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PERRON-TYPE INTEGRATЮN ON n-DIMENSЮNAL INTERVALS 

AND ITS PROPERTIES 

JlŘÍ JARNÍK a n d JAROSLAV KURZWEIL, P r a h a 

(Received September 29, 1992; enlarged version June 1, 1994) 

0 . INTRODUCTION 

The O-integral of / over an interval I is defined as a limit of a special type of 
integral sums of the type J2i f(^i)m(Ji)'i Q - s a function of the space variable and a 
real variable and it is used in a regularity condition whose role is to restrict the set of 
couples (U, Ki) which are admissible for the use in the integral sums. The definition 
of the O-integral and its elementary properties are described in Section 1. The Cousin 
lemma guarantees the existence of partitions with the desired properties thus making 
the definition of the O-integral correct; it is formulated in a rather general form (the 
proof is given in Section 7). If it does not impair readability of the paper the proofs 
are only indicated. 

If pointwise convergence of a sequence of O-integrable functions fj to a function 
/ is assumed then the proof of a convergence theorem is almost immediate. Since 
convergence a.e. is more suitable for integration theory, the convergence theorem is 
adapted so that the convergence of fj to / a.e. is sufficient% 

Section 2 contains results on continuity and differentiability of the primitive of a 
O-integrable function; the primitive need not be continuous at the boundary of the 
integration interval and Theorem 2A is the best possible continuity result. Moreover, 
two forms of the regularity condition are shown to lead to the same concept of the 
O-integral (the technical part of the proof is given in Section 6); in this way the 
results obtained previously for either of these conditions are unified. 

In Section 3 primitives of D-integrable functions are characterized as additive in­
terval functions which are regularly differentiable a.e. and fulfil a supplementary 
condition on the set of points of nondifferentiability. 

This research was par t ly s u p p o r t e d by grant GA C R No. 201/94/1068 
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In Section 4 the strong O-integral is introduced by a change in the definition of the 
O-integral, and analogous results are proved for it as for the O-integral. The strong 
O-integral will be used in a subsequent paper. Namely, it will be proved that every 
strongly O-integrable function is the limit of a sequence of step functions in a suitable 
convergence. Therefore both convergence theorems from Section 1—with pointwise 
convergence and with convergence a.e.—are modified for the strong O-integration. A 
D-integrable function which is not strongly D-integrable is constructed in Section 5 
(with some rather natural restrictions on g). 

1. THE D-INTEGRAL AND ITS ELEMENTARY PROPERTIES 

Let n e N, a;, bi e R, a; < b; for i = 1, 2, . . . , n, I = [ai,bi] x . . . x [an ,6n], 

g: I x (0, oo) -» [0,1]. For t = (ti,...,tn) e Un we put ||£|| = max|£i|, for an 
i 

interval J = [ci,di] x . . . x [cn,dn] (with d < di) we put d(J) = max(d; — C{), 
i 

regJ = min(d; — Ci)/d(J) and call these quantities the diameter and the regularity 
i 

of J, respectively. For t e Rn, 0 < a we denote V(t,a) = {s e Un; \\s - t\\ ^ a}. A 

finite set A = {(tk, Jk); k = 1, 2 , . . . , / } (briefly A = {(t, J)}) is called a system (on 
I), if tk e Jk C I and the intervals Ji, Jk are nonoverlapping for i ^ k, i, k = 1, 
2, . . . , /. Let K be an interval, K C I. A system A is called a partition of K if 
\JJk = K. A function 6: I —•> (0, oo) is called a gauge. Let N C I. A system A is 
k 

called S-fine (g-regular, N-tagged) if J C V(t,S(t)) (regJ > g(t,d(J)), t e N) for 
(t, J) e A. If P, Q C Un, then C1P, In tP , ra(P), P\Q, P + Q denote the closure 
of P , interior of P , Lebesgue measure of P , difference of P and Q, symmetrical 
difference of P and Q, respectively. Throughout the paper it will be assumed that 

(1.1) for every gauge 5 and every interval K C I there exists a O~-fine 

O-regular partition A of K. 

The following version of Cousin Lemma introduces a very wide class of O's such 
that 1.1 holds. 

Lemma 1.1. Assume that 

(1.2) g(t,a) < 1 forte I, a > 0. 

Then (1.1) ho1ds. 

