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Czechoslovak Mathematical Journal, 45 (120) 1995, Praha 

ON ADJOINING UNITS TO HYPER-ARCHIMEDEAN /-GROUPS 

PAUL CONRAD, Lawrence and JORGE MARTINEZ, Gainesville 

(Received September 14, 1993) 

0. INTRODUCTION 

In this article we consider the problem of adjoining a weak order unit to a hyper-
archimedean lattice-ordered group. Our main results are Theorems 6 and 7. To lay 
the groundwork for them and develop a motivation for the so-called complementa­
tions, we shall present some preliminary work on strongly rigid extensions. 

This paper may be, reasonably, regarded as a continuation of the work in [CM2]. 

As is the custom, we shall employ the abbreviation l-group for "lattice-ordered 
group", l-subgroup for a subgroup is at once a sublattice, e tc If G is an /-group then 
Spec(G) denotes the root system of all prime convex /-subgroups. (A root system 
is a partially ordered set in which no two incomparable elements have a common 
lower bound; it is well-known that Spec(G) is a root system; see [AF]. In fact, [AF] 
will be our principal reference for most elements of the general theory of /-groups. 
Occasionally, we shall also refer to [BKW].) 

Spec(G) carries a natural topology, the so-called hull-kernel topology, for which 
the basic open sets are U(g) = {P G Spec(G): g £ P}- One important subspace 
which we shall consider later, and which was extensively studied in [CM1], is Min(G), 
the space of all minimal primes. Min(G) is but one example of a Hausdorff subspace 
of Spec(G). Observe that a subspace X of Spec(G) is Hausdorff precisely when it is 
trivially ordered by inclusion. 

Val(G) denotes the subspace of Spec(G) of all values of G. (Recall that a convex 
/-subgroup V of G is said to be a value of G if there is an element g G G so that 
V is maximal with respect to not containing o; we also say that V is a value of g. 
The set Y(g) of all values of g with the subspace topology is the Yosida space of g. 
Clearly, a Yosida space is a Hausdorff subspace of Val(G); if {gi\ i G I} is a set of 
pairwise disjoint elements of G, then the union of the corresponding Yosida spaces 
is, likewise, a Hausdorff subspace of Val(G).) 
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Max(G) will stand for the subspace of all maximal convex /-subgroups of G; 
Max(G) could be empty, in general. 

Next, suppose that T denotes a root system, and Rs stands for a subgroup of the 
additive real numbers R with the standard ordering, for each S G I\ V(T,Rs) will 
denote the /-group of all functions / : T -» \J{Rs'. S G V}, so that f(S) G Rs and 
the set supp(/) = {S G T: f(x) ^ 0} satisfies the ascending chain condition. It is 
well-known that V(F,Rs) is an /-group, in which / > 0 means that / ^ 0 and for 
each maximal element a G supp(/), f(a) > 0; see [AF], or else [CHH], 

An /-group G is said to be hyper-archimedean if it is archimedean and every /-
homomorphic image of G is archimedean. These /-groups are fairly well understood; 
the reader is referred to [C4] and [Ml] for many of the principal features of this class 
of /-groups. Let us mention one or two items, which given impetus to the research 
which produced [CM2] as well as this article. 

G is hyper-archimedean if and only if it can be embedded as an /-subgroup of 
real-valued functions defined on a set I, such that if 0 < a, b G G then there is 
a natural number n so that nai ^ b;, whenever a* > 0. If such an embedding 
can be produced, then every representation by real-valued functions possesses this 
property. If in addition G has a unit then a representation may be obtained so that 
for each 0 < g G G the set {gi: i G I} is bounded both above and below by positive 
real numbers. Long ago Conrad asked if such a representation was possible without 
the presence of a unit. In [CM2] we were finally able to produce an example of a 
hyper-archimedean /-group which does not admit such an embedding; (see Example 
A near the end of this article.) The point of this paper then is to (intelligently) 
describe when a hyper-archimedean /-group can be embedded in one with a unit. 
Our Theorem 6 and its immediate corollary (Theorem 7) accomplish this and more. 

If G is an /-subgroup of H, we say that G is large in H (and also that H is 

an essential extension of G) if every non-zero convex /-subgroup of H intersects G 

non-trivially. 

