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EXAMPLES OF SECTIONAL CURVATURE 

WITH PRESCRIBED SYMMETRY ON 3-MANIFOLDS 

Luis A. C O R D E R O , 1 PHILLIP E. P A R K E R , 2 ' 3 Santiago de Compostela 

(Received June 3, 1992) 

1. INTRODUCTION 

Let M be a smooth 3-manifold and g a pseudoriemannian metric tensor on M. 

Let G2(M) denote the Grassmannian bundle with fibers G2(TXM), the space of (2-

dimensional) planes in the tangent space TXM at a point x G M. Observe that each 

G2(TXM) may be regarded as a (real) algebraic variety, diffeomorphic to the (real) 

projective plane P 2 . As in [3, 5], we shall regard the sectional curvature Kx at each 

point x G M as a rational mapping of algebraic varieties G2(TXM) -» R, or a rational 

function for short. The group of all automorphisms of G2(TXM) is isomorphic to 

P G L 3 = PGL3(IR), the group of projective automorphisms of P 2 . 

In [5] we determined the possible symmetry groups of K at x; i.e., the largest 

subgroup of PGLs which leaves Kx invariant as a rational function. We shall refer to 

any one of these as a sectional curvature symmetry, or SCS for short. We determined 

the existence of naturally reductive homogeneous spaces with constant SCS, and gave 

general descriptions of some examples of them. 

In this paper, we exhibit explicit forms of the metric tensors on some of these 

examples (§4). We also give some inhomogeneous examples utilizing warped products 

(§3), and begin the study of how the SCS and CF-type can vary on a connected 

space (§5), 

Our Lorentzian metric tensors will have signature H . When necessary, we 

distinguish among the possible orderings H , — I — , h (To convert to 

the other signature convention + + - , see [9, p. 92].) Thus a vector v is timelike 
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if g(v,v) > 0, lightlike or null if g(v,v) = 0, spacelike if g(v, v) < 0, and causal if 
g(v,v) ^ 0. 

When convenient, we regard the Riemann tensor Rijki as a quadratic form on 
f\TM; cf. [3, 5]. In local coordinates, 

R = 
-#1212 -#1213 -#1223 

-#1213 -#1313 -#1323 

-#1223 -#1323 -#2323 -

Then the sectional curvature appears as a rational function on C?2(M) in the form 
of a quotient of two quadratic functions: 

K R 

K9 

Also recall that the associated tensor R^ represents the curvature operator R: 

/\2 TM -» /\2 TM in local coordinates. Note that if R and R are written as ma­
trices with respect to the same local coordinates, then R = (/\ g)R. 

We denote the Lorentz group in (n = p + q) dimensions of signature (p, q) by 
0£ = 0£(IR), thus the (usual) orthogonal group by On = On(R). Projectivization 
of any group of linear transformations is indicated by a prefixed P; for example 
PGL3 = GL3/{aI; 0 ^ a e R} =* SL3. 

Some of the results in Section 3 were presented by Parker at the Bolyai Collo­
quium on Differential Geometry in 1984. Again, Parker thanks Cordero and the 
Departamento at Santiago for their extraordinary hospitality during his visits. 

2, PRELIMINARY RECOLLECTIONS 

For the convenience of the reader, we state some of the main results of [5], Recall 

that A2 diag[ 1 , - 1 , - 1 ] = diag [ -1 , -1 ,1 ] , This is Theorem 2.2 of [5]: 

Theo rem 2 .1 . At each point x of a Lorentzian 3-manifold (M,g), there exists a 
choice of g-orthonormal coordinates with respect to which the Riemann tensor Rx 

on /\2 Tx M takes on exactly one of these canonical forms: 

CF1 diag[B,C, A]; 



CF2 

CFЗ 

CF4 

0 0 
-A F 

F A, 

0 

-A±è 

A —fe - 4 -
"2 

1 
V2 
-A 

-è- o 

1 

t 
V2 

ғ # 0 ; 

A ± i 

ì 

0 

A 

We note that these forms can also be characterized in terms of eigenvectors of R: 

timelike, spacelike, double null, and triple null, respectively; compare [8, §4.3]. 

