from that of the ordinary differential equation 

1 ( 1 tuwvYY *->«)) Qt 
\r*(t) \n(t) \ro(t)J ) ) r ' ( r- i (0) 

where T~l(t) is the inverse function to T(I). The objective of this paper is to show 
that this comparison theorem may fail and then it is a good idea to compare equa­
tion (1) with the first order delay equation 

(E) y'(t)+q(t)y(w(t))=0, 

where w(t) ^ T(l). We present the relationship between property (B) of equation (1) 
and the oscillation of equation (E). 

In the sequel we shall consider the functions g(t) and w(t) satisfying 

(3) g(t) e C([t0,00)), g(t) > t, w(t) = T(g(t)) < t. 

For the sake of convenience and further references we make use of the following 

notation: 

(4) q(t) = r2(t)J
9 p(s)r0(r(S))(R1(T(s))-Rl(t1))ds 

for sufficiently large t with T(l) > li. 

444 



Theorem 1. Let (3) hoici. Assume that the linear differential inequality 

(E) y'(t)+q(t)y(w(t))^0 

has no eventually positive solutions. Then equation (1) has property (B). 

P r o o f . By way of contradiction we assume that (1) has a nonoscillatory solution 
u(t) which belongs to the class jNi. We may assume that u(t) is positive. Then by 
Lemma V there exists a, ti such that 

L0u(t) > 0, Liu(t) > 0, L2u(t) < 0 and L3u(t) > 0 

for t^ti. Integration of the identity Liu(t) = Liu(t) from ti to t leads to 

(5) Lou(t) ^ / ri(s)Liu(s)ds, t^t\. 
Jt\ 

On the other hand, integrating the identity L3u(t) = L3u(t) from t (^ ii) to oo one 

gets 

/

oo /»oo 

L3u(s)ds= / p(s)u(r(s))ds. 
Combining (5) with (6) we get 

/

OO rT(s) 

p(s)ro(r(s)) / ri(x)Liu(x)dxds 

/

9(t) rr(s) 

p(s)r0(r(s)) / ri(x)Liu(x)dxds, t ^ t2, 
where t2 ^ ti is large enough. Since Liu(t) is decreasing we have in view of the last 

inequalities 
f9(t) 

-L2u(t) > I p(s)r0(T(s))Liu(T(s))(Ri(T(s)) - Ri(ti))ds. 

Hence, as L\u(t) is decreasing and r(t) is increasing, the last inequalities imply 
f9(t) 

-L2u(t) ^ LlU(w(t)) / p(s)r0(T(s))(Ri(T(s)) - Ri(ti))ds. 

Put z(t) = Liu(t). Obviously, z(t) > 0 and z(t) satisfies 

z'(t) , , XN q(t) 

- ^ z { w { t ) ) U v ^ 
which implies that z(t) is a positive solution of the differential inequality 

z'(t)+q(t)z(w(t)) < 0 , t>t2, 

which contradicts hypothesis. The proof is complete. • 
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Coro l lary 1. Let (3) hold. Assume that either 

liminf / q(s 
^ ° ° Jw(t) 

liminf / q(s) ds > -
u(t) 

OГ 

l imsup / q(s) ds > 1. 
t-HX> JW(t) 

Then equation (1) has property (B). 

P r o o f . It is known (see [4]) that both conditions are sufficient for (E) to have 

no positive solutions. Our assertion follows from Theorem 1. D 

Coro l lary 2. Let (3) hold. Assume that the differential equation 

(E) y'(t)+q(t)y(w(t))=0 

is oscillatory. Then equation (1) has property (B). 

P r o o f . Corollary 2 follows from Theorem 1 and the fact that (E) has no positive 

solutions if and only if (E) is oscillatory (see [1]). D 

Coro l lary 3. Let (3) hold. For all large t define 

q(t)=r2(t)J p(s)r0(T(s))R1(T(s))ds. 

Assume that either 

f 1 
(7) liminf / q(s)ds > -

^ 0 0 Jw(t) Є 

OГ 

> / q(s 
Jw(t) 

(8) l imsup / q(s) ds > 1. 
f—>oo Jw(t 

Then equation (1) Las property (B). 

In the following illustrative example we show how to choose the function g(t) 

satisfying g(t) > t and r(g(t)) < t. 
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Example 1. Let us consider the third order differential equation 

(9) y"\t)--^y(Vi)=0, a > 0, and t>\. 

We have T(t) = \ft. Let us put g(t) = 2t. Then w(t) = \/2t satisfies (3) and 

r2t 
/ N / a r~ . a 

qit) = l ^V^ds = ̂  
By Corollary 3 equation (9) has property (B) if 

fl 1 
(10) liminf / q(s) ds > -. 

*->°° Jy/Tt e 

Simple computation shows that (10) holds for any a > 0. Note that we obtain 
the same result if we choose g(t) = oPt2, 0 < a < 1. On the other hand, by the 
above-mentioned result of Kusano and Naito one gets that (9) has property (B) if 
the ordinary equation without delay 

(11) y'"(t)-^y(t) = o 

has property (B). However, as (11) has not property (B), the criterion of Kusano 
and Naito fails for (9). 

For a special choice of the function g(t) we have the following result: 

Theorem 2. Suppose that 

r(t) 
(12) lim sup------ < c < 1. 

£-»oo t 

Assume that either 

rt pr-1(cs) j 
(13) l iminf/ r2(s) / p(x)ro(r(x))R1(T(x)) dx ds > -

*->°° Jet Js
 e 

or 

,t rT~^cs) 

(14) lim sup / r2(s) I p(x)ro(r(x))R\(T(x)) dxds > 1. 
t-*oo Jet Js 

Then equation (1) has property (B). 
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P r o o f . It is easy to verify that (12) is equivalent to 

t 
hmsup < c < V 

t^oo r l(t) 

which implies that for all large t 

(15) T~\t) > - . 
c 

Put g(t) = r~l(ct). Then g(t) satisfies (3) as w(t) = r(g(t)) = ct < t and in view 
of (15) we have g(t) > t. Noting that (7) and (8) are equivalent to (13) and (14), 
respectively, the assertion of this theorem follows from Corollary 3. The proof is 
complete. • 
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