Finally, recall that if G is any convex /-subgroup of the /-group G, then G x stands 
for the polar of G; that is, the convex /-subgroup generated by the set {0 ^ x G G: 
x A \c\ = 0, for all c G C}. If g G G and G is the convex /-subgroup generated by g, 
then we write g1- for C"; the meanings of C^1- and g^ should be obvious. Recall the 
well-known result, first observed by Sik [S], that the set of all polars of an /-group, 
under the usual inclusion, is a (complete) boolean algebra. 
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1. STRONGLY RIGID EXTENSIONS 

Let us suppose that G is an l-group and that H contains G as an l-subgroup; (in 
these circumstances, we shall frequently say that H is an extension of G.) Recall 
that H is said to be a strongly rigid extension of G if for each 0 < h G H there 
exists a g G G such that g ^ h and g-~ = h11. (When we have one /-group extending 
another, the symbol _L should be taken to denote polars in the larger of the two 
groups.) We wish to examine the relationship between the prime spectrum of G 
and that of a strongly rigid extension of G. So suppose that H is a strongly rigid 
extension of G. For each P G Spec(G) denote by cP the convex hull of P in G(H), 
the lattice of all convex l-subgroups of H. Because of the strong rigidity, it is easy 
to demonstrate that cP G Spec(H). Conversely, suppose that Q G Spec(H); then 
it is obvious that Q fl G G Spec(G) and that P = cP D G, for each prime P of G. 
(Strongly rigid extensions were first introduced in [CM3].) 

Before stating our first proposition, let us agree to call a map between two partially 
ordered sets breadth preserving if every pair of incomparable elements is mapped to 
incomparable elements. 

Proposition 1. Suppose that H is a strongly rigid extension of G. Then: 

(1) The contraction /i(Q) = QC\G, for Q G Spec(H) is onto Spec(G) and breadth 

preserving. 

(2) The map c: Spec(G) —•> Spec(H) embeds Spec(G) as a partially ordered subset 

of Spec(H). 
(3) For each P G Spec(G), ii~l{P] is a chain, of which cP is the least element; 

(we denote the largest element by vP.) 

P r o o f . That \i is onto is clear. Now suppose that Q\ and Q2 are incomparable 
primes of H. We may select disjoint elements x\ and x2 of H, so that x\ G Q\ \ Q2 

and x2 G Qi\Q\- By the strong rigidity of H over G, there exist Oi, g2 G G, also 
disjoint, so that g{ ^ X{ and gj- = xf~. Now, g2 7- Q\ D G, and therefore g\ G /xQi; 
likewise, g\ ^ f_iQ2 and g2 G \iQ2, proving that \iQ\ and fj,Q2 are incomparable. This 
establishes (1). 

The rest is straightforward. • 

Recall that an l-group is said to have the stranded primes property if every prime 
convex l-subgroup contains a unique minimal prime. G is protectable if for each 
x G G, G = x~~ + x±. It is well-known that projectable l-groups have the stranded 
primes property, and that the converse is not true. It was proved in [CM3] that 
projectability is preserved by strongly rigid extensions. Now we have: 
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Corollary 1.1. Suppose that H is a strongly rigid extension ofG. Then ifG has 

the stranded primes property then so does H. 

Suppose that H is a strongly rigid extension of G. Observe that if P is a value of 
G then vP is a value of H; (if P is maximal with respect to missing g G G then vP 
is maximal in C(H) with respect to missing g.) The map v G Val(G) -» Val(H) is 
(by Proposition 1) an order embedding. Since vP n G = P it follows, in particular, 
that a special element of G remains special in H. (We remind the reader that x G G 
is special if it has only one value in G.) 

Recall that G is pseudo-special-valued if every strictly positive element of G has a 
special component. This condition is weaker that special-valuedness: every positive 
element is a supremum of pairwise disjoint special elements ([M2]). For extensive 
information on special-valued /-groups we refer the reader to [CI], and the excellent 
[BiD]. 

Proposition 1 then also yields the following corollary: 

Corollary 1.2. Suppose that H is a strongly rigid extension ofG. IfG is pseudo-

special-valued then so is H. 

Suppose that G is a special-valued and that H is a strongly rigid extension of G. 
If, in addition, every positive element of H is also a supremum of pairwise disjoint 
elements of G, and arbitrary suprema in G agree with those in H, then it can be 
shown that H is special-valued. However, it is not the case that any strongly rigid 
extension of a special-valued /-group is special-valued. 