We also give Table 1 of [5]. Recall the group HT of horocyclic translations (called 

null rotations in relativity because there is a fixed null direction). The identity 

component of this group consists of the matrices 

exp 

0 -t ť Гl 
t 0 0 = t 

t 0 0 t 

-t 
1 - í -
-- o 

1 + 2 -" 

te 

Each component of 0\{ h) contains one component of HT. 

Canonical form of 

Rx 

Symmetry group of 

KX=RJ t\9x 

CFl : diag[B,c, A] 

A = -B = -C PGLз 

в = cф-A P02 

A = - B ф ~ c ) PO\ 
A = -C ф -B J 
generic Z2 Z2 

CF2 г2 

CFЗ 
вф-X Z2 

B = -Л PHT 
CF4 1 

Table 1. Lorentzian SCS 

Finally, we state Theorem 3.1 of [5]. 

Theorem 2.2. If M = G is an irreducible, naturally reductive, Lorentzian homo­

geneous space of dimension 3. then either M is flat or of constant positive curvature. 

In the former case, M is Minkowskian 3-space or one of its quotients by a discrete 



group of translations. In the latter, M is 50 2 + (R) or one of its coverings or quotients 

by a discrete subgroup. 

3. SOME WARPED PRODUCTS 

To begin, we consider Lorentzian warped products of the form M = A x r E. 
Here, A is either the circle S1 or an open interval I C R with coordinate t, r is 
a positive, smooth function on A (the warping function), E is a surface with line 
element dcr2, and the line element on M is ds2 = dt2 - r2da2. We refer to [9, 
pp. 204-211] for the geometry of warped products. Using the formulas there, we 
find specR = {Ai, A2} with \{ of multiplicity i, A2 = r/r, and Ai = (f/r)2 — k/r2, 
where the dot denotes d/ dt and k is the intrinsic (Gaussian or sectional) curvature 
of E. Thus, in appropriate local orthonormal coordinates [5], R = diag[A2, A2, Ai]. 
Roughly, one may say that I\T(plane || E) = Ai and K(plane _L E) = A2. Consulting 
Table 1 from [5], we have 

Propos i t ion 3 .1 . If \\ = A2, then M has a constant SCS of PGL3, hence con­

stant curvature. If Ai ^ A2, then M has a constant SCS of PO2. 

If we regard Ai and k as given, then we find 

logr = ± f y/X1 + k/r2 dt 

subject to the consistency condition Ai ^ —k/r2. If we regard A2 as given, then it 
follows from ODE theory (e.g., [4]) that a suitable r exists for any continuous A2. 
With a smooth metric, our A2 is in fact smooth. Therefore, 

Theo rem 3.2. All possible R of the form diag[A2, A2, Ai] can be obtained from 
Lorentzian warped products A x r E. 

It remains to determine which of them have constant curvature. This happens if 
and only if 

r \r J rz 

whence k must be constant. Solving the ODE, we obtain the solution implicitly as 

logr = ± / y/ci +2k / rd£ + c2 

10 



for appropriate constants of integration ci and C2. When A; = 0, we can write r 
explicitly as 

r(t) =r(0)ect 

for an appropriate constant c. If c ^ 0, r cannot be periodic. Thus the only such 
examples with A = S1 and a flat E are the flat Lorentzian warped products S1 x r E 
with constant r. 

Reflecting back on [5] and anticipating the next section, we observe that some 
warped products are homogeneous spaces. For example, if E is a closed, orient able 
surface with a Riemannian metric of constant curvature and the warping function r 
is constant, then A x r E is G-homogeneous for G = R x SO3, R x R2, or R x SL2, 
respectively, when E has genus g = 0, 1, or ^ 2, respectively. In light of the present 
work, it would be of interest to have effective criteria for determining when a warped 
product is homogeneous. 

In this spirit, we make a simple observation. Assume that a connected, Lorentzian 
3-manifold M has a constant SCS of P02. Then R has a timelike eigenvector at 
every point. Equivalently, there is a distinguished spacelike plane at every point. 
We obtain a splitting TM = L 0 P into a timelike line bundle L and this spacelike 
plane bundle P. When P is integrable, the constant SCS of PO2 implies that the 
leaves are totally umbilic. 

