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1. INTRODUCTION AND PRELIMINARIES

Throughout this paper R? denotes a real g-dimensional Euclidean space with norm
| |, M a separable metric space, @ the square I x I with I = [0,1]. Let F be
a multifunction from @ x R? x M to the nonempty compact subsets of R?. Let
Mz,y) = a(z) + B(y) — «(0), where a and S are continuous functions from I to R?
satisfying a(0) = £(0).

Under suitable assumptions on F', we consider the Darboux problem for hyperbolic
differential inclusions of the form

(D/\,u) {uzy(m’y) : F(x,’y,u(g;’y)’“)’

u(z,0) = A(z,0), u(0,y) = A(0,y).

Denote by (A, u) the solution set of (D) ). We prove that if F' satisfies (among
other assumptions) a Lipschitz condition with respect to u, then J (A, u) is a retract
of a convex subset of a Banach space. Furthermore, the retraction can be con-
structed as to depend continuously upon (A, u). From this it follows that (A, u)
is contractible in itself, and that the multifunction (A, u) =& Z(\, u) admits a con-
tinuous selection. Finally it is shown that any two continuous selections of this
multifunction can be joined by a homotopy with values in & (A, p).

Contributions to the study of the topological structure of the solution sets to
hyperbolic differential equations or inclusions of the form (D ,) can be found in
Goérniewicz and Pruszko [6], Teodoru [12], Staicu [11]. In particular, in [6] it is
shown that the solution set of (D, ,) with F single valued is an Rs-set. Similar
problems for other types of differential equations or inclusions have been studied by
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many authors, including Himmelberg and Van Vleck [9], Cellina [3], Deimling [4],
Papageorgiou [10].

2. NOTATION AND PRELIMINARIES

Let Z be a metric space with distance dz. For a € Z and B a nonempty subset
of Z, we put dz(a,B) = blgg dz(a,b). We denote by € (Z) the space of all nonempty

closed bounded subsets of Z, endowed with the Hausdorff metric

Hz(A, B) = max { sup dz(a, B), supdz(b, A)}, A, Be€(2).
a €

Let Y be a measurable metric space with o-algebra & and let Z be a separable
metric space. A multifunction F: Y — ¥(Z) is called measurable (see Himmel-
berg B))if {fy € Y | F(y) N D # 0} € & for every closed subset D of Z. The Borel
o-algebra of Z is denoted by #(Z). In the sequel Q, as measurable space, is given
the o-algebra . of the Lebesgue measurable subsets of Q.

We denote by C the Banach space of all continuous functions u: Q — R?, equipped

with the norm |lu||c = sup |u(z,y)|.- Given a continuous strictly positive function
(z,)€Q
a: Q@ — R, we denote by L' the Banach space of all (equivalence classes of ) Lebesgue

measurable functions o: Q — R?, endowed with the norm
(2.1) ol = [[ atewlot@)lda.
Q

Furthermore, by V we mean the linear subspace of C(Q, R?) consisting of all A € C
such that there exist continuous functions a: I — R? and §: I — RY, with «(0) =
B(0), satisfying A(z,y) = a(z) + B(y) — a(0) for every (x,y) € Q. Observe that V,
equipped with the norm of C, is a separable Banach space.

In the sequel, when a product Z = Z; x ... x Z, of metric spaces Z;,t=1,...,n,
is considered, it is assumed that Z is given the metric 11252(" dz,(z;,y:), where

(z1,.--,Tn), (Y1,---,Yn) € Z.

Following Hiai and Umegaki 7], a set K C L! is called decomposable if for ev-
ery u,v € K and A € ¥ we have uxa + vxg.a € K, where xa stands for the
characteristic function of A. We set 2(L') = {X € ¥ (L') | X is decomposable}.

Let T be a Hausdorff topological space. A subspace X of T is called a retract of
T if there is a continuous map ¢: T — X such that p(z) = z for every z € X.

