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VASILE STAICU, Évora 

(Received December 31, 1992) 

1. INTRODUCTION AND PRELIMINARIES 

Throughout this paper Rq denotes a real g^-dimensional Euclidean space with norm 
| • |, M a separable metric space, Q the square I x I with I = [0,1]. Let F be 
a multifunction from Q x Rq x M to the nonempty compact subsets of Rq. Let 

\(x,y) = a(x) + P(y) — a(0), where a and (5 are continuous functions from I to Rq 

satisfying a(0) = /3(0). 
Under suitable assumptions on F , we consider the Darboux problem for hyperbolic 

differential inclusions of the form 

juxy(x,y) e F(x,y,u(x,y),v), 
A,M \ u(x, 0) = \(x, 0), u(0, y) = A(0, y). 

Denote by ?7(\,u) the solution set of (D\^). We prove that if F satisfies (among 
other assumptions) a Lipschitz condition with respect to u, then 3?(\,/u,) is a retract 
of a convex subset of a Banach space. Furthermore, the retraction can be con­
structed as to depend continuously upon (A,/i). From this it follows that 3?(\,u) 
is contractible in itself, and that the multifunction (\,u) —> ^(\,u) admits a con­
tinuous selection. Finally it is shown that any two continuous selections of this 
multifunction can be joined by a homotopy with values in £?(\,u). 

Contributions to the study of the topological structure of the solution sets to 
hyperbolic differential equations or inclusions of the form (D\^) can be found in 
Gorniewicz and Pruszko [6], Teodoru [12], Staicu [11]. In particular, in [6] it is 
shown that the solution set of (D\yfl) with F single valued is an Rs-set. Similar 
problems for other types of differential equations or inclusions have been studied by 
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many authors, including Himmelberg and Van Vleck [9], Cellina [3], Deimling [4], 
Papageorgiou [10]. 

2 . NOTATION AND PRELIMINARIES 

Let Z be a metric space with distance dz. For a € Z and B a nonempty subset 
of Z, we put dz(a,B) = inf dz(a,b). We denote by ¥?(Z) the space of all nonempty 

beB 
closed bounded subsets of Z, endowed with the Hausdorff metric 

HZ(A,B) = m a x { s u p d z ( a , H ) , supd z (b ,A )} , A,Betf(Z). 
^ aeA beB J 

Let Y be a measurable metric space with O-algebra si and let Z be a separable 
metric space. A multifunction F: Y -> ¥>(Z) is called measurable (see Himmel-
berg [8]) if {y € V | F(y) D L> ^ 0} G si for every closed subset L> of Z. The Borel 
a-algebra of Z is denoted by 3&(Z). In the sequel Q, as measurable space, is given 
the a-algebra -£? of the Lebesgue measurable subsets of Q. 

We denote by C the Banach space of all continuous functions u: Q —> Uq, equipped 
with the norm \\u\\c = sup \u(x,y)\. Given a continuous strictly positive function 

{x,y)eQ 

a: Q -> U, we denote by L1 the Banach space of all (equivalence classes of) Lebesgue 
measurable functions a: Q -> Uq, endowed with the norm 

(2.1) |M|Li = II a(x,y)\a(x,y)\dxdy. 

Furthermore, by V we mean the linear subspace of C(Q, Uq) consisting of all A G C 

such that there exist continuous functions a: I -> Uq and (5: I -> Uq, with a(0) = 
/3(0), satisfying X(x,y) = a(x) -f (3(y) — a(0) for every (x,y) G Q. Observe that V, 

equipped with the norm of C, is a separable Banach space. 
In the sequel, when a product Z = Z\ x . . . x Zn of metric spaces Zi, i = 1 , . . . , n, 

is considered, it is assumed that Z is given the metric max dz{(xi,yi), where 

(Xi,.. .,Xn), ( H I , - . . , 2 /n ) € Z . 

Following Hiai and Umegaki [7], a set K C L1 is called decomposable if for ev­
ery u,v € K and A G .if we have IZXA -f ^XQ\A ^ K, where XA stands for the 
characteristic function of A. We set ^ (L 1 ) = {X G ^ (L 1 ) | K is decomposable}. 

Let T be a Hausdorff topological space. A subspace X of T is called a retract of 
T if there is a continuous map (D: T -> K such that (D(x) = x for every x € X. 