Let T be the following root system: 

T = {an: n e N} U {f3n: n e N} U {a}, 

where each an > (3n and an > an+\ > a. Let G be the finitely non-zero integer-
valued functions on T subject to the Hahn-ordering, and H = G + Zu, where u is 
defined by u(an) = u(a) = 0, for each natural number n, and u(/3n) = 1, for each 
n G rU The ordering of H is defined by making u infinitely large compared to any 
x G G which vanishes at every an and /3n. Then H is a strongly rigid extension of 
G, but we have managed to slip in a non-special value between two special ones. G 
is, in fact, finite-valued] that is to say, every element has a finite number of values. 
However, H is not special-valued. Note as well that H does not lie in the lateral 
completion of G. 

Let us now take into account the structure topologies on the prime and the value 
spectra, and see how these spectra are affected by a strongly rigid extension. 
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Since we are considering extensions here let's use U(g, G) to denote the basic open 
set determined by g G G. Observe then, that if H is a strongly rigid extension of G 
and f.i is the contraction map from Spec(H) onto Spec(G), then since /L-1 (U(g, G)) = 
U(g,H), it follows that LA is continuous. However, \i need not be open. Let To by 
the root system of our earlier example of our earlier example, but with a omitted. 
G is the l-group of finitely non-zero integer-valued functions on To subject to the 
Hahn-ordering. Define u by u(an) = 0 and u((3n) = 1, and let H be the /-subgroup of 
V(TQ, Z) generated by G and u. Then H is a strongly rigid extension of G; however, 
while Min(H) is open in Spec(H), its contradiction to Spec(G), namely Min(G), is 
not open. 

This proves not only that u. needn't be open, but also that the map c need not be 
continuous. In fact, the following is true: 

Lemma 2. Suppose that H is a strongly rigid extension of G. For each h G H, 

c~l (U(h, H)) = u.(U(h, H)). Therefore, c is continuous if and only if LA is open. 

P r o o f . For a prime P of G, P G c~l (U(h, H)) if and only if h <£ cP. On the 
other hand, P = \xcP, and so c~l (U(h, H)) C u(U(h,H)). Conversely, if P = Qf)G, 
where Q is a prime of H not containing h, then Q C cP with h £ cP, so that 
Pec~l(U(h,H)). • 

Recall that H is an a-extension of G if the contradiction map u.C = C n G is 
a lattice-isomorphism from C(H), the lattice of all convex l-subgroups of H, onto 
G(G). This is equivalent to saying that for each 0 ^ / i G i V there is a g G G so that 

mg ^ h and nh ^ g, for suitable natural numbers m and n. (Elements with this 
property are said to be a-equivalent.) 

Our next theorem then tells us when we can expect n to be a homeomorphism: 

Theorem 3. Suppose that H is a strongly rigid extension ofG. Then the follow­
ing are equivalent. 

(a) H is an a-extension of G. 

(b) c is onto and continuous. 

(c) ii is an open mapping and one-to-one. 
(d) Li is an order isomorphism and a homeomorphism. 

P r o o f . It should be clear that (a) implies the others, and that (b) and (c) 
follow from (d). The equivalence of (b) and (c) is a consequence of Lemma 2 and 
Proposition 1. 

To see that (c) implies (a), suppose that [x is an open mapping. Observe now 
that the compact open subsets of Spec(H) are precisely the sets U(h,H). Now 
li(U(h,H)) is both compact and open, and so u.(U(h,H)) = U(g,G), for a suitable 
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g E G. It is now easy to verify that Q 6 Spec(H) is a value of h if and only if it is a 

value of G; that is, g and h are a-equivalent. D 

Incidentally, and referring to the last example, there is the following characteriza­
tion of when Min(G) is open in Spec(G). Let E(G) stand for the hyper-archimedean 
radical of G; this is the largest convex l-subgroup of G which is hyper-archimedean. 
(We refer the reader to [Ml] for the basic properties of this radical.) Recall also—see 
[CM4]—that a convex l-subgroup K of the /-group G is said to be very large in G if 
it fails to be contained in any of the minimal prime subgroups of G. 

Proposition 4. Tiie minimal prime P of G is in the interior of Min(G) precisely 
when P is a value of an element in the hyper-archimedean radical ofG. Thus, Min(G) 
is an open subspace of Spec(G) if and only if E(G) is very large in G. 

