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Czechoslovak Mathemat ica l Journa l , 45 (120) 1995, P r a h a 

CONNECTIONS ON SOME FUNCTIONAL BUNDLES 

ANTONELLA CABRAS, F lorence, IVAN KOLÁŘ, B r n o 1 

(Received November 23, 1993) 

INTRODUCTION 

Our starting point was the idea of the Schrodinger connection on a double fibered 
manifold by Jadczyk and Modugno, [4], [5]. We discuss the "pure case" of two 
classical fiber bundles E\ and E2 over the same base and define a connection T on 
the bundle &(E\ ,E2) of all smooth maps from a fiber of E\ into the fiber of E2 over 
the same base point. We study systematically the geometry of the iterated tangent 
bundle of the infinite dimensional space 3;(E\,E2) as well as the jet prolongations 
of &(E\,E2) by means of the ideas introduced by the second author in [9]. Since 
we deal with functional bundles, our vector fields and connections represent a kind 
of differential operators. That is why we pay special attention to the case of finite 
order operators, in which we are able to deduce a very concrete description of the 
objects and operations in question. 

In such a situation we found the simplest way for introducing the curvature of T 
in a construction by Ehresmann, [2], which is based on the notion of semiholonomic 
2-jets. In the new context we were obliged to rearrange some results, deduced in the 
finite dimension by direct evaluation, into a more geometrical setting, which could 
be generalized to our infinite dimensional case. Only then we study the bracket of 
two vector fields on &(E\ ,E2). This is a modification of the bracket of two vertical 
prolongation operators on a classical fibered manifold by Kosmann-Schwarzbach, 
[11], and the second author, [8]. In Proposition 14 we deduce a satisfactory bracket 
formula for the curvature of T. We also discuss the absolute differentiation with 
respect to T and the special case E2 is a vector bundle. 

If we deal with two finite dimensional manifolds and a map between them, we 
always assume they are of class C°°, i.e. smooth in the classical sense. On the other 

1 This pape r was prepared dur ing t h e visit of Prof. I. Kolaf at D i p a r t i m e n t o di M a t e m a t i c a 
Appl icata " G . Sansone" , Univers i ta di Firenze, s u p p o r t e d by G.N.S.A.G.A. of C.N.R. T h e 
second a u t h o r was also s u p p o r t e d by a grant of t h e GA C R No 201/93/2125. 
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hand, the idea of smoothness in the infinite dimension is taken from the theory of 
smooth structures by Frolicher, [3]. 

The authors acknowledge Prof. Marco Modugno for several stimulating discussions 
on the subject of this paper. 

1. THE TANGENT BUNDLE OF &{E\,E2) 

Let p i : E\ —> M and p2: E2 -> M be two classical fiber bundles (i.e. locally trivial 
fibered manifolds) over the same base. Consider the set of all fiber maps 

&(EUE2)= (J C°°{Elx,E2x) 
xEM 

and denote by p: ^(E\,E2) —> M the canonical projection. We define no topol­
ogy on <^{Ei,E2), but we introduce the concept of a smooth map from a classical 
manifold Q into J?(EUE2). 

Definition 1. A map / : Q —*» &{E\,E2) is called smooth, if 
(i) p o f: Q —> M is smooth and 

(ii) the induced map / : (p o f)*E\ -> E2, 

f(q,y) = f(q)(y), (q,y)e(pof)*E1 

is also smooth. 

As usual, (p o f)*E\ —y Q denotes the bundle induced from E\ by means of p o / , 
i.e. 

(pofYE, = {(q,y) €QxE1\ (po f)(q) = Pl(y)}. 

Thus, ^{E\,E2) is endowed with a smooth structure in the sense of Frolicher, [3]. 
For every smooth curve / : U -» 3P(E\,E2) we first construct the tangent vector 

X = §-t\Q{po / ) e TM of its base map at t = 0. Write 

TxE1 = (Tpl)-
1(X)cTE1 or TXE2 = {Tp2)~

l(X) C TF2, 

so that Tx-^i or TXE2 is an affine bundle over E\x or £ 2 x , £ = p(/(0)), with the 
derived vector bundle T{Eix) := VXEX or T{E2x) := K.-E2, respectively. Then / 
defines a map T0f: TXE\ —•» Fx-^2 by 

^ ^(IW = l L / W ^ 
where we may assume that h: U -> Fi satisfies po f = pi o h. 
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Definition 2. We say that two smooth curves / ,g: U -> &(E\,E2) satisfying 
JL | p 0 / = J U p o O = X determine the same tangent vector at /(0) = g(0) = <£, if 

T0f = T0g:TxE\ ->TXE2. 

The set T&(E\,E2) of all equivalence classes will be called the tangent bundle of 
&{EUE2). 

We write §i\0f(t) G T&(E\,E2) for the tangent vector determined by / and 
TT: T^(E\,E2) -> &(E\,E2) and Tp: T^(EUE2) -> TAf for the canonical pro­
jections. If A e T&(E\,E2), then we denote by A: TTp^A)E\ -> TTp^A)E2 the 
associated map (1). 