In order to treat problem (D\^) we introduce the following 
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Assumption (A). The multifunction F: Q x Rq x M -> tf(Rq) satisfies: 
(ai) F is JSf 0 &(Uq x M)-measurable, 
(02) for each (x,y,u) £ Q x Uq the multifunction a —>• F(x,y,u,ji) is Hausdorff 

continuous on M, 
(03) there exist positive integrable functions h: Q —> R and k: Q -» R such that 

HRc/ (F(x,y,u,fi), {0}) ^ h(x,y) for every (x,y,u,u) e Q x Rq x M, 

HRq(F(x,y,Ui,n),F(x,y,u2,u)) ^ k(x,2/)|iii - u 2 | for every (x,y,Ui,u) 

eQxUq x M, i = 1,2. 

For (x, y) £ Q and £ > 0, we put: 

Q(x,y) = [0,x] x [0,u], iJ(x,j/) = [x, 1] x [u,l], 

P(x,y;s) = [x-e,x + e]x[y-e,y + e]. 

For (A,<J) G V x L1, consider the following Darboux problem 

(u x y (x ,u ) = rj(:r,u), 

\ tx(x,0) = \(x,0), u(0,y) = \(0,y). 

Definition 1. Let (\,cr) G V x L1. The function u G C given by 

u(x, y) = A(x, y)+ <Kf i */) d£ dr7 f o r (x^ 2/) € Q» 
^ Q ( * . y ) 

is said to be solution of (C\,a). 

Clearly (C\t(r) has a unique solution which, in the sequel, will be denoted by uXy(T. 

Definition 2. Let (A) be satisfied. Let (\,fi) eVxM. A function u G C is 
said to be solution of (D\^) if there exists a function <J G L1 such that: 

<r(-c,i/) G F(x,y,u(x,y),n) for (x,u) G Q a.e., 

u(x, 2/) = A(rr, y) + <J(£, n) d£ dn for every (x, y) G Q. 
JjQ(x,y) 

We denote by &(\,u) the solution set of (D\^), i.e. the set of all solutions of 

Proposition 1. Let k: Q -> R be a positive integrable function. Then there 
exists a continuous strictly positive function a: Q —> R which, for each (x,u) G Q, 
satisfies 

(2.2) / / *(£, ^a fo 77) d£ d77 - J (a(x, y)-l). 
JjR(x,y) Z 
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P r o o f . For n e N set xt- = i/n, i = 0 , 1 , . . . ,n. Fix n e N so that 

2k(£,n)d£dn < 1, i = 1,2, . . . , n . 
/ ! l[xj_i,Xi]x/ 

By using the Banach-Caccioppoli fixed point theorem, it is easy to show that there is 

a continuous strictly positive function an : [xn_i, xn] xl -> R satisfying (2.2) (with an 

in the place of a) for every (x, y) £ [xn_i, xn] x I. Then, recursively, one can construct 

continuous strictly positive functions at-: [xi-\,Xi] x I —•> R, i = 1, 2 , . . . ,rc — 1, 

satisfying 

/ / , 
*(£. ^ R ( £ , т?) d£ drl = - (UІ(X, y) - û.i+1 (xг, y)), 

[x,x,]x[з/,l] Z 

for every (x,y) _ [x;_i,x;] x J. Define a: Q -+ R by a(x,y) = X) ai(%,y) Xu{(x,y), 
i=i 

where Ui = [xo,xi] x I and U, = (xt-_i,x;] x J, i = 2,. . . ,n. It is routine to verify 
that the function a is continuous, strictly positive, and that a satisfies (2.2) for every 

(x,y) G Q. This completes the proof. • 

Proposition 2. The map T:VxLl-+C given by T(X,a) = ux'a, where ux^ 

is the solution of (CA,<T), is linear and one-to-one. 

P r o o f . Clearly T is linear. To show that T is one-to-one, suppose that 

P(Ai,Or) = F(A2,cr2) for some (Az-,O-t) G V x L1, i = 1,2. This implies Ai = A2 and 

thus, setting a = Or — cr2, we have 

(2.3) / / O(£, n) d£ dr? = 0 for every (x, y) <E Q. 
JJQ(X,V) 

Let L be the set of all Lebesgue points of a belonging to the interior of Q, and 

observe that Q \ L has Lebesgue measure zero. Let (£,n) G L be arbitrary. For 

e > 0 sufficiently small, we have 

(2.4) O(£,T7) = - ^ / / (O(e,r])-O(x,y))dxdy + - ^ / / O(x,y)dxdy. 
4 ^ J Jp(Z,>n;e) 4 £ JJP(Z,V\£) 