Proposition 3.3. If P is integrable, then M is locally an umbilic product. 

This follows from the obvious Lorentzian version of a theorem of Bishop [2]. (See 
also [7].) As we shall make no use of this result here, we omit the proof. For the con­
venience of the reader, however, we recall that an umbilic product is a generalization 
of a warped product in which the warping function may depend on both factors. 

We continue with warped products M = S x r A , where r is now a smooth, positive 
function on E, ds2 = r2 dt2 — dcr2, and we keep the other notations from the first 
part of this section. Consulting [9] again, we find in suitable local coordinates (t = 
xi,x2,x3) 

#2323 = k, 

R1212 = -Hr(d2,d2)/r, 

Ri3i3 = -Hr(d3,d3)/r, 

Ri2i3 = -Hr(d2,d3)/r, 

#1223 = #1323 = 0, 

where Hr denotes the Hessian of r on E and d{ = d/dx{. By means of an appropriate 
change of local coordinates on E, we may assume that #1213 = 0. Then we obtain 
R in CF1. 
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We have been able to solve these equations explicitly only when k = 0. Even in 

that case, however, we obtain examples of all SCS in CF1. Indeed, in this case the 

system becomes 

d2d2r = /, 

d3d3r = g, 

d2d3r = 0. 

It follows that / is a function of x2 only and g is a function of x 3 only. Thus the 

system can be integrated directly for any such / and g\ in particular, 

for f = g = o we obtain PGL3, 

for 

for 

for 

f = gфo 
[fфg=o\ 

\f=0фg\ 
oфfфgфo 

we obtain P02ђ 

we obtain PO\, 

we obtain 12 12 

Joint work in progress with Dean Allison will explore these warped products further, 

along with doubly warped products and umbilic products. 

4. SOME HOMOGENEOUS EXAMPLES 

In this section we write out explicit details and metric tensors for some of the 

naturally reductive examples described in [5]. We begin by noting that the case 

of spaces of constant curvature is well known: cf [10] and references there. Thus 

we omit explicit examples with constant SCS of PGL3. In order to simplify the 

notation, we shall write down our calculations using normalized versions in which 

the structure constants in [5] are taken as ±1 whenever possible. We give only 

examples M = G/H with dim G = 4; among those Lie algebras we have been able 

to identify and integrate, no new features appear when dim G = 5. 

PO? For the SCS of P 0 2 , we take the structure equations of g as 

[e2,e3] = e4, 

[e3,e4] = - e 2 , 

[e4,e2] = - e 3 . 

The left-invariant 1-forms and the dual left-invariant vector fields are 

LJI = dx\, 

0J2 = cosa:4 sinh.T3 dx2 — sinx4 dx3, 
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LJ3 = sin X4 sinh X3 dx2 + cos X4 d^3, 

U4 = cosh X3 dx2 + dx4, 

ei = 9i, 

e2 = cos ;r4 csch £3 d2 — sin rr4 $3 — cos X4 coth 0:3 <94, 

e3 = sin X4 csch X3 d2 + cos X4 83 — sin X4 coth .£3 <94, 

e4 = <94, 

where <9j = d/dx{. The quotient M = G/H is topologically R3 and given by {e4 = 0} 

or {X4 = const.}. 

Taking e4 = - 1 to get the signature H , we find the line element 

ds2 = dx\ — cosh 2^3 dx\ — dx\ 

with a curvature matrix of diag [0,0,1]. Regarding x\ (mod 1) as a coordinate on 

S1 , we obtain a G-left invariant metric on S1 x E where E is a Riemannian open 

surface of constant curvature —1. Thus there are compact models 5 1 x S 5 where T,g 

is a closed surface of genus g ^ 2. 