Remark 1. Let e C ^ ( F i , E2) be any subset. Then we define Ts C T J*"(Fi, £2) 
by restricting ourselves to the smooth curves with values in e. 

One sees easily that T0f = T0g: TXE\ -> FxP?2 is an affine bundle morphism 
over the base map ip: E\x -> F2x with the derived linear morphism Tip: T(E\X) -> 
T(E2x). Indeed, let xl be some local coordinates on M, yv or za be some additional 
coordinates on E\ or E2 and 

(2) ^ = r(t), za = r(yp,t) 

be the coordinate expression of f(t). Write 

dfa(vp 0) 
Yp=dyp, Za=dza, <pa(y) = fa(y,0), $a(y) = J ^ ' ; . 

Then the coordinate form of (1) is 

(3) za = y ( l / ) y p + r ( j / ) . 
v } dyP yy) 

Hence the tangent vector to (2) is locally characterized by two systems of numbers 
and two systems of functions 

(4) ^ = r ( 0 ) , X{ = ^ p - , ip'W), $-(y"). 

The following lemma gives a global assertion of such a type. 

Lemma 1. Let F: TXE\ -> TXE2 be an affine bundle morphism over (p: E\x —> 
E2x with the derived linear morphism Tip: T(Elx) -> T(E2x). Then there exists 
a smooth curve f: R -> &(E\,E2) such that F = A for the tangent vector A = 

Ilo/O-
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P r o o f . Consider some local trivializations U x Si and U x S2 of E\ and E2 

over a neighborhood U C M of x. Then &(U x S\,U x S2) = U x C°°(Si, S2). The 
restriction of F to Yv = 0 represents a map F: S\ —> TS2 along <£>. By Proposition 5 
from [16] there exists a smooth curve 7: U -> C°°(Si,S2) such that F(y) = a ^ , 0 ) , 
where 7: (R x Si —> S2 is defined by j(y,t) = *y(t)(y). US: (R —> U is any curve with 
•§l\QS = X, then the curve (S, 7): R -> U x C°°(Si,S2) has the required property. 

• 
Now we show that each fiber of T^(E\,E2) —> ^(E\,E2) is a vector space. 

Consider A\: Tx1E1 -> Tx1E2 and AL2: Tx2E\ -> Tx2E2 over the same </?. Given 
y G (T X l +x 2 ^ i ) y , 2/ € Six, we take any IV G (TXlE\)y, so that Y - W G (Tx2E\)y, 
and we define 

A7+^42(Y) = ii(IV) + i 2(F - WO-

If we select another IV G (TxxE\)y, then IV — IV is a vertical vector. Hence 

A^IV) = i i ( IV )+T(^( iV - IV ) , A2(Y -W) = A2(Y-W) + T<p(W-W), 

so that our definition is correct. Further, for 0 7̂  k G (R we define 

kA:TkXE1^TkxE2 by £4(Y) = l^(^) 

while for k = 0 we prescribe OA to be T<D: TQE\X —> TQE2X. In coordinates, if 
A! = (x\K j , (D a ,$ a) and A2 = (x{,Xl

2,p
a,^), then 

(5) A\+A2 = (x\Xi + Xiv\n + n)^A\ = (x\kXi^,k<$>l). 

This proves that each ir~~l((p) is a vector space. 
In general, consider another pair E3 —> N, E4 —> jV of fiber bundles over the same 

base and subset e C ^(E\,E2). 

Definition 3. A map / : e -> ^(E-^^E^) is called smooth, \i f o g: Q —> 
^(E<$,E±) is smooth for every smooth map 0: Q —> e. 

Definition 4. A vector field on ^(E\,E2) is a smooth map A: 3^(E\,E2) -> 
T ^(E\,E2) satisfying 7r O A = id. We say that A is projectable, if there exists a 
classical smooth vector field A0: M —> TM such that A0 o n = Tp o A. 

Write V ̂ (E\, E2) for the kernel of Tp: T &(EX, E2) -> TM, which will be called 
the vertical tangent bundle of ^(E\,E2). Then we have an exact sequence 

(6) 0-> V &(E\,E2) ^T^(E\,E2) ^ &(E\,E2) xTM -> 0 
M 
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Consider a linear splitting T: &(E\,E2)xTM -> T&(E\,E2), i.e. TT O T = 
M 

pr\,Tp o V — pr2 and V(<D,-): TXM -> TKp^(E\,E2) is a linear map for each 
<p E &(E\, E2), x = 7r((D). Then for every vector field X: M -> TM we have defined 
its T-lift TX : &(E\, E2) -> T &(E\, E2). We say that V is smooth, if YX is smooth 
for every classical smooth vector field X: M —> TM. 

Definition 5. A connection (in tangent form) on ^(E\,E2) is a smooth linear 
splitting V: &(E\,E2) xTM -> T#(E\,E2). 

M 

Remark 2. If E\ is the trivial fibering M -> M, then &(E\,E2) = E2 and we 
obtain the standard connection on E2 —> M. 