The first integral vanishes as £ —> 0 by virtue of a result from [5, p. 217]. The second 

one is zero, as consequence of (2.3) and of the equality 

/ / O-(x,y)dxdy= / / O(x,y)dxdy+ / / O(x,y)dxdy 
J Jp(Z,<n;e) J JQ(£+e,T7+e) J JQU-e.rj-e) 

- / / O(x,y)dxdy- / / O(x,y)dxdy. 
J JQ(S-e,n+e) J JQU+e,r?-e) 

Letting 5 -+ 0, (2.4) gives a(£,n) - 0, thus Oi = O2. Hence (\\,o\) = (A2,O2), which 

implies that _"" is one-to-one. This completes the proof. • 

110 



3. MAIN RESULTS 

Let assumption (A) be satisfied. Let (\,fi,cr) G V x M x L1. Let ux'a: Q -> Rq 

be the solution of (CA,<x)- We put 

(3.1) y(\,fi,a) = {geLl \ g(x,y) G F(x,y,ux^(x,y), u), (x,y) G Q a.e.}, 

(3.2) ^(A,/ /) = {OGL 1 |OGr(A, / i ,O )} . 

Observe that y(\,[x,o) is a decomposable closed bounded subset of L1, thus (3.1) 
defines a multifunction y \ V x M x L1 -> ^ (L 1 ) . 

Furthermore, set 

IV = {u G C | u = uA 'a for some (A, a) G V x L1}. 

By Proposition 2, for each ix G W there is one and only one (A, a) G V x L1 such that 
u =- wA'CT. In view of that, we write ux,a to denote an arbitrary member of W. Let 
k be the positive integrable function occurring in assumption (A). By Proposition 1, 
there is a continuous strictly positive function a: Q -» R satisfying (2.2) for every 
(x,y) G Q. With this choice of a, for arbitrary ux,(X G W we set 

(3.3) l l « A ' lw = l | u A , l c + IM|z.i, 

where ||O"||Li is given by (2.1). By using Proposition 2, it is easy to check that (3.3) 
defines a norm on W and that, under this norm, TV is a Banach space. 

For A G V, set 

W(\) = {u G TV | u(x, 0) = \(x, 0) for x G / , u(0,u) = A(0,y) for y G I}. 

We observe that TV (A) is a nonempty convex closed subset of TV satisfying 

2T(\, u) C TV(A) for every fie M. 

Theorem 1. Let assumption (A) be satisfied. Let G = {(A, //, u) G V x M x TV | 
(A,//) G V x M, u G TV(A)}. Then there exists a continuous function $ : G -> TV 
satisfying, for each (\, u) £ V x M, the following properties: 

(3.4) $(A, Li, u) G <^(A, /x) for every u G W(A), 

(3.5) $ (A, /x ,u)=u for every w G &(\,u). 

P r o o f . Let r : V x M x L1 -> L1 be defined by (3.1). 
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(i) y is Hausdorff continuous. To this end we prove first that t is Hausdorff 

lower semicontinuous. Suppose the contrary. Then there exist an e > 0, a sequence 

{(An,/in,crn)} converging to (A0,/io,oo) in V x M x L1, and a sequence {Dn} C L\ 

with Qn e y(\o,jJ>o,vo) for each n eN, such that 

(3.6) dLi (Qn, y(Xn,fin, crn)) ^ e for every n eN. 

For n e N define M n : Q -> ^(R*) by 

Mn(x,H) = F(x,y,uAn'£Tn(x,2/),/in) 

H BR, (Dn(:r, u), dR, (Dn(:r, j/), K(x, y, u
Xn'ffn (x, y), / /n))) , 

where, for a G R9 and r ^ 0, HR«*(a,r) = {.r G Uq \ \x - a\ < r} . As Mn is 
measurable, there exists a measurable selection Qn e 'ry(An,/in,crn) such that 

\Qn(x,y) - Qn(x,y)\ =dRq(Qn(x,y), F(x,y,uXn'an(x,y),/xn)) for (x,u) G Q a.e. 