In order to treat problem (D, ,) we introduce the following
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Assumption (A). The multifunction F': @ x R? x M — €' (R?) satisfies:

(a1) F is £ ® B(R? x M)-measurable,

(az) for each (z,y,u) € Q x R? the multifunction p — F(z,y,u, u) is Hausdorff
continuous on M,

(a3) there exist positive integrable functions h: Q@ — R and k: @ — R such that

HR" (F(z,y)U,H),{O}) S h(w,y) for every (xay,%ﬂ) € Q x R? x Mv

HR" (F(xvyvul»ﬂ)’F(%?J’U%N)) < k(ac,y)|u1 - U2| for every (‘T’yvuh /J’)
€EQxRIXxM, i=1,2.

For (z,y) € Q and € > 0, we put:

Q(I’y) = [O,:IZ] X [anL R(m,y) = [‘T71] X [yv 1]1
P(z,y;e) =[xz —e,x+e¢| x[y—¢c,y+el

For (A\,0) € V x L!, consider the following Darboux problem

(C)\,a) {ufy(z’y) =0(z,y),
u(z,0) = A(z,0), u(0,y) = A0,y).

Definition 1. Let (A, 0) € V x L!. The function u € C given by
u(z,y) =)\(:v,y)+//Q( )0(6,17) d¢dn for (z,y) € Q,
x’y

is said to be solution of (C) o).
Clearly (Cy ) has a unique solution which, in the sequel, will be denoted by u*-“.

Definition 2. Let (A) be satisfied. Let (A,u) € V x M. A function u € C is
said to be solution of (D, ,) if there exists a function o € L! such that:

o(z,y) € F(z,y,u(z,y),u) for (z,y) € Q ae,
u@w) = Mew)+ [[  olemdcdn for every (a9) € Q.
Q(z,y)
We denote by (A, u) the solution set of (Dy ), i.e. the set of all solutions of

(D).

Proposition 1. Let k: Q — R be a positive integrable function. Then there
exists a continuous strictly positive function a: @ — R which, for each (z,y) € Q,
satisfies

1
22) J]., KeneEmacin=; @@ -1,
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Proof. ForneNsetz; =i/n,i=0,1,...,n. Fixn € N so that

// 2k(&,m)dEdn < 1, i=1,2,...,n.
[zio1,zi]x1

By using the Banach-Caccioppoli fixed point theorem, it is easy to show that there is
a continuous strictly positive function a,: [Th—1,z,]xI — R satisfying (2.2) (with a,
in the place of a) for every (z,y) € [Tn—1,%n]xI. Then, recursively, one can construct
continuous strictly positive functions a;: [z;—1,2;] x I — R, i = 1,2,...,n — 1,

satisfying

1
J[ o kemaen dedn = 5 (asw) - s zip),
[zxi]x[y,1]

n

for every (z,y) € [zi—1,2i] x I. Define a: @ = R by a(z,y) = 3 ai(z,y) xv.(z,9),

1=

where Uy = [zg,z1] X I and U; = (z;—1,2:] X I, i = 2,...,n. It is routine to verify
that the function a is continuous, strictly positive, and that a satisfies (2.2) for every
(z,y) € Q. This completes the proof. O

Proposition 2. Themap T: V x L' — C given by T(\,0) = u™?, where u™°
is the solution of (C) ), is linear and one-to-one.

Proof. Clearly T is linear. To show that T is one-to-one, suppose that
T(A1,01) = T(A2,02) for some ()\;,0;) € V x L', i = 1,2. This implies A\; = A\, and
thus, setting o = 0, — g2, we have

. = f .
(2.3) //Q ol dgdn =0 forevery (2.9) €Q

Let L be the set of all Lebesgue points of ¢ belonging to the interior of @, and
observe that @ ~\ L has Lebesgue measure zero. Let (£,) € L be arbitrary. For
€ > 0 sufficiently small, we have

1
(24) o(&m) = 15 / /P o (e o) it / /P o ol dzdy

The first integral vanishes as € — 0 by virtue of a result from [5, p. 217]. The second
one is zero, as consequence of (2.3) and of the equality