2. J E T PROLONGATIONS OF &(E\,E2) 

The simplest way how to define the r-th jet prolongation of &(E\,E2) is based 
on the concept of the fiber r-jet, [9], [10]. In general, given a fiber bundle E —> M 
and a manifold N, two maps f,g: E —> N are said to determine the same fiber 
r _J e t Jxf — i£g at x E M, if jrf — jrg for all y £ Ex. Every smooth section 
s of &(E\,E2) determines the associated base-preserving morphism s: E\ —> £2, 

s(y) = s(piy)(y)-

Definition 6. Two sections s\,s2: M —> &(E\,E2) determine the same r-jet 
jrs\ = jrs2 at x E M, if j r 5 i = jrs2. The set Jr &(E\,E2) of all r-jets of the local 
sections of &(E\,E2) is called the r-jet prolongation of &(E\,E2). 

However, it will be useful to discuss another approach as well. Since s: E\ —> E2 is 
a base-preserving morphism, we can construct its r-th jet prolongation Jrs: JrE\ -> 
JrF2- Write Jrs = Jrs\JrE\, x E M. By direct evaluation, one easily verifies. 

Proposition 1. We have jrs\ — jrs2 iff Jrs\ = Jrs2. 

Let za = fa(xl,yv) be the coordinate expression of s. Then the additional coor­
dinate expression of J\ s is 

m « dfa j . aI"° P 

where yv or zf are the induced coordinates on J1^! or J1 £2. For x = 0, the functions 
(Pa(yv) :— / a (0 ,y p ) are the coordinates of the target 5(0) of JQS\ and JQS has the 
form 

<8> «-^.f + rf<,>. ,?(») = « 
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It is well-known that J].E\ or J1 E2 is an affine bundle over Elx or E2x, whose derived 
vector bundle is VXE\®T£M or VXE2®TXM, respectively. Obviously, (8) is an affine 
bundle morphism over p with the derived linear morphism Tp (g> id^* M • Similarly 
to §1, we denote by jxs the associated map Jjs: JXE\ -> JXE2. Analogously to 
Lemma 1, one can prove 

Lemma 2. Let S: J\E\ —> JXE2 be an affine bundle morphism over p: Elx -> 
E2x with the derived linear morphism Tp ® idr; M • Then there exists a local section 
s of ^(E\, E2) such that s(x) = p and jxs = S. 

By (8), every X = j j | / E T^M and every S = jxs define a vector 

(9) S(X) = 7Tt (sof)€Ts{x)J?(EuE2) 
ot 0 

such that Tp(S(X)) = X. 

Definition 7. A connection in the jet form on &(E\,E2) is a smooth section 
T: &(E\, E2) -> J1 &(E\, E2) of the target jet projection. 

Proposition 2. The map (9) establishes a bijection between the jet form and the 
tangent form of connections on &(E\,E2). 

P r o o f . Using (8) we find directly that (9) defines a bijection between the linear 
splittings TXM -> T(pe^

r(E\,E2) of Tp and the elements of J1 ^(E\,E2)Kp. Assume 
the jet form of T is smooth and / : Q —> &(E\ ,E2) is a smooth map, so that T o / : 
Q -> J1 &(E\,E2) is smooth. For every smooth vector field A": M —> TM, the map 
(To f)(X opo f) is also smooth, so that the tangent form of T is smooth. Conversely, 
take a local basis X\,..., Xm of vector fields on TM. Then (TX\) o / , . . . , (TXm) o / 
are smooth maps Q ->T#(E\,E2). By (8) we deduce that T o / : Q -> J1 &(E\,E2) 
is smooth. D 

To define the curvature of a connection of &(E\ ,E2) in §5, we shall use the second 
semiholonomic prolongation of 3>(E\,E2). We recall that J1(JlE1 -> M) := J2E\ 
is the classical second nonholonomic prolongation of E\ —> M. If xl, yp, yp are 
the above local coordinates of JlE\, then the induced coordinates on J2Fi are 
yp. = | ^ l and yf, = ^ 7 . We have the target jet projection f3\: J2E\ -> J1 E\ and 
the induced map J1 (3: J2E\ -> J:Fi of the target jet projection /3: J1^! —> E\. An 
element Y G J2Fi is said to be semiholonomic if (3\(Y) = J10(Y). In coordinates 
this is characterized by yv = y^. All semiholonomic elements form a subbundle 
J2Ki C J2E\, and the second holonomic prolongation J2F is a subbundle of J2F. 

Since we have interpreted J1 &(E\,E2) as a subset of ^(JlE\, J1 E2), we have 
defined jl

xo for a local smooth section o of J1 &(E\ ,E2) -> M by jxa. In this way we 

534 



introduce the second nonholonomic prolongation J2 &(E\ ,E2) of &(E\ ,E2). An el­
ement j\o is said to be semiholonomic, if o(x) = jl(fioo), where /?: J1 &(E\,E2) -> 
&(E\,E2) is the target jet projection. This defines J2 &(EU E2) C J2 &(E\, E2). 
The inclusion J2 &(E\, E2) C J2 &(E\, E2) is given by j 2 s i-> j 1 ( j ^ ) . 

Analogously to the first order case, i\o determines a map j ^ a : J2FY -> J2F?2- I n 

coordinates, if cr = (fa(x,y), fa (x,y)), then 5 is of the form 

(10) za = r(x,y), zt=dfa^y)yp
i+ft{x,y). 