The proof is a modification of the proof of Proposition, [5], Section 2 and is 
postponed to Section 7. 
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Definition 1.2. A function / : I -> R is called g-integrable, if 

(1.3) there exists 7 G U such that for every e > 0 there is a gauge J such 

that 
- £ / ( í ) m ( J ) 7 ^ є 

for every 6~-fine O-regular partition A of I. 

The number 7 is called the g-integral of /. It is unique (cf. (1.1)) and will be denoted 

b y t e ) / , / -

N o t e 1.3. We have defined a O-regular system as a system A = {(t, J)} such that 

the inequality reg J > g{t, d(J)) is satisfied for every (t, J) G A. Let us call a system 

A O-regular* if reg J ^ g(t,d(J)) holds for every (t,J) G A, and let / be called O-

integrable* if (1.3) holds with "O-regular" replaced by "O-regular*". Evidently, every 

O-integrable* function is O-integrable as well, and the two integrals coincide. The 

converse implication also holds, see Proposition 2.2. 

N o t e 1.4. Let a: I x (0, 00) -> [0,1], a(t,a) ^ g(t,a) for all (t,a). Obviously 

any a-integrable function / is O-integrable (and (g) fjf = (a) Jj / ) . The problem to 

what extent the set of a-integrable functions depends on a was settled in [4] and [5] 

in the case that a does not depend on t. 

N o t e 1.5. If n = I, then reg J = 1 for any interval J and the O-integral reduces 

to the Perron integral (cf. [2]). 

If n ^ I, g = 0, then again the Perron integral is obtained (cf. [1], [2]). 

It follows that the O-integration is an extension of the Perron (Lebesgue) integra­

tion for any g (cf. [2]). 

N o t e 1.6. Let K\ be an interval, K\ C I. Then there are intervals K2, . •., Kr 

such that \J Ki = I and Ki, Kj are nonoverlapping for i 7-= j . 
i 

(i) Let g: K\ —> U. g is called O-integrable if (1.3) is fulfilled with / and "partition 

A of I" being replaced by g and "partition A of K\." 

(ii) Let / : I —> R be O-integrable, £ > 0 and let 6 correspond to e by (1.3). Let 

©1 and Q\ be rf-fine O-regular partitions of K\. Fix o'-fine O-regular partitions Hi of 

Ki, i = 2, 3, ..., r and put 

0 = 0 ! U H2 U . . . U H r , tt = ftx U H2 U . . . U H r . 

0 and H are J-fine O-regular partitions of I so that 

J2f(t)rn(J)-^2f(t)m(J) ^ 2є. 
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Since 

^2f(t)m(J)-J2f(t)m(J) 
e n 

= ^fWm(J)-^2f(t)m(J), 
0! fl­

it may be concluded that the restriction / | is D-integrable and (g) fK f\ (briefly 

(g) fK f) exists for any Ki c I. 

Put F(L) = (g) fL f for any interval L C I. F is called the primitive of / . F is 

an additive interval function (on I). 

In a similar manner the following result can be proved: 

Lemma 1.7 (Saks, Henstock). Let f: I -> R be g-integrable, F being its primi­

tive. Let s > 0 and let a gauge 8 correspond to e by (1.3). Then 

X (/(í)m(J) - F(J)) ^ є, 

~]\f(t)m(J)-F(J)\^2є 

A 

for any 8-fine g-regular system A = {(t, J)} . 

Lemma 1.8. Let N C I, m(N) = 0, <D: 1V ->> R, e > 0. Then there is a gauge 8 

such that ^2A \(f(t)\m(J) ^ e for every 8-hne N-tagged system A. 

S k e t c h of p r o o f . Put Nx = {t <E N; \(f(t)\ < 2}, N{ = {t e N; 21'"1 ^ 

\(p(t)\ < 21}, i = 2, 3, . . . . There exist open sets G{ C Rn such that N{ c G{, 

m(Gi) -̂  2 - 2 t , i = 1, 2, The assertion of the lemma holds for any gauge 6 

fulfilling V(t,8(t)) C Gi for t e N{, i = 1, 2, .... • 

Proposition 1.9. Let f: I -> R be g-integrable, F being its primitive. The set of 

g: I -> R such that g = f a.e. is the set of such g-integrable functions the primitive 

of which is F. 

P r o o f follows from the following observations: 

(i) Let / : I -> R, / = 0 a.e. Then / is D-integrable and (g) fKf = 0 for every 

interval K C I. 

(ii) Let / : I -> R be D-integrable, F being its primitive. Let F(K) = 0 for every 

interval K C I. Then / = 0 a.e. 