PHT For the SCS of PHT in CF3 with B = -A = 0, we take the structure 

equations of g as 

[ei,e2] = 0, 

[62,63] = a e 4 , 

[e3,ei] = 0, 

[ei,e4] = 0, 

[c2,e4] = - b e 3 , 

[e3,e4] = bei, 

where a = c23 and ab = +1/2. We obtain a semidirect product 0 = 0i x 0 (e2) with 
0i = (e3,e4,ei) isomorphic to the Heisenberg algebra and 

Therefore, when ab = —1/2 we have 

exp(-*0) = 

{e2) = 

"0 -b 0" 

a 0 0 

.0 0 0. 

e have 

cosh -

—ay/2sii 

0 

Џ b^ 
l h 7 2 * c< 

> s i n h ^ 0" 

э s h ^ í 0 
0 1. 
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and when ab = 1/2 we have 

exp(-W) = 

cos^t by/Žsin^t O 

O 

1 

—a\/2sin A=t cos -j=t 

0 0 

We consider only the case ab = 1/2. Setting £ = x2j\[2 for convenience, the left-
invariant 1-forms and vector fields are 

CJI = d^i — 6x3 da;4, 

u)2 = drr2, 

CJ3 = cos £ da;3 + bv2 sin £ dx4, 

LJ4 = —ay/2 sin £ da; 3 + cos £ dx4, 

ei = di, 

62 = 9 2 , 

e$ = —-=sin£<9i + cos£<93 + a\/2sin£<94, 
\/2 

e4 = 6x3cos£9i - b\Z2sin£<93 + cos£d4. 

We perform the change of coordinates 

ž/i = s i + : COt £, 
2\/2 

V2 = #2, 

2/3 = b\[2x4 sin£ + X3 cos£, 

y4 = x4sec£, 

and obtain (interpreting £ as y2/y/2 now) 

y 3
2 ( y 2 - 4 s i n 2 £ ) | b2yj 

4v
/2sin2^cos2^ 2 

^ i = dyi + 

^2 = ďî/2, 

^з = dy3 + í = tan £ - by4 ) dy2ì 

U4 = dy4 — ayз tan 2 £ dy2 — a\Í2 tan £ dyз, 

ei = дi, 

2/з 

dt/2 - =sec£csc£du3, 

e2 = 2 s ec£csc£ - --=1 Әi + <92 + ( ò y 4 - | t a n £ 
) * • $ 

tan £ <94, 

e3 = —-= sec £ csc £ <9i + Әз + a\/2tan£<94, 
v 2 

e4 = <94, 

14 



with di = d/dyi now. 

On the quotient G/H, we find a family of left-invariant line elements in the param­

eter 2/4. We have not written them out here as we found no reasonable simplifications 

of the coefficients. Recall that compact models are possible only if exp(0) preserves 

a suitable lattice in G/H. The case ab = -1/2 may be treated similarly. 

5. VARYING CF AND SCS 

Here we wish to consider how the canonical form type (CF1-CF4) and the sym­

metry group (SCS) can vary as one moves about in M. We observe first that with 

a smooth metric tensor g on M, the curvature tensor R will vary smoothly. Thus, 

a smooth curve in M lifts to a smooth curve in the bundle of possible curvature 

tensors. This bundle can be identified either as EndsA(/\ TM), the selfadjoint en-

domorphisms bundle, or (lowering indices) as Q(/\ TM), the bundle of quadratic 

forms; cf [5]. 

To begin, we determine how the CF's and SCS's partition the space of possible 

curvature tensors at a fixed point p E M. For this purpose, it suffices to fix a normal 

coordinate chart at p. This identifies TPM = R3 and A2 TPM = /\2 R3 = R3 • Thus 

we identify the space of possible curvature tensors at p with Sym3, the symmetric 

3 x 3 matrices regarded as quadratic forms on /\2 R3. We coordinatize Sym3 = R6 

via 
в D E 

D c ғ 
E F A 

(B,C,A,D,E,F)\ 

see [5]. 

If the metric tensor gp = diag [1,-1,-1], then /\ gp = diag [-1,-1,1]. A change 

of normal coordinates at p acts on TPM = R3 by an element oiO\(-\ ), the Lorentz 

group for gp. It is an easy exercise in linear algebra to verify that /\2 0\ (-\ ) = 

SO\( h). Thus we consider the action of SO\( h) on Sym3 where AR = AlRA 

for A € SO\( +) and R € Sym3. 

Constant curvature k at p is characterized by Rp = k f\ gp. Since SO\( +) 

preserves f\ gp, it also preserves Rp in this case: each constant curvature Rp is a 

fixed point. These comprise a line through the origin in Sym3. This is the set where 

the SCS is PGL3: {B = c = -A, D = E = F = 0}. 