Hence 

(ID v»(y) = no,y), ^ / m ^ ; ^ , ^ = ^ -

are the coordinates of JQO. From (10) we obtain the coordinate expression of j^o in 
the form za = ipa(y) a n d 

du?a
 n <9(Da „ 

(12) Zi=^Vi+^^ ^ - ^ + ^ , 

z* _ ̂  + __i,P + ___,P + ____-„V + _-V 

Using (12) we deduce directly the following assertion. 

Proposi t ion 3. jxo is semiholonomic or holonomic iff j^o maps JXE\ into JXE2 

or JXE\ into JXE2, respectively. 

In coordinates, an element of J2 &(E\,E2) is characterized by <pa = <pgi a n d the 
additional condition for a holonomic element is (/??• = (D|•. 

We remark that the higher order nonholonomic and semiholonomic prolongations 
of &(E\,E2) can be defined in a quite similar way. 

3. T H E FINITE ORDER CASE 

Since both vector fields from §1 and the connections from §2 are defined on a 
functional bundle, they represent a kind of differential operators. We are going to 
describe the simplest case of finite order operators. 

Definition 8. A project able vector field A: &(E\,E2) -> T &(E\,E2) over A0 : 

M -> TM is of order r, if the condition jr(p = jrip, (p,ip e C°°(Elx, E2x), y e Elx 

implies that the restrictions of A(ip) and A(ip) over y coincide, i.e. 

(13) Afr)\(TAo{x)E\)y = AW)\(TA0{x)E\)y. 
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Let S(TE\,TE2) be the set of all affine morphism (TxE\)y -> (TXE2)2, pxy = 
p2z = 7TMX, where 7TM ' TM -> M is the bundle projection. This is a fibered 
manifold over E\ xE2xTM. Write 

M M 

&Jr(EuE2)= (J Jr(Elx,E2x). 
xeM 

This is a classical manifold as well. 
A projectable r-th order vector field A: &(E\ ,E2) -> T &(E\, E2) over A0 defines 

the associated map srf\ &Jr(E\,E2) -> S(TE\,TE2) by 

(14) ^ ( j y » = ^ ) | ( T 4 « ( * ) £ l ) y 

Proposition 4. The associated map of a projectable r-th order vector field on 
3;(E\,E2) is a classical C°°-map. 

P r o o f . This follows from the fact that A is smooth in the sense of Definition 3 
quite analogously to [6]. • 

The local coordinates on &'Jr(E\,E2) induced by xl, yp and za are z", 1 ^ \a\ ^ r, 
where a is a multiindex, the range of which is the fiber dimension of E\. Hence the 
coordinate form of £/ is Xl(xj) and 

(15) Ф° = Ф a (/,2Az«), 0 < \a\ < r. 

The derived linear map of each element of S(TE\,TE2) is identified with an 
element of J?J1 (E\, E2). This defines a map D: S(TE\,TE2) -> &Jl(E\,E2) and 
the following diagram commutes: 

PJҢEUEІ) 

&Jr(E\,E2)-^-^S(TE\,TE2 

id x A" 

E\ x E2 -*->- E\ x E2 x TM 
M MM 

where /3r is the jet projection. Conversely, let srf\ & Jr(E\,E2) -> S(TE\,TE2) 

be a smooth map with an underlying vector field A0: M -> TM such that (16) 
commutes. Then the rule 

(17) A(<p)= U -*(J» 
yeE1: 
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defines a projectable r-th order vector field A on ^(E\,E2). 

Since T^(E\,E2) is a subset of ^(TE\,TE2), we can define the second tangent 

bundle T(T&(E\,E2)). This will be described in more detail in §6. Here we re­

strict ourselves to a general remark, which is related to our study of the order of 

connections. 

Definition 9. A vector field A: &(E\, E2) -> &(E\ ,E2)\s called differentiable 

if the formula 

< 1 8> TA(mlf) = дt 
Aof 

o 

defines a smooth map TA: T^(E\,E2) -» TT&(E\,E2). 

From (16) we easily deduce (see the coordinate formula in §6) the following asser­

tion. 

Proposition 5. Every r-th order vector field on &(E\,E2) is differentiable. 

Definition 10. A connection T: &(E\, E2) -> J1 &(E\, E2) is of order r if the 

condition jr<p = jr

yi>, <D,?/> G C°°(Elx,E2x), y <E Elx, implies 

(19) i ^ l J ^ x - f w l J 1 ^ . 

Let S(J1El,J
lE2) be the set of all affine maps ( J 1 ^ ! ) ^ -> (JlE2)z with the 

derived linear map of the form 

(20) B ® i d r * M BeJfe (VyE\,VzE2). 

An r-th order connection F: &(E\,E2) -> J1 ^(E\,E2) defines the associated map 

<S\ 3?Jr(E\,E2)-+S(J1E1,J
1E2) by 

(21) ^(jr

y^ = f^)\JlE\. 

The coordinate form of <S is 

(22) ^ ^ ( . c V . - S ) , 0 < | a K r . 