// o(z,y)dzdy = // o(z,y)dzdy + // o(z,y)dxdy
P(&,mi€) Q(&+e,n+e) Q(€—e&,n—¢)
- // o(z,y)dzdy — // o(z,y) dz dy.
Q(&—¢,n+e) Q(&+e,m—¢)

Letting ¢ — 0, (2.4) gives 0(£,n) = 0, thus 01 = 02. Hence (A\1,01) = (A2, 02), which
implies that T is one-to-one. This completes the proof. O
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3. MAIN RESULTS

Let assumption (A) be satisfied. Let (A\,u,0) € V. x M x L. Let u»?: Q — R?
be the solution of (Cj ). We put

(3.1) YA\ p,0) ={0€ L' |o(z,y) € F(z,y,u™ (z,y), ), (z,y) €Q a.e.},
(3.2) F\p) ={eeL' |oe ¥\ uo)}

Observe that ¥ (), i, o) is a decomposable closed bounded subset of L', thus (3.1)
defines a multifunction ¥: V x M x L' - @(L!).
Furthermore, set

W={ueC|u=u"" forsome ()\o)€eV x L'}

By Proposition 2, for each u € W there is one and only one (\,0) € V x L! such that
u = u™?. In view of that, we write u»° to denote an arbitrary member of W. Let
k be the positive integrable function occurring in assumption (A). By Proposition 1,
there is a continuous strictly positive function a: @ — R satisfying (2.2) for every
(z,y) € Q. With this choice of a, for arbitrary u™ € W we set

(3.3) lu™llw = llu™llc + llolles,

where ||o|| L1 is given by (2.1). By using Proposition 2, it is easy to check that (3.3)
defines a norm on W and that, under this norm, W is a Banach space.
For A € V| set

W) ={ueW|u(z,0)=A(z,0) forzel, u(0,y)=A(0,y) forye€ I}
We observe that W () is a nonempty convex closed subset of W satisfying
T (A p) CW(A) for every p € M.

Theorem 1. Let assumption (A) be satisfied. Let G = {(\, p,u) € VX M x W |
(A p) € VXM, ue W(N}. Then there exists a continuous function ®: G - W
satisfying, for each (A, pu) € V x M, the following properties:

(3.4) S\, p,u) € T(\p) for every u € W(A),
(3.5) S\, p,u) =u for every u € I (\, ).

Proof. Let #:V x M x L' — L! be defined by (3.1).
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(i) ¥ is Hausdorff continuous. To this end we prove first that ¥ is Hausdorff
lower semicontinuous. Suppose the contrary. Then there exist an € > 0, a sequence
{(An, tin,0n)} converging to (o, po,00) in V x M x L', and a sequence {o,} C L',
with g, € ¥ (Ao, 1o, 00) for each n € N, such that
(3.6) dp1(0n, Y (Anylin,0n)) 2 € for every n € N.

For n € N define M,,: Q@ — ¥€(R?) by

Mn(z,y) = F(z,y,u™ " (2,y), n)
N Bgra (Qn(-'l', y),dR" (Qn(xa y)v F(Iv Y, u,\n’on (1‘, y)a /‘Ln)))7

where, for a € R? and r > 0, Bre(a,7) = {z € R? | |z —a] < r}. As M, is
measurable, there exists a measurable selection g, € ¥ (A,, fin,0n) such that

lon(2,y) — 8n(2,y)| = dre (0n(z,y), F(z,y,u*"(2,y),1n)) for (z,y) € Q ace.

Ao,

From this, observing that g,(z,y) € F(z,y,u**?°(z,y), o), one has:

[ atailentean - & el az
://Qa(z,y)dm(gn(x,y), F(z,y, 6% (2,y), ) da dy
S//Qa(x,y)HRa(F(x,y,u/\o,ao(m,y),uo), F(o, 5, 6™ (2, 5), i) dz dy
< //Qa(z,y)HRa (F(z,y,u™ " (z,9), tn), F(z,y, 02 (z,y), pn)) dz dy

+//Q a(z,y)Hpa (F(z,y, 47 (2,Y), tn), F(z,y,u > (z,y), po)) dz dy.