P r o o f . To say that P € Min(G) is in the interior of Min(G) is to say that 
there exists an element a G G so that U(a,G) consists entirely of minimal primes 
and contains P. This implies that a £ E(G)\ the converse is clear, as is the second 
claim in the proposition. D 

To conclude this section, let us consider the effect of taking a strongly rigid ex­
tension of a subdirect product of reals. More generally, suppose that X is a dense 
Hausdorff subspace of Spec(G); suppose that H is a strongly rigid extension of G, 
and that G is large in H. Then cX is again a dense Hausdorff subspace of Spec(H): 
that it is Hausdorff is clear from Proposition 1, and Gfl(P| cX) = f] X = {0}, whence 
it follows that f] cX is also trivial. 

Observe that if X is Hausdorff then X and cX are trivially ordered sets of the 
same cardinality. But what can we say about the respective subspace topologies? In 
all of the following cases the restriction of c to X is a homeomorphism; (that is to 
say, continuous.) 

(A) A" is the disjoint union of Yosida spaces. 
(B) cX is the disjoint union of Yosida spaces. 
(C) X = Min(G), in which case cX = Min(H). 
In cases (A) and (B^, c is a homeomorphism because these spaces are disjoint 

unions of compact spaces, and on compact Hausdorff spaces any bijection which is 
open is continuous. As for (C), c is a homeomorphism between the minimal prime 
spaces simply because H is a rigid extension of G. 

Question. If X = Max(G), then is it homeomorphis to cXl 

In any event, for any Yosida space or any Hausdorff subspace X which consists of 
values, we are better off using the map U, so that vX is once again a set of values. 
For example, if X is the Yosida space of g in G then vX is the Yosida space of g 
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in H; (and vX is homeomorphic to cXI)Notice also that any prime Q of H lies 

between cQ and v\xQ. Therefore, if Q is a maximal l-ideal then Q = vfiQ, and, in 

fact, Q G U(Max(G)); that is, Max(H) = U(Max(G)). 

Putting all of the above discussion together we get: 

Proposition 5. Suppose that H is a strongly rigid extension of G with G large 

in H and that G is a subdirect product of reals. Then H is also a subdirect product 

of reals, and, indeed, if G is realized as a group of real-valued functions on the set I 

then H can also be realized as a group of real-valued functions on the set I. 

P r o o f . If G is a subdirect product of reals then Max(G) is a dense Hausdorff 
subspace. The same is true of Max(H), proving that H is also a subdirect product 
of reals. But more is true: for any dense subset X of Max(G), vX is likewise dense 
in Max(H). After observing that for each M G X, G/M = H/vM, we're done. D 

Returning to the topological point of view, we have a counterpart to Proposition 5. 
Note first, however, that if X is a Hausdorff subspace of Spec(G) and c, restricted 
to X, is a homeomorphism onto cX, then so is the restriction of v to X\ this is so 
because the map which assigns cP to vP is continuous. 

Proposition 5a. Suppose that G is archimedean and that H is a strongly rigid 

extension ofG with G large in H. Then H is also archimedean and for every disjoint 

union Y of Yosida spaces of G which is dense in Spec(G), the canonical Yosida 

embedding of G into D(Y) can be lifted to a Yosida embedding of H into D(Y). 

(Note: D(Y), as usual, stands for the lattice of all continuous functions defined on 

Y with values in the extended real numbers, which are real-valued on a dense subset 

ofY. Recall that, in general, D(Y) is not a group.) 

P r o o f . First, since G is large in H, H is archimedean. In fact, it turns out that 
H is in the essential hull of G. 

By the remark preceding this proposition as well as our earlier comments, since 
Y is a disjoint union of Yosida subspaces, Y, cY and vY are homeomorphic. The 
point is that if Y = U{Y(gi): i G / } , for a suitable maximal pairwise disjoint set 
{gi\ i G I}, then the (non-faithful) representation oiG/gf- in D(Y(gi)) can be lifted 
to H/gJ~. (Caution: we are not distinguish between polars calculated in G and those 
from H.) D 
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2 . COMPLEMENTING HYPER-ARCHIMEDEAN /-GROUPS 

Let us first recall the definition of complementation from [CM3]. Let G be an 

/-group; we say that the extension H C GL, the lateral completion of G, is a com­

plementation of G if 

(a) H is complemented, 

(b) the convex hull Gc of G in H is a strongly rigid extension of G and 

(c) Gc is an intersection of minimal primes of H. 