Analogously to Proposition 4, one proves 

Proposition 6. The associated map of an r-th order connection &(E\,E2) —> 

J1 &(E\,E2) is a classical C°°-map. 
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Let D: S(JlEx,J
lE2) -> ^Jl(Ex,E2) be the map defined by (20). Then the 

following diagram commutes 

PJ^EuEÚ 

(23) ßr 
D 

^Jr(El,E2)-^^S(J1E1,J
1E2) 

Conversely, let <£': &Jr(E\,E2) -> S(JlE±, JlE2) be a smooth morphism over the 
identity of E\ x E2 such that (23) commutes. Then the rule 

(24) YW)= U * 0 » 
2/GEix 

defines an r-th order connection on &(E\,E2). 
Analogously to Definition 9, we introduce 

Definition 11. A connection T: &(EUE2) -> J1 ^(El,E2) is called differen-
tiable if the formula 

(25) J1ra1
5) = j 1 ( r o 5 ) 

defines a smooth map J1 ^(Ei,E2) -> J2 # (Ei, E2). 

Proposition 7. Every r-th order connection is differentiate. 

P r o o f . We deduce from (22) the coordinate form of JlT in some coordinates 
x{,Lpa,ipa on J1^r(Ei,E2) and x{,<pa,<pa,ipa•,</>?• on J2 3?(EUE2). Take a section 
a 

(26) za = *a(xi,yn 

so that <pa = ipa(0, y) and jpa = d%$y), Then we obtain for V o a 

(27) zf = dr^;V) VVi + ^ ( x , u , 9 a ^ ( x , u ) ) . 

Now (26) yields 

дфҢOл)^ , ðVa(0,y) 
(28) ^ = - ^ ^ 2 / o P i + - ^ ^ . i-e. V& = # 

and (27) implies 

a _3J1 P _ _ _ _ _ _ P « I ^ " P I ^ P 
2 « - QypVi + dyPdy^OJ + dypViJ +

 dyPyOj 

d$a a$? . d$a
 k 

(29) + S 7 + ^ + - + ^ 

In particular, (29) shows that JlT is well-defined and smooth. • 
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Following Virsik, [17], if T is differentiable and A is another connection 
^{EUE2) -> J1 &(Ei,E2), we define a section 

(30) r * A = J1roA: &{EX,E2)^ J2&{EUE2). 

The order of such a section can be introduced similarly to Definition 10. 

Proposition 8. If Y and A are connections of orders r and s, respectively, then 
T * A has the order r + s. 

P r o o f . We substitute the associated map of A into (28) and (29). • 

To obtain an explicit formula for the associated map of T * A, we introduce the 
following concept. Having a smooth function / : &' Jr{E\,E2) —•> K, we define its 
formal differential D f by 

(31) Df: ^Jr+l{EuE2) -> V*EuDf(Jl+l<p)=dyftir<p)-

Then every vertical vector field /i on V*Ei determines {Df, u) : & Jr+1 (Fi, E2) -» (R. 
For the coordinate vector fields -A- we obtain the formal derivatives 

dyi' 

m D t - !*L + i*Lza + + ^-za 

[6~} VpJ ~ dyP + dz*"* + '"+ dzZZ°+*' 

By iteration, we introduce Dpf: &'Jr+^{EX,E2) -r R. Let ^{xl,yP, za
p), 0 ^ |/3| ^ 

.s, be associated map of A. Then the coordinate form of the main term of (29) is 

d$a d$a . d$a . <9$a . 
H3) Loa- - l + * ifr6 + * D <&'. + 4- — ^ D ^ 6 

i ^ i Vij ~ QXJ + 3 ^ Wj + a . 6 ^ P W j + • • • + g^ U^3' 

Remark 3. In both cases of connections in the jet form and of projectable vector 
fields we have a situation somewhat similar to the vertical prolongation operators on 
classical fibered manifolds studied by Kosmann-Schwarzbach, [11], and the second 
author, [8]. In [10] Slovak deduced that every vertical prolongation operator is 
differentiable in the sense of our Definitions 9 and 11. However, his proof is based on 
quite sophisticated procedures in mathematical analysis, so that we have the feeling 
that, such a problem in our setting is beyond the scope of the present paper. 
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4 . EHRESMANN PROLONGATION IN THE CLASSICAL CASE 

We describe some properties of connections on a classical fibered manifold p: 
E -» M in a way which can be generalized to ^(E\,E2). Given A G JyE and 
B G TxM,x = py, we denote by A(B) G TyE the A-lift of B. We show that 
every A G J2E induces similarly a lifting XA: TTXM -» PPyF. If A = J> and 
^ = §-t\Qf(t) G PP*M, then we construct a(n(f(t)))(f(t)): U-^TE and set 

(34) XAW = TL *(Af(t)))(f(t)) 
at o 

where 7r: TM -» M is the bundle projection. Given some local fiber coordinates xl, 
yp on E, we have the induced coordinates uf, yoi, uf • on J2F, the induced coordinates 
X1, Yp on TE and the additional coordinates on TEE denoted by a dot. Then one 
finds easily the following coordinate form of (34): 

(35) Yv = v\X\ r = vlii\ Y^y^X^+yVX*. 

