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The Jakubik Problem on radical classes of lattice-ordered groups is an open ques­

tion raised by J. Jakubik in 1977 in [1] as follows: 

Let a be a radical class with A'(a) 7- 0 (A'(a) denotes the class of all antiatoms 
over a). Is there r G S with a < r < e'(a) such that A'(T) — 0, where S is the 
lattice of all radical classes? 

J. Jakubik himself solved the above problem in the case of a being a principal 
radical class in [1]. In this paper, a complete solution for the general case is given 
(Theorem 4). 

All of the notions and terminologies that concern radical classes in this paper are 
from [1], those related to lattice-ordered groups from [2]. 

The radical class of all lattice-ordered groups will be denoted by Q. 

Let G G Q. The least radical class containing G is called the principal radical class 
generated by G. We denote it by T(G). 

Let a G S. The symbol a(G) stands for the largest solid subgroup of G which 
belongs to a. 

Let a, rj G S, and a < 77. The interval [a,rj\ is the class of all radical r with 
a ^ T ^ ?;. If [a, rj] contains exactly two elements, then we call rj an atom over a\ 
in this case, we also say that rj covers a (alternatively, a is covered by rj). If there 
are no atoms over a contained in [a, rj\, then we call rj an antiatom over a. A'(a) 
denotes the class of all antiatoms over a. Note that e'(a), the supremum of A'(a), 
is also an element of A'(a). 

In this paper, uj(a) has the usual meaning, i.e. it is the least ordinal having cardi­
nality a. 

The following lemma is proved in [1], 
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L e m m a 1. Let a,n G S, A'(a) ^ 0 ^ -4'(I/), suppose a < i] < e'(a). Then 

e'(j]) ^ £'(O")- If cr is a principal radical class, then £f(i]) < s'(a). 

For a principal radical class, from the above lemma and Proposition 5.8 in [1] we 

infer tha t A' (s'(n)) = 0. Therefore, the answer to Jakubik Problem is affirmative in 

this case. 

Let a be an infinite cardinal and let I be a dual ideal of uj(a). For G G G, put 

G(a) = (<§) Gi) §>G, Gi = Z (i G I), Z being the additive group of integers with the 

usual order. Note tha t G(a) is the lexicographic product of these Gi and G (i G I) 

with the ordering from left to right. Write G® = {g G G(a) \ g(i) = 0, for each 

i G / } . Obviously, G® is isomorphic to G. 

L e m m a 2. Suppose G® C H G C(G(a)). Then H has a solid subgroup isomor­

phic with G(a). 

This is Lemma 3 A in [1]. 

From the proof of Proposition 3.3 in [1] we infer 

P r o p o s i t i o n 3 . For the above G(a), T(G(a)) covers T(G) and T(G)(G(a)) = 

We can now construct a radical class which satisfies all conditions in the Jakubik 

question, and therefore gives an affirmative answer to the question. 

T h e o r e m 4. Let a G S, A'(a) ^ 0. Then there exists a radical class i] such that 

a < n < £f(a) with A'(n) = 0. 

P r o o f . There is an ^-group G G s'(a) \ a. Pu t r = a V T(G). There are two 

cases as follows: 

(i) a is comparable with T(G). In this case, a < T(G) and r = a\/T(G) = T(G) is 

a principal radical class. By Lemma 1 and Proposition 5.2 in [1], we have A'(T) ^ 0. 

Thus r < e'(a). Therefore, a < r < E'(T) < e'(a). Pu t n = S'(T). Proposition 5.8 in 

[1] says tha t A'(i]) = 0. 

(ii) a is not comparable with T(G). Then r is finitely V-decomposable. By 

Proposition 3.5 in [1], A'(T) ^ 0. Pu t H = S'(T), we have a < i] ^ s''(a) and 

A'(i!) = 0. 

Let Z = T V T(G(a)), then [T, Z] = [a V T(G),a V T(G) VT(G(a))}. 

From the projectivity of intervals [a VT(G),a VT(G VT(G(a)))], [(aVT(G)) A 

T(G(a)),T(G(a))] we infer that if a V T(G) A T(G(a)) = T(G(a)), then T = Z, 

that is aVT(G) = aVT(G(a)). Hence G(a) = (a V T(G)) (G(a)) = a(G(a)) V 

T(G)(G(a)) = a(G(a)) VG°, which implies G(a) = a(G{a)). Thus G(a) G a and 
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consequently G G O-, a contradiction. So it must be the case that (a V T(G)) A 
T(G(a)) < T(G(a)) . Note that T(G(a)) covers T(G). Then a\/T(G) = T(G). 
Therefore, Z covers r. 

Now suppose that Z is not an antiatom over a. Then there is Y G 5 such that 
V covers (T with Y < Z. Obviously, F V r ^ Z and Y A r = a. Moreover, from the 
projectivity of intervals [T, Y V T] and [Y A r , 7 ] = [O, y] we obtain that T is covered 
by y V T. So we have Z = YVT. Thus, G(a) = zT(G(a)) = (Y V r)(G(a)) = (y V 
<jVT(G))(G(a)) = ( y v r ( G ) ) ( G ( Q ) ) = y(G(a)) VG°. Hence, G(a) =Y(G(a))y 

i.e. G(a) G Y, which implies F ^ n V T(G(a)) = Z, then Y = Z, which is not the 
case. Therefore, Z G -4'(O). 

We have Z ^ £'(O)- If £;(0") = ^ ' ( T ) , then r is covered by Z and Z ^ £'(T). a 
contradiction. Therefore, s'(a) > S'(T) = 77. This completes the proof. • 
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