If H = (G,u)t, for some unit u > 0, we say that H is a simple complementation 

of G. (For a discussion of lateral completeness and the lateral completion, we refer 
the reader to [C2], where the subject is discussed in the context of representable 
/-groups, of [Be], who considers lateral completions of arbitrary /-groups.) 

In the sequel we assume that G does not have a weak unit. We shall also sup­
pose, for the time being, that G is a hyper-archimedean /-group. Recall from [CM3] 
that if G is projectable, and it has a simple complementation H, then H is also 
projectable; in fact, such an /-group has a simple complementation if and only if it 
has a projectable complementation (Corollary 4.1.1, [CM3]). 

We shall make one change from the conventions in [CM3]: since our concern will be 
with complementations of archimedean /-groups, it will be convenient to word inside 
the essential hull eG of the /-group G. Recall—see [C3]—that every archimedean 
/-group G has a unique essential hull eG: it is maximal among all the essential 
extensions of G which are archimedean, and can be obtained as the /-group of all 
continuous functions with values in the extended reals, defined on the Stone dual of 
the boolean algebra of all polars of G, which take on real values on a dense subset. 
The reader should reflect that no part of the theory from [CMS] is altered by allowing 

the extensions to be computed in eG instead of GL. 

Recall also that if H is a complemented extension of G, and H = (G,u)t, then 
Gc is a max-min prime of H, and Min(H) is a one-point compactification of Min(C7) 
(Lemma 3.3, [CM3]). Thus, if H is complemented then we can ignore condition (c) 
in the definition of complementation. 

The main theorem of this article is the following: 

Theorem 6. For a hyper-archimedean l-group G, the following are equivalent: 

(1) G admits a simple complementation. 
(2) G can be regarded as a group of real-valued functions on the set I such that 

(i) inf {gi: g{ 7- 0} > 0, for each g G G, g ^ 0. 

(ii) For each 0 < g G G and each n G N, g = gn + gn, such that gn A gn = 0 
and (gn)i < n, for each i G I, while (gn)i ^ n whenever (gn)i > 0. 
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(3) Condition (2) holds, with I = Min(G). 

(4) There is a dense disjoint union of Yosida spaces Y, and an embedding 6: G -» 

D(Y) so that 

(a) coz(O) is a compact-open set. 

(b) For each n e N and 0 < g e G the set 

{PeY:g(P)<n} 

is compact open. 
(5) Condition (4) holds, with Y = Min(G). 

Before giving a proof of this theorem, let us review what is known about simple 
complementations of projectable l-groups G in which G is convex. We distill the 
following from Section Four of [CM3]: 

Theorem 6A. For a projectable l-group G the following are equivalent: 

(1) G admits a simple complementation in which it is convex. 

(2) G admits a projectable complementation in which it is convex. 

(3) G has a rigid Specker subgroup. 

Recall that an element 0 < s e G is said to be singular if s and g — s are disjoint. 
A Specker l-group is one which is generated as an abstract group by its singular 
elements. For a detailed study of Specker groups, the reader is encouraged to read 
[C4]. 

Theorem 6A has the following corollary for hyper-archimedean /-groups: 

Corollary 6B. For a hyper-archimedean l-group G the following are equivalent: 
(1) G has a simple complementation in which it is convex. 

(2) G has a rigid Specker subgroup. 
(3) G iias an S-kernel, that is, a Specker subgroup of which G is an a-extension. 
(4) G can be embedded in a hyper-archimedean l-group with unit as an l-ideal. 

P r o o f . The equivalence of (1) and (2) here comes straight from Theorem 6A. 
(2) and (3) are equivalent because in a hyper-archimedean /-group a subgroup is 
rigid if and only if it is an a-subgroup. The equivalence of (3) and (4) is in Theorem 
19 of [CM5]. 

Theorem 6 is more general than Theorem 6B, because it drops the stipulation of 
convexity The conditions (2ii) and (4b) in Theorem 6 replace the existence of the 
rigid Specker subgroup in Theorem 6B. 
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Now to the proof of Theorem 6; we show that (1) implies (3), (2) implies (1), 
(5) follows from (1) and that (4) implies (2). Observe that (2) and (4) are trivial 
consequences of (3) and (5) respectively. 