Let K be the canonical involution of the second tangent bundle. If A G J2E, then 
KE O XA o KM : TTXM -» PP^i? is the lifting of another element KA G J2E, [15]. In 
coordinates, y^(KA) — y\-(A). Hence A is holonomic iff KA — A. Since J2E -^ JlE 
is an affine bundle with the derived vector bundle VE <g> (<g>2T*M), the points KA 

and A determine a vector A(A) := (KA)A G V^i? 0 A2T*M, which is called the 
deviation (or difference tensor) of A, [7], [12]. The coordinates of A(A) are yv- - yp-{. 
If Ki,K2 G FrM, then we have A(A)(XUX2) G V^F. 

Let TTI = TTTM = TTM -» FM and TT2 = TTTTM = PPM -» TM be the canonical 
projections. Consider C,D G TTXM satisfying 

(36) TTI(C) = 7r2(P>) and 7n(.D) = TT2(C). 

Since /s: exchanges the two projections, C and KD are in the same fiber of PPM with 
respect to 7Ti and satisfy 7r2(C — KD) = 0. Hence C — KD is a tangent vector to a 
fiber of TM and such a vector can be identified with an element of TXM, which will 
be denoted by C — D and called the strong difference of C and D. In coordinates, if 

(37) C = ( a \ 6 \ c £ ) , D = ( 6 \ a \ ( f ) then C - D = (^ - J{). 

In [8] it is deduced the the bracket [X, Y] of two vector fields X, Y: M -» PM can 
be expressed by 

(38) [X,Y] =TYoX -TXoY. 
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Lemma 3. Let C,D £ TTXM satisfy the condition (36) for the strong difference 
and A e J2

yE. Then XA(C), XA(D) also satisfy (36) and 

AA(7rlC,7T2C) = (XA(C) - XA(D)) - (3X(A)(C - D) 

where f3\: J\E -)> JlE is the jet projection. 

P r o o f . By (35) and (37) we have XA(C) = (y\a\y\b\y\-a{\P +yv
{c

{), XA(D) = 
(y?bl,y?al,y?jb

laj + y?dl). This implies our claim. • 

According to Remark 2, two connections T, A: E -> J1E determine V * A = 
JXT o A: E -> J2E. For T = A the values of T * T lie in J2

yE. In this case we obtain 
a construction closely related to an idea by Ehresmann, [2]. 

Definition 12. The map f = J1roF: E —» J2E is the Ehresmann prolongation 

of T. The composition 

(39) CF := - A o f : £ - > VE®A2T*M 

is the curvature of T. 

To deduce that CF coincides with the standard curvature of T, we need a property 
of the lifting map 

Af: ExTTM -+TTE. 
M 

Consider two vector fields X, Y: M -> TM, so that TX o y : M -> TTM. 

Lemma 4. We have 

Af (TK o y ) = (TTX) o Vy: F -> TTE. 

P r o o f . W e h a v e f ( H ) = j K r o 5 ) , jxs = T(y). U Y (x) = §-t\0 f (t), then 

TX(Y(x)) = §-t\Q(Xof). 

By (34), 

XГ(TX(Y(x))) = ^-t\oГ(s(f(t)))(X(f(t))) = (TГXoГY)(y). 

D 
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Proposi t ion 9. For every vector fields X,Y: M -> TM, we have 

CT(X, Y) = [TX, TY] - T([K, Y}). 

P r o o f . Consider TX o Y, TY o X: M -> TTM. By Lemma 4 we obtain 

Af(TK o Y) = TVK o r r and Af (Ty o K) = T r y o TX. 

Then Lemma 3 and (38) imply 

A o f (X, Y) = (Af (TX o Y)-XT(TY o K)) - T(TK o y - T y o X) = 

- - [ r X , r y ] + r ( [K ,y] ) . 

D 

5. T H E CURVATURE OF A CONNECTION ON &(E\,E2) 

The deviation of an element jl
xa G J2 &(E\,E2) can be defined by means of the 

associated map j\a\ J2
XE\ —> J2E2. In the semiholonomic case we have <p? = ^g-. 

So if we take a holonomic 2-jet Y £ JXE\, then the right-hand side of the second 
line in (12) is symmetric except the first term. Hence the deviation A(Jla(Y,)) is 
independent of yv and yv-. This defines a map A(j*O): E\x -» VXE2 0 A2T*M over 
<p, i.e. an element of &(EX, VE2 0 A2T*M). 

Definition 13. A(j^O) is called the deviation of j\a. The coordinate form of 
A ( j > ) is ^ - v^?;. 

Definition 14. For a differentiable connection T: &(Ei,E2) -¥ J1 ^(E\,E2). 
the map f := J ^ o T : &(Ei,E2) -> J2 &(EUE2) is the Ehresmann prolongation 
of r. 

Definition 15. The composition 

C T : = - A o f : &(EUE2) -> <?(EUV E2 ® A2T* M) 

is the curvature of a differentiable connection V: &(E\, E2) -> J1 &(E\, E2). 

Clearly, CT is a section of the canonical projection &(E\,VE2 0 A2T*A/) —> 

^ ( £ i , £ 2 ) . 