For the SCS of P02, there is the plane {B = c} in BC4-space, containing the 

line L of constant curvature {B = c = — A}. The 02 subgroup of SO\ fixes each 

point on this plane, and all other elements of SO\ move every point of the two half-

planes complementary to L. The two half-planes are not interchanged by the action. 

We obtain two closed orbits in R6, P02 I and P02 II, each homeomorphic to R4. 

15 



Figure 1 represents a plane perpendicular to L in BC4-space. The view is from the 
third octant, toward the origin along L. In the figure, "dime?" means the full orbit 
in R6 has dimension d. 

• PGL3, B = c = - A , dim 1 

Figure 1. Contiguity Relations for CF1. 

For the SCS of PO\, there are two planes in BCA-space: {B = —A} and {C = —A}. 
They intersect in L. Each point of each half-plane complementary to L is fixed by the 
appropriate 0\ subgroup of SO\. The two planes are not interchanged by the action 
of SO\, but the half planes are in pairs across the plane {B = C}; see Figure 1. We 
obtain two closed orbits in R6, PO\ I and PO\ II, each homeomorphic to 5 1 x R3, 
which are cones over {B = c = — A}. 

For the SCS of Z2 0 Z2, we have the complement of the union of the planes 
{B = c} U {B = —A} U {C = —A} in BG4-space. The discrete subgroup of SOf 
which fixes each point in this set has two elements in each component of SO\. The 
set consists of six connected components, pairs of which are interchanged across 
the plane {B = c} by the 50f-action. We obtain three open orbits in R6, each 
homeomorphic to 5 1 x R5, which are also cones over {B = c = -A}. They are 
pairwise separated in BC4-space by the preceding orbits, as indicated in Figure 1. 

16 



CF2 has the SCS of Z2 and CF3 has the SCS of either Z2 or PHT. Since Hi323 = 
F 7- Oin either, both consist of (affine) planes parallel to one seen previously. No 
part of the CF2 or CF3 orbits lies in BC4-space. 

The planes of CF2 are parallel to {C = -A}. The discrete subgroup of SO\ 
which fixes each point of these planes has elements in both components of SO\. The 
two connected components {F > 0} and {F < 0} are interchanged by the action. 
We obtain one open orbit in IR6, homeomorphic to 5 1 x IR5, which is a cone over 
{C — —A}. See Figure 2. 

СFЗ I 
c + A = 2F 

СFЗ II 
C + A = - 2 ғ 

dim 5 

СFl 

z2 z2 
c < -A 

СFЗ II 
c + A = 2F 

dim 5 

С F 2 / A- -. 
dim 6 / dim 5 

СFl 

C F 2 " \ CF3 I 
d i m 6 C + A = -2F 

dim 5 
• C = - . 4 , F = 0 

• lines of CF3: c + A = ±l, F = ±1/2 

Figure 2. Contiguity Relations for CF2 and CF3. 

The two planes of CF3 are also parallel to {C = —A} and are translates of the 

two planes of CF2 at F = ±1/2. The lines {B = -A} are the translates of the line 

of constant curvature L by (0, ± | , ± ^ , ± ^ ) in BCAF-space, and lie inside the small 

bullets of Figure 2. Each point is fixed by the HT subgroup of SO\. The two lines 

are not interchanged by the action of SO\. We obtain two closed orbits in IR6, PHT 

I and PHT II, each homeomorphic to S1 x IR3, which are cones over L. Portions of 

them lie inside the sets CF3 I and CF3 II of Figure 2, respectively. 

The complement of these lines in the CF3 planes has the SCS of Z2. Again, the 

discrete subgroup of SO\ which fixes each point has elements in both components of 

SO\, and the translate at F = ±1/2 interchanges with a correspondent at F = -pl/2. 