(i) follows immediately from Lemma 1.7. 
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If (ii) does not hold, then there exist 77 > 0 and A C I such that \f(t)\ ^ rj for 

t e A and me(A) > 0. Put e = r/me(A)/4 and let S be a gauge which corresponds 

to e by (1.3). The family {V(t,o); t € A,o > 0} is a covering of A in the sense 

of Vitali. Therefore there is a o'-fine A-tagged system A = {(tk,V(tk,Ok))', k = 

1,2,. . . , /} such that J2k m(V(tk,ok)) ^ 2me(A)/3, hence £ f c \f(tk)\m(V(tk,ok)) > 

2mne(A)/3. Since V(t,o) are cubes, A is O-regular. Since F(K) = 0 for every 

interval K C I, Lemma 1.7 implies that Ylk \f(tk)\m{V(tk,Ok)) ^ 2e = nme(A)/2, 

a contradiction which completes the proof of (ii). D 

Theorem 1.10. Let f: I —> U be g-integrable, F being its primitive, NCI, 

m(N) = 0. Then 

(1.4) for every £ > 0 there is a gauge uo such that X]A 1^(^)1 ^ £ ^or 

every uj-hne g-regular N-tagged system A. 

P r o o f follows by Lemmas 1.7 and 1.8. D 

Theorem 1.11. Let fj: I —> R be g-integrable, Fj being their primitives, for 

j G N, / : I -> IR. Assume that 

(1.5) for every e > 0 there exists a gauge (5 such that 

A 

for every S-hne g-regular partition A of I and every j £ N 

and 

(1.6) fj(t)^ f(t) for j-> 00, t el. 

Then f is g-integrable and 

(1.7) Fj(K) -> F(I0 for j -> 00 and any interval K C I, F being the 
primitive of f. 

P r o o f is based on the observation that by (1.5) we have 

(1.8) |E/i((HJ)-E/^sHL) ^ 2є 

for any (5-fine o-regular partitions A = {(t, J)}, 0 = {(s,L)} and (1.6) implies that 
(1.8) holds with fj replaced by /. D 
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If convergence problems are considered, Definition 1.2 corresponds to the point-
wise convergence of the sequence of integrands. The characterization of O-integrable 
functions given in the next theorem corresponds to the convergence a.e. 

Theorem 1.12. Let f: I -> U and let F be an additive interval function on I. 

The following two conditions are equivalent: 

(1.9) / is Q-integrable and F is its primitive, 

(1.10) there exists N C I, m(N) = 0 and for every £ > 0 there exists a gauge d such 
that 

(i) ^2Q \f(t)m(J)-F(J)\ ^ £ for every tf-fine Q-regular (I\N)-tagged system 

a = {(t,j)}, 

(ii) ^2e |F(L) | ^ £ for every d-fine Q-regular TV-tagged system 0 = {(s, L)}. 

P r o o f . (1.10) follows from (1.9) by Lemma 1.7 and Theorem 1.10, on the other 

hand (1.9) follows from (1.10) by Lemma 1.8. • 

Theorem 1.13. Let gj : I —> U be Q-integrable, Gj being their primitives, j G N, 
g: I —> U. Assume that there exists N C I, m(N) = 0 and 

(1.11) for every £ > 0 there exists a gauge d such that 

(i) E Q \9j{t)m(J) - Gj(J)\ ^ £ for every d-fine Q-regular (I \ N)-tagged 

system ft = {(t, J)} and j G N, 

(ii) ^ @ |Gj(L)| ^ £ for every ti-fine Q-regular N-tagged system 0 = {(s, L)} 

and j G f̂J 

and 

(1.12) gj(t) -> g(t) forj^>oo,teI\N 
hold. Then g is Q-integrable and 

(1.13) Gj(K) -> G(K) for j -> oo and any interval K C I, G being the primitive of g. 