Denoting by wy,(z,y) the function under the sign of the last integral, and using
assumption (A) (a3), it follows that

lon = nllt < / /Q a(z, y)k(z, gl (2, y) — w0 (2, y)] dz dy

+//an(z,y)dzdy.

Let n — +00. The first integral vanishes, for {u*“"} converges to u**:?¢ in C.
Likewise does the second integral, because of the Lebesgue dominated convergence
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theorem. Therefore, there is ng € N such that ||g, — GnllLr < %e forn > ng. A
fortiori
€
dLl(Qn» V(Anyﬂnyan)) < 5 fornZno,

which contradicts (3.6). Consequently ¥ is Hausdorff lower semicontinuous. The
proof that ¥ is Hausdorff upper semicontinuous is similar, and thus it is omitted.
Hence 7 is Hausdorff continuous.

(ii) For every (A, u,01), (A, 1,02) € V. x M x L},

1
(37) }IL1 (/1/(’\31" 01), W(’\ﬂw 02)) < 5 ”01 - 02||L1'

Indeed, let (\,p,0:) € V x M x L', i = 1,2. Denoting by u** and u*?2 the
solutions of (C) +,) and (Cy,s,), respectively, one has

(3.8) [N (z,y) — w2 (2, )] < / / |01 (€,m) — 02(€,m)| A€ dn, for (z,9) € Q.
Q(z,y)

Let o1 € ¥ (A, 1,01) be arbitrary. Take g2 € ¥ (A, u,02) so that

lQl(:Evy) - QQ(Zyy)l = dR" (Ql(xay)v F(.’E,y,u)"az(.’lj,y), #))1 for (-’E,y) € Q a.e.

From this, observing that g (z,y) € F(z,y,u"(z,y), 1), and using (A) (a3), (3.8)
and Proposition 1, one has:

“Ql - Q?”L’ < //Q a(z,y)HRq (F(‘T7y7uA’al(x,y),u)7 F(I’y,u)\,dz(x’y),“)) d(Edy

< / / a(z, y)k(z, gl (2, y) — w7 (2, y)| dz dy
Q

< [ ewvr@n( [[ inm o midan) dray

=[] s —eaemi([[ k@ viate)dray) dcan
<3 [ lor(&m ~ oa(Emiate,m deen

1
=3 llor = o2z

A fOI'tiOI'i, dLl(Ql,V(A,,U, 02)) S %’”0’1 - 02”L’ and thus’ since 01 € ’1/(’\1/-%0'1) is
arbitrary,

1
sup dLl(le 7/()‘,#,02)) S o ”01 - 02”Ll‘
1€V (A,p,01) 2
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From this, and the analogous inequality obtained by interchanging the roles of g;
and g2, (3.7) follows.

Since the multifunction ¥: V x M x L' — 2(L!) satisfies (i) and (ii), by a result
of Bressan, Cellina and Fryszkowski [2] there is continuous map ¢: V x M x L' — L}
satisfying, for each (\, ) € V x M, the following properties:

(3.9) o\, it,0) € F(\,u)  for every o € L,
(3.10) e\ u,0) =0 for every o € F(\, ).