Let T be an r-th order connection with the associated map <b"(xl,yp, ~£). Then we 
obtain the associated map of CT by setting vl>" = <£" in (33) and by antisymmetrizing 
in i and j . This implies 

Proposi t ion 10. The curvature of an r-th order connection has the order 2r. 
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6. T H E BRACKET FORMULA FOR CURVATURE 

As remarked in §3, the inclusion T^(El,E2) C &(TEX -> TM,TE2 -> TM) 
defines the second tangent bundle T \T&\E X , E2)) = TT^(El,E2). We have a pro­
jection TTp: TT^r(El,E2) - > T T M and two projections 7rT,T7r: TT^(EUE2) -> 
T&(E\,E2). In the above coordinates, consider an element F G TT&(E\,E2) tan­
gent to a curve ^ ( J ) , Xl(£)i fa(y^) ar-d 

z" = ^ | ^ y p + ̂ (y,<). 

Then its associated map F : TTxFi ->• TTX JE72, X = TTp(F), is of the form 

(40) Za = g V + *-(„), i- = g > + /a(y) 

Za = Fa(,) + **V + d-^Y» + - ^ Y V + ̂ Y>. Vf/; 3?/P y dyp dyvdyi y dy? 

So </?a, $ ° , / " , F a are the functional coordinates of F, which are completed by the 
coordinates x\ X', x', X1 of X 6 TTM. The coordinate form of nT or T7r is 

nT(xi,Xi,xi,Xi,V>a,^a,fa,Fa) = ( x \ X \ v > 0 , * 0 ) , 

T ^ X ^ , ^ , ^ , ^ , / 0 ^ 0 ) = (V,i\v><\r). 
Consider the canonical involution KEI or ACĴ  of the second tangent bundle. 

Proposi t ion 11. For every F G TT^(El,E2) over X G TTM there exists a 
unique element KF G TT&(E\,E2) such that its associated map KF: TTKMXE\ -> 
TTKMXE2 is KF = KE2O F o KEI . 

P r o o f . This follows from (40). • 

Obviously, the coordinate form of K is 

(41) K(x,X,x,X,v,$,f,F) = (x,x,X,X,<p,f,$,F). 

Consider C,C G TT^r(E1,E2) over X, X G TTM satisfying 

(42) TTT(C) = TTT(C) and TTT(C) = TTT(C). 

Then we define the strong difference C - C G T&(EX,E2), Tp(C - C) = X - X, 
as follows. For every B G (TxJ_^Ei)y we take any Y, Y G (TTEi)y over X, X 
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such that Y — Y — B. Then one easily verifies that C(Y), C(Y) also satisfy (42), 
C(Y) - C(Y) depends on C, C and B only and represents the associated map of an 
element C — C € T^(E\,E2), whose coordinates are 

(43) (x\ X1 - X{, <Da, Fa - Fa). 

Let A,B be two differentiable vector fields on &(E\,E2). Then the maps TA o 
B,TB o A: &(E\,E2) -•> TT&(E\,E2) satisfy the condition (42) at every <p e 
&(E\,E2). 

Definition 16. The vector field 

[A,B] :=TBoA-TAoB: &(E\,E2) ->T&(E\,E2) 

is called the bracket of A and B. 

By (38) we immediately deduce 

Proposition 12. If A and B are projectable over A0 and B°, then [A,B] is 
projectable over [A0, B0]. 

Assume A is of order r and B is of order s with the associated maps Xl(x), 
Aa(xl,yp,za), \a\ ^ r and Yl(x), Ba(xl,yp,Zp), \/3\ ^ s, respectively. Analogously 
to §3, the fourth component of the associated map of TA o B is 

<"> £ 5 * + £-* + ^ - V * + ... + ^ W » ' . H ^ 

while the fourth component of the associated map of TB o A is 

Hence we can summarize by 

Proposition 13. The bracket [A, B] has the order r + s and its associated map 
is [A°,B°] and the difference (45)-(44). 

We are going to generalize Proposition 9 to connections on &(E\,E2). First of 
all we remark that every A — j^cr G J2 ^r(E\,E2){p defines a lifting \A: TTXM -> 
TT^^(E\,E2) by 

d 
Aл(^ | o /)=^ | o <т(7Гм(/( í ) ) ( / ( í ) ) . 
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In coordinates, if A = (rr\^a,^,(Dg.,(D^.) and B = §-t\Qf = (x{,X\xl,Xl), then 
one easily finds the following coordinate form of XA(B): 

(46) tf^^tfX^ipkx'^XW +tfXi). 

This directly implies the following generalization of Lemma 3. 

Lemma 5. Let C,D E TTXM satisfy the condition (36) for the strong difference 
and A E J2^(E\,E2). Then XA(C), XA(D) satisfy (42) and 

AA(7rTC,F7rC) = (XA(C) - XA(D)) - (3\(A)(C - D). 

Now we need an assumption of technical character (which is fulfilled for every 
finite order connection). 

Definition 17. A differentiate connection T: &(E\,E2) -+ Jl^(E\,E2) is 
called strongly differentiable, if TX is a differentiable vector field on &(E\,E2) 
for every smooth vector field X: M -•» TM. 