P r o o f . Let (1.11) and (1.12) hold and let e > 0. Put £ = e/2. Let tf be a 
gauge associated to £ by (1.11). Put fj(t) = g5(t), f(t) = g(t) for t G I\N, j eM 
and fj(t) = 0, f(t) = 0 for t G N, j G N. fj is O-integrable and Gj is its primitive 
by Proposition 1.9. Let A = {(t,J)} be a $-fme D-regular partition of I. Putting 
n = {(t,J) e A;te I\N},S = {(t,J) e A; te N} we obtain from (1.11) that 

Ì^ШmW-GjiI) śє 

for j € N. Moreover, (1.6) holds. Theorem 1.11 implies that / is D-integrable and 
that Gj(K) -> G(K) for j -> oo and any interval K C I, G being the primitive 
of / . The proof is complete, since g — f a.e. so that g is O-integrable and G is its 
primitive. • 
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2 . CONTINUITY, DIFFERENTIATION, MEASURABILITY 

It will be assumed in this section that 

(2.1) limsupo(^O-) < 1 for t e I. 
0-->O+ 

By (2.1) there exists a gauge 6 such that g(t,o) < 1 for t e I, o ^ 6(t). Therefore it 
may be assumed without loss of generality that (1.2) holds. 

Theorem 2.1. Let f: I -> R be g-integrable, F being its primitive. Then F is 

continuous at any interval L C Int I in the following sense: for every e > 0 there 

is rj > 0 such that \F(K) - F(L)\ ^ e for every interval K C I, m(K + L) ^ t) 

satisfying the following condition: 

if 

I = [ai,bi] x . . . x [an ,6n],L = [cr,di] x . . . x [cn ,dn],K = [uuvi] x . . . x [un,vn] 

then 

C j —• (J*i —-* t*"j — a ^ , 

di = bi =0 V{ = bi. 

P r o o f is a modification of the proof of Theorem 2.5, [3]; it is given in Section 6. 
Note that if L C Int I then we have continuity in the current sense. 

The next proposition was announced in Note 1.3. 

Proposition 2.2. If a function g: I x (0, oo) —» (0,1) satisfies (1.2) and 

(2.2) og(t, o) is an increasing function of the variable o for every t G I, 

then every g-integrable function f is g-integrable* as well and the two integrals 
coincide. 

We need 

Lemma 2.3. Let I = [ai,bi] x . . . x [an,bn] and let S be a gauge satisfying for 

every t = (t\,..., in) G I the condition 

(2.3) if dj < tj then cij < tj — 5(t), 

iftj < bj then tj + 6(t) < bj. 
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Let (t,J) be a pair such that t G J C V(t,5(t)) HI and r eg J ^ g(t,d(J)). Let f be 
g-integrable. 

Then either reg J = 1 or for every A > 0 there is an interval K C J sucii that 
(i) * G K, 

(ii) m(J) - m(K) < A, 
(iu) \F(J) - F(K)\ < X, 
(iv) regK>g(t,d(K)). 

P r o o f . Let J = [ci,<Ii] x . . . x [cn,dn], reg J < 1, A > 0. By shortening suitably 
all the intervals [cj,dj] with dj — Cj = d(J) either by increasing Cj or decreasing dj 
and leaving the others unchanged, we can obtain an interval K satisfying (i), (ii). 
By virtue of (2.3) and Theorem 2.1 we can do it in such a way that (iii) holds, too. 
Since reg J < 1, the shortest edge of J was not changed when passing from J to Iv; 
we can assume that it is again the shortest edge of K. Denoting its length by T/J, we 
have 

, ( M ( J ) ) ^ e g J = ^ < ^ = regtf, 

hence 
V> ^ d(J)g(t,d(J)) > d(K)g(t,d(K)) 

by virtue of (2.2) since d(K) < d(J) and (iv) immediately follows. • 

P r o o f of P r o p o s i t i o n 2.2. Given e> 0, let us find a gauge S correspond­
ing to e by the definition of the O-integral of / and satisfying (2.3). Let A = {(t, J)} 

be a J-fine o-regular* partition, J = {J; (t, J) G A for some t G I}. Choose 
A = e[\J\(mf + 1)]_ 1 where m/ = max{\f(t)\; (t,J) G A for some J} and for ev­
ery J G J find K by Lemma 2.3. Since (iv) from Lemma 2.3 holds, the system 
0 = {(t,K)} is D-regular and the Saks-Henstock Lemma 1.7 yields 

Y,\S(t)m(K)-F(K)\<2e. 
e 

Further, 

£ \f(t)m(J) - F(J)\ < £ \f(t)m(J) - f(t)m(K)\ 
A 

+ £ \f(t)m(K) - F(K)\ + £ \F(K) - F(J)\ 
0 

^ A ^ | / ( 0 | + 2e + A | J | < 4 e , 

which proves the o-integrability* of / . The fact that the two integrals coincide is 
selfevident. • 
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Definition 2.4. Let 0 < a < 1, s G I, g G R and let G be an additive interval 

function in I. G is said to be a-regularly differentiate to g at s, if for every e > 0 

there is 77 > 0 such that 

\G(J)-gm(J)\^em(J) 

for every interval J C V(s, 77) fl I with 5 € J, reg J ^ a. 