Let (A, i, u) € G be arbitrary. Since u € W()), for some ¢ € L' we have u = u*7,
where u™7 is the solution of (Cy ,). Hence (A, p,u) = (A, g1, u™?). Let ®(\, p, u7):
@ — R? be given by

(B11) B0 mu ) (5y) = Azy) + / /Q A moEmdedn

As ®(\, p, ur?) = u?(M19) | this equality defines a map
. G- W

If will be shown that @ is continuous and that satisfies (3.4) and (3.5).
The multifunction ® is continuous. To see this, let ¢ > 0. For arbitrary
(0, Ho, w70, (A, i, u™7) in G, we have

(312)  [|®(\, p,u™?) = @(Xo, o, u %) |lw
_ “ux.so()\.u.a) _ qu,‘P()\o,#osﬂo)”C + (A, 1y 0) — ©(Xo, o, 00)]| L1

1
S ”’\ - /\OHC + (1 + E) ”SO(’\) /,I,,U) - LIO(A01/J'O3O'O)”L17

where m denotes the absolute minimum of the continuous strictly positive function a:
Q — R. As ¢ is continuous, thereis 0 < § < € so that ||@(X, p, o) — (Ao, to, o) || <
€, provided that ||A — Xollc < 9, dm(u, o) < 6 and |l — goflr < 6. Now, let
(A, u™?) € G satisfy |A = Xolle < 8, da(p, po) < 8 and |Jud? — uroo0 |y < 6.
Since ||o — g0l 1 < |Jut? —uroo0||y < &, we have |[(A, 1, 0) — (Mo, po, 00)|[ L1 < €.
Hence, from (3.12),

1 1
Aoy _ 20,00 — -
@, pyu™?) — ®(Xo, o, u7)|lw < 6 + (1+m)6< (2-%-m>s,

and thus @ is continuous.

Let (A, i) € V x M. Let u € V(\) be arbitrary, thus u = u*° for some o € L.
By (3.9), p(A\, u,0) € F (A, 1) and hence urem) € F(\ p). As (N, pu,uM) =
ur?Mm9) and M’ = u, it follows that ®(\, u,u) € (A, i), proving (3.4).
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Let (\.pu) € V x M. Let u € F(\ p) be arbitrary, that is v = u™? for some
o € ¥ (A p,0). Hence o € F(A, i) and so, by (3.10), ¢(A, i,0) = 0. From this and
(3.11) it follows that

SO\, pyu) = BN,y ud?) = uhPmo) = M = g
proving (3.5). This completes the proof of the theorem. 0

Corollary 1. Let assumption (A) be satisfied. Then, for each (M, u) € V x
M, T (A, ) is an absolute retract. Furthermore, (A, u) is a contractible closed
subspace of W.

Proof. By Theorem 1, .7 (\,u) is aretract of W(X). As W(\) is a convex subset
of W, by a result of Borsuk [1, p. 85] 7 (A, 1) is an absolute retract. Consequently
T (A, i) is a contractible closed subspace of W, completing the proof. O

The following result is of a type proved by Cellina [3].

Corollary 2. Let assumption (A) be satisfied. Then there exists a continuous
map 7: V x M — W satisfying

(3.13) T(A\ 1) € T (A n) for every (\,u) € V x M.

Proof. For A € V set u(\) = u™°, where u™° denotes the solution of (Cy ).
Define 7: V. x M — W by 7(\, u) = ®(\, u, u(N)), where @ is the map constructed
in Theorem 1. The function 7 is well defined, since u(\) € W(\). Furthermore, 7 is
continuous, as [|[u(A) — u(Ao)|lw = |1A — Xollc for A, Ao € V, and satisfies (3.13), by
virtue of (3.4). Hence the result. O

Corollary 3. Let assumption (A) be satisfied. Fori =1,2,let 7;: V. x M - W
he a continuous map such that 7;(\, u) € T (A, u), for every (\,u) € V. x M. Then
there exists a continuous map h: V x M x I — W satisfying:

(i) h(\, 1,0) = 1 (A, 1) and h(\, p, 1) = 72(A, u), for every (\,u) € V. x M,

(ii) h(\, pu, 8) € T (N, ) for every (A, u,s) €V x M x I.

Proof. Define h: V x M xI — W by

(3'14) h(’\vl"?s) = (I)(’\» Ky (1 - S)Tl ()\,M) + STz(/\,,u)),

where @ is the map constructed in Theorem 1. By using (3.14), (3.5) and (3.4), it is
routine to see that h has the required properties. Hence the result. O
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