Let us suppose that H = (G,u)t is a simple complementation of G, and that Gc 

is the convex hull of G in H. Recall that Gc is a max-min prime of H. Since G is 
hyper-archimedean we can represent it as a subgroup of real-valued functions on I = 
Min(G). Since H C eG we can apply Proposition 5, and lift this representation 5, and 
lift this representation to Gc. (CAUTION: Gc may no longer be hyper-archimedean!) 
Gc is projectable and convex in the simple complementation H; therefore Gc has a 
rigid Specker subgroup S. Without loss of generality we can assume that in the 
above representation the singular elements of S only take on values 0 and 1. 

Now let 0 < g ' G and x = (g — u) V 0; note that x ' Gc. By projectability, we 
can write g = g\ + g% with g\ ~ x1- and G2 ' x±. Since G is saturated in Gc (Lemma 
3.4 of [CM2]) we get that the gi belong to G. Let s be the singular component of 
g-2 in S; pick a in G so that a ^ s and s11 = a1-. Therefore, if O2 > 0, then for 
each i ~ I such that (#2); > 0 we have that (#2); = gi < 1 ̂  &i and 02 and a vanish 
at the same places. From this it should be clear that there is no sequence glfi > 0 
converging to zero, and thus (3i) holds. 

As to (3ii), for each n ~N, consider xn = (g — nu)V0, and decompose g = gn + gn. 

Since G is saturated in Gc, it can easily be shown that this is the pair of components 
we want. This proves that (1) implies (3). 

Now let us see that (2) implies (1). Suppose that G is represented on 7 according 
to the specifications of (2). Let H = (G,w)/5 where u is the constant 1. Consider 
g G G and n e N, and let's compute (g + nu) V0. First, notice that, by condition (2i), 
there is for each a > 0 in G a natural number ra so that (ra + l)aAu = ma/\u = u(a). 

Then u(a) is a component of it, and u(a) ^ raa, while it(a)11- = a^~. 

Now, 

(g + nu) V 0 = (a+ - g~ +nu)V0= (g+ - (g~)n - (g~)n + nu) V 0 

= ((g+ + nu(g+)) - (g')n + nu((g~)n) - (g-)n + nu((g~)n) + nw) V 0, 

where w = u - (u(g+) + u((g~)n) + u((g~)n)). By the choices of (2ii), (g~)n ^ 
n(u((g~)n)) while (g~)n ^ nu((g~)n). Therefore, 

(g + nu) V 0 = g+ + nu(g+) + (n((g~)n)) - (g~)n + nw = g0 + nv, 

where an = g+ — (g~)n and v = u — u((g~)n). The point of this calculation is to 
show that the subgroup generated by G and u is an /-subgroup of H and hence H 
itself. 
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Together with conditions (2i) and (2ii) this observation implies that these two 
conditions, in fact, hold for H. Thus, each 0 < x e Gc determines a natural number 
in so that mx Aw = (m + l):r A H = u(x)\ as before, u(x) is a component of u so 
that u(x) ^ mx and u(x) and x have the same polar. This shows that the subgroup 
generated by these components is a rigid Specker subgroup of Gc. Since Gc and u 

clearly generate H, we may apply Theorem 3.9 from [CM3] to conclude that H is a 
simple complementation of G, proving that (2) implies (1). 

(1) implies (5): let H be a simple complementation of G; say H = (G,u)t, where 
u > 0 is a unit of eG. Using the arguments in the preceding paragraphs, we get, in 
fact, that u G E(H), the hyper-archimedean radical of H. But then we can represent 
H as functions on D(Y(u)), where Y(u) is the Yosida space of u. (Note that Y(u) is 
homeomorphic to Min(H).) Thus, Y(u) is a compact zero-dimensional space. This 
means that each element of H is represented with compact cozero sets; also u = 1. 
Then it is clear that (5a) holds, and we leave the verification of (5b) to the reader; 
it is similar to the argument which shows that (1) implies (3ii). 

The only thing left to do is restrict the domains of these functions: let X consist 
of the points in Y(h) which are values of components of u lying in Gc. Then X = 
Min(Gc), and the latter is homeomorphic to Min(G), since Gc is a strongly rigid 
extension of G. 

Finally, (4) implies (2): if H = (G,H)Z, with u = 1, then it should be obvious that 
(4a) gives us (2i), taking I = X. We leave it to the reader to verify that (4) implies 
(2ii). 