Proposition 14. For every strongly differentiable connection T on &(E\,E2) 
and for all vector fields X, Y on M we have 

CT(X, Y) = [TX, FY] - T([X, Y}). 

P r o o f . In the same way as in Lemma 4 we deduce Af (TX oY) = (TTX) oFY. 
Then we apply Lemma 5. • 

7. T H E ABSOLUTE DIFFERENTIATION 

Let A,B E J1 cP(E\,E2) be two 1-jets with the same target <D. To deduce that 
their difference is an element A — B E 3^(E\,VE2 0 T*M) over (D, we consider the 
associated maps A,B: J^E\ —j> J\E2, 

A s.-? = f^r+*•(,,, B** = 2^„r+*.(»). 

The element A(Y) - B(Y) is independent of the choice of Y E JXE\, which defines a 
map E\x —•> VE2<g>T*M over ip. (In this sense J1 ^(E\, E2) is an affine bundle with 
the derived vector bundle ^(E\,VE2 ® T*M) analogously to the classical case.) 

Let s: M -> &(EUE2) be a section and T: &(E\,E2) -> J1 &(E\,E2) a con­
nection. 
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Definition 18. The absolute differential 

Vs: M -> &{Ei, VE2 eg) T*M) 

is the above difference Vs(x) = j^s — T(s(x)). 

If X : M —f T M is a vector field, we define the absolute derivative of s with respect 
to X by 

(47) \7xs = (Vs, X) : M -> ^(EuVEt) 

where ( , ) is the extension of the evaluation map TxT* —> U. Having an r-th order 
M 

connection with the associated map (22) and a section 5 of the form za = tpa(x,y), 
then the coordinate form of Vs is 

(48) d ^ V ) -*ai(x\Vp,dav"(x,y)). 

To obtain Vxs , we contract (48) with the coordinate functions Xl(x) of X. 

Remark 4. In the case E\ = E2 := E we have a distinguished section I: 
M —> &(E, E), I(x) = id£x. Analogously to the case of a classical linear connection 
on TM, the absolute differential VI: M -> &(E,VE <g> T*M) can be called the 
torsion of a connection T on &(E,E). By (48), the coordinate form of the torsion 
of an r-th order connection is — $P(xl, yp, yp, 5P, 0 , . . . , 0). 

It might be instructive to discuss a special case in more detail. Let E -» M be 
a vector bundle. Consider the subspace LE C &(E,E) of all linear maps, which is 
a classical vector bundle over M. A connection T on LE in our sense is a classical 
general connection on LE. Hence our approach leads to the original idea of the 
torsion of a general connection T on LE. If wp are the induced fiber coordinates on 
LE, the usual coordinate expression of T is dwp = F^x^,wr

s) dxl. Then —F^{(x
j,Sg) 

is the coordinate form of the torsion of T. Of course, if we take for T the tensor 
product A eg) A* of a linear connection A on E and of the dual connection A* on E*, 
[10], then the torsion of A 0 A* vanishes, for I is invariant with respect to A cg> A*. 
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8. THE VECTOR BUNDLE CASE 

Assume p: E2 -r M is a vector bundle. Then each fiber of ^(E\,E2) is a vector 
space, provided the linear operations on C°°(E\X1E2X) are defined by extending the 
linear operations on E2x- In other words, &(E\,E<{) —•> M is a vector bundle over 
sets, cf. [4]. Such a vector bundle structure is further extended to J1 &(E\,E<i) by 

3**1 +ils2 =jl
x(s\ + s2), il(ks)=jl

xks, ken 

with addition and multiplication by reals in E2. Hence J1 ,^(E\,E2) -> M also is a 
vector bundle over sets. 

Definition 19. A connection T: &(E\,E2) -+ J1 ^(E\,E2) is called linear if 
T is a linear morphism over M. 

In the case of an r-th order linear connection, its associated map (22) has the form 

(49) *a
ib{x,y)zb + *%(x,y)zb

q + ... + ^zb
a. 

If E2 is a vector bundle, then VE2 -= E2xE2, which implies 
M 

3?(E\,VE2®A2T*M) = J?(E\,E2)x^(E\,E2®A2T*M). 
M 

In this case, analogously to the classical situation, the curvature will be interpreted 
as the second component of the map from Definition 15, 

CT: ^(E\,E2)^&(E\,E2®A2T*M), 

while the first component is the identity. 

Proposi t ion 15. For every differentiable linear connection T, the map CF: 
&(E\ ,E2)-> &(E\, E2 0 A2T*M) is a linear morphism over M. 

P r o o f . One easily verifies that in the linear case both T and A in Definition 15 
are linear morphisms over M. • 

Quite similarly, if E2 is a vector bundle, then the absolute derivative V ^ s of 
a section s with respect to a vector field X on M is identified with the second 
component of (47), so that it is section of ^(E\,E2) as well. 

We finally remark that several other ideas from the classical theory of connec­
tions can be generalized to the case of &(E\,E2). The most interesting ones could 
be the vertical prolongation of T, the connections on T&(E\,E2) C <^(TE\ —> 
TM, TE2 -> TM) or a detailed study of the absolute differentiation in the linear 
case. Such a research can be based on some general ideas from the theory of classical 
connections collected in the book [10]. 
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