From this, observing that Qn(x,y) G F(x,y,ux°'a°(x,y),^o), one has: 

/ / a(x,y)\Qn(x,y) - Qn(x,y)\dxdy 

= / / a(x,y)dR«(en(a;,2/), F(x,y,uXni<Tn(x,y),iin))dxdy 

^ I a(x,y)HR<1(F(x,y,uXo>a°(x,y),tio), F(x,y,uXn^an(x,y),fin))dxdy 

^ I a(x,y)HRq(F(x,y,uXn>an(x,y),nn), F(x,y,ux°>a°(x,y),iin))dxdy 

+ / / a(x,y)HRq(F(x,y,uXo>ao(x,y),fin), F(x,y,ux°>a°(x,y),iJio))dxdy. 

Denoting by wn(x,y) the function under the sign of the last integral, and using 

assumption (A) (a$), it follows that 

\\Qn-Qn\W < / / a(x,y)k(x,y)\uXn>an(x,y) - ux°'a°(x,y)\dxdy 

+ II wn(x,y)dxdy. 

Let n -» +oo. The first integral vanishes, for {uXn>an} converges to ux°'a° in C. 
Likewise does the second integral, because of the Lebesgue dominated convergence 
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theorem. Therefore, there is n0 G N such that \\gn - £n||Li < \e ior n ^ TIQ. A 

fortiori 

dLi{Qn^{\n^n,crn)) < r forn > n0 , 

which contradicts (3.6). Consequently ^ is Hausdorff lower semicontinuous. The 

proof that Y is Hausdorff upper semicontinuous is similar, and thus it is omitted. 

Hence Y is Hausdorff continuous. 

(ii) For every (A, Li, Or), (\,u,a2) G V x M x Ll, 

(3.7) HLi{Y(\,fi,a\),Y{\,u,a2))^^\\a\-a2\\Li. 

Indeed, let (\,fi,a{) G V x M x L1, i = 1,2. Denoting by uA'(Tl and uA'(T2 the 

solutions of (CA,<ri) and (OA,<-2), respectively, one has 

(3.8) \ux^(x,y)-ux^2(x,y)\<: [[ Wifov) " ^(^v)\ d£ drr, for (x,y) G Q. 
JJQ(x,3/) 

Let Q\ G Y{\,/j,,a\) be arbitrary. Take O2 G Y(\,u,a2) so that 

|0i(z.y) - £2(2,y)| =dRq(^i(x,y) , F(x,y,uK<T2(x,y),u)), for (x,y) G Q a.e. 

From this, observing that Q\{x,y) G F(x,y,ux,ai(x,y),//), and using (A) (O3), (3.8) 
and Proposition 1, one has: 

IІ01-02ІI-И ^ // a(x,y)HRя(F(x,y,ux>ai(x,y),u), F(x,y,ux>a2(x,y),џ))dxdy 

^ II a(x,y)k(x,y)\ux'ďl(x,y)-ux>a2(x,y)\dxdy 

^ a(x,y)k(x,y)( // \a\(ţ,ri) - a2(ţ,rj)\dţdт]) dxdy 

JJQ ЧJJQ(x,y) ' 

= // WÁЬЧÌ) ~ °2&riҖ 11 k(x,y)a(x,y)dxdy)dţdri 

^ì II l^^^-^^rlЖ^^d^dry 

2 ll^i - ^ 2 | | L i . 

A fortiori, dLi(Q\,Y(\, u,a2)) ^ | | | a i - O-2||Li and thus, since Q\ G Y(\,u,a\) is 
arbitrary, 

sup dLi(Q\,Y(\,fi,a2)) ^ -||OT -O-2 | |Li. 
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From this, and the analogous inequality obtained by interchanging the roles of Q\ 

and Q2, (3.7) follows. 
Since the multifunction Y: V x M x Ll -* <2)(LX) satisfies (i) and (ii), by a result 

of Bressan, Cellina and Fryszkowski [2] there is continuous map ip: V x M x Ll -» L1 

satisfying, for each (A,/i) eVxM, the following properties: 

(3.9) (D(A, /i, a) e &(\, ii) for every a e L1, 

(3.10) (D(A,/i,O) = O for every O G ^"(A,/i). 

Let (A, n, u) e G be arbitrary. Since u e W(\), for some a e L1 we have u = ux>a, 

where ux'a is the solution of (C\,a). Hence (A,/i,u) = (A,/x, uXiCT). Let $(A,/i,HA,(T): 
Q -> R9 be given by 

(3.11) $(\,LL,ux>°)(x,y)=\(x,y)+ ff <p(\,u, *)(£, r/) d£dr/. 

As $(A,/i,iiA 'a) = u
A.v(A^>°-)i this equality defines a map 

$ : G -> VV. 

If will be shown that $ is continuous and that satisfies (3.4) and (3.5). 