The proof of the theorem is now complete. • 

Theorem 6 yields an obvious corollary, which spells out exactly when a hyper-
archimedean /-group G has a hyper-archimedean simple complementation. The es­
sential thing to observe (once more) about the proof of Theorem 6 is this: in the 
implications which yield the simple complementation observe that the unit which is 
adjoined lies in the hyper-archimedean radical of the extension. Armed with this in­
sight we can now state the final result of this section, which, in sense is a culmination 
of this article. The proofs that (1) imply the rest are almost verbatim restatements 
of the corresponding arguments in the proof of Theorem 6, and will therefore be 
omitted. 

Theorem 7. For a hyper-archimedean l-group G, the following are equivalent: 

(1) G admits a simple complementation which is hyper-archimedean. 

(2) G can be represented as an l-subgroup of bounded real-valued functions defined 
on a set I satisfying (2i) and (2ii) of Theorem 6. 

(3) Condition (2) holds, with I = Min(G). 
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(4) G can be represented as an l-subgroup ofC(Y), for some union of Yosida spaces, 

so as to satisfy (4a) and (4b) in Theorem 6. 

(5) Condition (4) 1io1ds, with Y = Min(C). (Note: As is customary, C(Y) stands 

for the group of all real-valued continuous functions defined on Y. It is well 

known that C(Y) is an l-group (and in fact an f-ring) under the usual pointwise 

operations.) 

3. COMMENTS AND EXAMPLES 

First of all, a corollary of our results, for hyper-archimedean f-rings. 

Corollary. Suppose that G is hyper-archimedean f-ring with no non-zero nilpo-

tent elements. Then Gl = (G, 1)L, where 1 is the identity in eG, is a simple (hyper-

archimedean) complementation of G. Moreover G1 contains G as an l-ideal if and 

only if G contains a rigid Specker subring. 

P r o o f . It is easy to verify that a hyper-archimedean f-ring with no non-zero 
nilpotent elements satisfies condition (3) in Theorem 7. The remaining claim is 
obvious. • 

We conclude the paper with three examples, which illustrate the distinctions im­
plied by our results. 

Example A. This is the example of [CM2]; it appears again in [CM3]. 
Consider the binary tree 

4 ^ 

/ 

/ < 
1 

\ ^ < 
3 ^ ^ 

\ / 
7 ^ 

and the family M of all maximal chains through the tree. Then M is a family of 
subsets of N which are almost disjoint—any two distinct subsets have finite intersec­
tion. M has the cardinality of the continuum. Let us index M = {Mi: i G I}. 

Let G be the l-group generated by all the finitely non-zero sequences of integers, 
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together with the sequences Vi defined by: 

( 0 i f n g M i , 
Vi(n) = < 

[ fi(k) if n is the fc-th term of Mi, 

where {fi: i G I} is the set of all strictly increasing sequences of natural numbers. It 
was shown in [CM2] that G is hyper-archimedean, but that it cannot be embedded in 
a hyper-archimedean l-group containing a unit. Notice, however that G does satisfy 
the provision of Theorem 6, and therefore does admit a simple complementation. 

Example B. With M = {Mi: i G / } as in the previous example, let us now 
consider the collection {g;: i G /} of all strictly decreasing sequences of rational 
numbers which converge to 0, and define 

[ 0 i f n ^ M i , 
w;(n) - { 

ygi(k) if n is the fc-th term of Mi. 

Let G be the divisible l-group generated by all the finitely non-zero sequences of 
rational numbers, together with the Wi. As with the previous example, G is a hyper-
archimedean /-group. We proved in [CM3] that G has no simple complementations at 
all. The reader will also readily notice that G satisfies condition (3ii) of Theorem 6, 
but not (3i). 

In between Examples A and B we have the following item in conclusion: 

Example C. M = {Mim. i G /} denotes the same family as in the preceding 
example; the {^: i G / } also the same family of strictly decreasing sequences of 
rational numbers. Now let 

/ N (0 i fn^Mi , 
Ui(n) — < 

[ 9i(k) + 7i if n is the fc-th term of Mi. 

Then let G be the divisible /-group generated by the finitely non-zero sequences of 
rationals, together with the Ui just defined. As with the other examples, G is hyper-
archimedean. Clearly, condition (3) of Theorem 7 is satisfied, and G does have a 
simple complementation, namely, H — (G. l )^ which is hyper-archimedean. How­
ever, G does not have a rigid Specker subgroup, and therefore cannot be embedded 
in a hyper-archimedean l-group with unit, as an l-ideal. 
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