Two translates at the same F-level, however, do not interchange. We obtain two 

orbits in IR6, Z2 I and Z2 II, each of dimension 5, which are also cones over {C = —A}. 
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(a) plane { F = 0} 

CFl 

CF2 

CF2 

• {в = c = -A} 

(b) plane {E = 0} 

CF4~ CF4~ 
/ D = E D = - ғ 

CFl 
'2 I2 I 

\ CF4" CF4" 
D = -E D = ғ 

# {ß -z- c = - л } 

(c) plane {D = 0} 

CF4 CF4 
E = -F E = F 

CFЗ 1 4 Уcғз i 
at D = — 1 N •ŕ at D = 1 

CFЗ I I > \cғз II 

CF4 / \ CF4 
E = F є = -ғ 

• {B + C + 2.4 = 0, B ?-: C} 

Figure 3. Contiguity Relations for CF4. 

The unions I2 lUPHT I and I2 llUPHT II are closed sets in IR6, each homeomor-

phic to S 1 x R4. These are the sets CF3 I and CF3 II of Figure 2, which represents 

a plane parallel to {C = A} in C4F-space. The view is from the fourth quadrant of 

the CA-plane toward the origin along the line {C = —A}. The lines have slopes of 

± l / \ / 2 , and the two bullets for CF3 have coordinates ±( l / \ /2 ,1 /2 ) . Considering 

the B-axis as perpendicular to the page, we have a representation of a translate of 

the 3-space with axes B, c = A , and F along the B-axis in BC4F-space. The part of 

the B-axis with B > c is PO\ I and the part with B < C is PO\ II. The 502-orbits of 

P02 from CF1 are the portions of the elliptic cone {(2B - c + A)2 +AF2 = (c + A)2} 

above and below the CF1 regions, P02 I to the right and P02 II to the left. 
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Finally, CF4 is a line parallel to the line L in BC4-space. Since the SCS here is 1, 
we obtain one closed orbit of two connected components (CF4+ and CF4~) in R6, 
each homeomorphic to 5 1 x IR3. Both components are cones over L. No part of this 
orbit lies in BCAF-space. 

In Figure 3, we see the three coordinate planes of DEF-space. Parts (a) and (b) 
have B = c = — A . The orbits of the other canonical forms are contained in the axes; 
for example, rotations of CF1 are in the D-axis, and those CF2 with B = — A and 
certain boosts of CF3 are in the F-axis. Part (c) still has B + c + 2A = 0, but now we 
allow B ?- c. Note that the four CF3 points lie at D = ± 1 , not at D = 0; their E- and 
F-coordinates are ± l / 2 \ / 2 . The CF4 lines can be either CF4+ or CF4 - , depending 
on the values of B and c. The open regions are parts of the orbit of CF2, the others 
all being inside the axes. While rotations act naturally in AEF-space, their action 
in DEF-space is more complicated. Rotations acting here on CF4 sweep out the two 
branches of the quartic surface D2(E2 + F 2 ) = (E2 - F2)2 . We recall that a rotation 
acting through an angle 8 clockwise about the A-axis in AEF-space, acts through an 
angle 20 counterclockwise about the line {B = C, D = 0} in BCD-space. 

Now, at each point x of our 3-manifold M, the sectional curvature K has a certain 
symmetry and the curvature tensor R lies in a certain SO\-orbit in Q(/\ TM). We 
shall call this latter the orbit type of R at x. As a first simple result, we observe 

Theorem 5.1. The SCS is constant if and only if either the orbit type of R is 

constant or varies between CF2 and CF3 Z2 on connected M. 

One now can read information on how the SCS and orbit type can vary from 
Figures 1-3. As an example, we state 

Proposition 5.2. If a smooth curve connects a point with SCS of P 0 2 to a point 
with SCS ofPO\, then there exists either a point of constant curvature or a relatively 
open set with SCS of Z2 © Z2 along the curve. 

On the other hand, 

Proposition 5.3. If a smooth curve connects a point with SCS of PO\ to a point 
with SCS of Z2 and R of CF3, then there need be no points on the curve with any 
other orbit type of R. However, there will be a last point with SCS of PO\. 

For warped products, we note 

Theorem 5.4. In a connected warped product A x r E, if there are no points of 
constant curvature, then A2 < Ai or Ai < A2 everywhere. 
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Corollary 5.5. In a connected warped product A x r E, the open sets {A2 < Ai} 
and {Ai < A2} are separated by a closed set of points of constant curvature. 
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