The multifunction $ is continuous. To see this, let e > 0. For arbitrary 
(A0,/i0,wAo,(To), (A,/i,iiA'a) in G, we have 

(3.12) ||$(A,/x,uA'ff) - $(A0 ,/i0,uAo 'ao)| |w 

= ||MA^(A,^) _ MA0^(A0l/io^o)||c + \\^{\a,a) - ^(A0,/i0,O0)||Li 

^ | |A-A0 | |c7+ ( l + — )\\(p(\,fi,a) -(D(A0,/i0,O0)||Li, 
V ml 

where m denotes the absolute minimum of the continuous strictly positive function a: 

Q -•> R. As <.Dis continuous, there is 0 < o* < e so that ||<p(A,/i,O-)-(/?(A0,/i0,O0)||Li < 
e, provided that ||A - A0||c < <$, dM(n,uo) < 8 and ||O - O0||Li < S. Now, let 
(\,H,ux^) e G satisfy ||A - A0||c < S, dM(/j,,u0) < 6 and \\ux>a - ux°>a°\\w < 8. 

Since ||O--Ofj||Li ^ \\ux>a -ux°^0\\w < S, we have ||(D(A,/i,O)-<D(A0,/i0,O-0)||Li < e. 

Hence, from (3.12), 

\\§(\,u,uxn - $>(\Q,iL0,u
x^)\\w < <& + (l + i - )e < (2 + l ) £ j 

and thus 3> is continuous. 
Let (A,/i) e V x M. Let u e V(\) be arbitrary, thus u = HA'°" for some a e Ll. 

By (3.9), ^>(\,u,a) e &(\,\i) and hence u*M*>w) e ^(A,/x). As $(A,/^,wA'£T) = 

ux^(\^,a) a n d uA,a _ ^ i t follov^s that $(A,/i,H) e «^(A,/i), proving (3.4). 
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Let (A,/I) e V x M. Let u G 3?(\,p) be arbitrary, that is u = ux'a for some 

o G Y(\,p,o). Hence o G ^(\,y) and so, by (3.10), ^>(\,i±,o) — o. From this and 

(3.11) it follows that 

*(A, p, u) = $(A, /x, ttA'CT) = HA^A^CT) = ux* = u, 

proving (3.5). This completes the proof of the theorem. • 

Corol lary 1. Let assumption (A) be satisfied. Then, for each (\,p) G V x 

M, &(\,ii) is an absolute retract. Furthermore, 3T(\,u) is a contractible closed 

subspace ofW. 

P r o o f . By Theorem 1, S?(\, u) is a re trac t of VV(A). As W(\) is a convex subset 

of W, by a result of Borsuk [1, p. 85] &(\,p) is an absolute re trac t . Consequently 

^(\,p) is a contractible closed subspace of W, completing the proof. • 

The following result is of a type proved by Cellina [3]. 

Coro l lary 2. Let assumption (A) be satisfied. Then there exists a continuous 

map T: V x M -> W satisfying 

(3.13) r(A,/i) G <?(\,p) for every (A, u) eV x M. 

P r o o f . For A G V set u(\) = uX'°, where HA'° denotes the solution of (CA,O)-

Define r : V x M —> W by T(A,/i) = $(\,fj,,u(\)), where $ is the map constructed 

in Theorem 1. The function r is well defined, since u(\) G VV(A). Fur thermore, r is 

continuous, as \\u(\) — U(\Q)\\W = ||A — An||c f ° r >̂ ^o G V, and satisfies (3.13), by 

virtue of (3.4). Hence the result. • 

Corol lary 3 . Let assumption (A) be satisfied. For i = 1,2, let T{: V x M -> W 

be a continuous map such that T{(\, p) G 3r(\,p), for every (\, p) G V x M. Then 

there exists a continuous map h: V x M x I —>• W satisfying: 

(i) h(\,p,0) — Ti(\,p) and h(\, u,, 1) = T2(\,U), for every (\,p) £VxM, 

(ii) h(\, p, s) G 2T(\, \i) for every (A, /I, s) G V x M x I. 

P r o o f . Define li:VxMxJ-^TVby 

(3.14) ft(A,/x,s) = * ( A , / i , ( l - s ) r i ( A , / x ) + 3r2(A,/i)), 

where $ is the map cons truc ted in Theorem 1. By using (3.14), (3.5) and (3.4), it is 

rou t ine to see that h has the required properties. Hence the result. • 
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