Theorem 2.5. Let 0 < / 3 < a < l . s G I , a G R and iefc an additive interval 

function G be a-regularly differentiable to g at s. Then G is (3-differentiable to g 

at s. 

See [4], Section 2, Theorem 1. 

Definition 2.6. Let G be an additive interval function in I, g G R. G is said 

to be regularly differentiable to g at s, if G is a-regularly differentiable to g at 5 for 

some a, 0 < a < 1. Denote by Do the set of such 5 G I that there is # G R such that 

C7 is regularly differentiable to g at s; since # is unique, we will write G'(s) instead 

of g in such a case. 

Corollary 2.7. Let F be an additive interval function in I, s G I, / (s ) G R. 

Assume that F is not regularly differentiable to f(s) at s. Then there exist £(s) > 0 

and a sequence of intervals Lk(s), k G N such that 

(2.4) s G Ljfc(s) for k G N, d(Lfc(s)) -> 0, 

reg L/c (s) -> 1 for k -» 00 and 

|/(s)m(Lfc(s)) - F(L,(s))| ^ £(5)m(Lfc(s)) 

for k G N. 

Theorem 2.8. Let F be the primitive of a g-integrable f: I -> R. Then 

(2.5) F is regularly differentiable to f(t) at almost every t G I. 

P r o o f . Let A be the set of t G I such that F is not regularly differentiable to 

f(t) at t and assume that m e(A) > 0. Let £(s) and Lk(s) have the same meaning 

as in Corollary 2.5. For r > 0 put A(r) = {s G A; £(s) ^ r } . Obviously there 

is 77 > 0 such that me(A(n)) > 0. Put e = r/me(,4(77))/8 and let 8 correspond 

to s by (1.3). For s G A(n) there exists p(s) G N such that Lfc(s) C V(s,6(s)), 

regLk(s) ^ Q(S,d(Lk(s)))> k = p(s), p(s) + 1, p(s) + 2, . . . . The family B = {L^s ) ; 

s G A(77),k = p(s),p(s) + l , . . . } is a covering of A(n) in the sense of Vitali. Therefore 
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there exists a system A{(£, J)} such that each (c, J) is equal to some (s, Lk(s)) and 
^2Am(J) ^ me(A(?7))/2. Moreover, A is (5-fine and O-regular and 

£ \f(t)m(J) - F(J)\ > rj ^2 m(J) > 4s, 
A A 

which contradicts Lemma 1.6. • 

Theorem 2.9. Let / : / -» R be g-integrable, F being its primitive. Then f is 
measurable. 

P r o o f . If t e / , j e N, V(t,l/j) C / , put £(*) = F(V(t,l/j))(j/2)n. Then /,• 
is continuous and 

(2.6) fj(t)~+j(t) f o r j - > r c a.e. 

by (2.5). • 

No te 2.10. If (2.1) is dropped and if (1.2) and 

(2.7) lim sup g(t, r) ^ g(t, a) t e / , a > 0 

are assumed, then Theorem 2.1 holds as well (cf. Note 6.2 and Comment 6.3 bellow). 
Since (2.6) may be proved directly, it follows that / is measurable. 

3 . DESCRIPTIVE CHARACTERIZATION OF D-INTEGRABLE FUNCTIONS 

It will be assumed in this section that 

(3.1) X(t) =\immig(t,a) >0 for t e I 

and that (1.1) holds. 

Theorem 3.1. Let G be an additive interval function in I, m(I\DG) = 0 (cf. Def­
inition 2A). Assume that 

(3.2) for every £ > 0 there exists a gauge $ such that ]T@ |C7(J)| ^ £ for 
any d-fine g-regular (I \ DG)-tagged system 0 = {(£, J)}. 

Put 

(3.3) g(t) = G'(t) for t e DG, g(t) = 0 forte I\DG. 



Then g is g-integrable and G is its primitive. 

P r o o f . Let e > 0. For t G DG there exists u(t) > 0 such that g(t, a) ^ X(t)/2 

for 0 < a ^ uj(t) and 

\G(K) - g(t)m(K)\ ^ m(K)e/2m(I) 

for any interval K C I, t e K C V(t,u(t)), regK ^ X(t)/2. Put f = e/2 and let 
d correspond to f by (3.2). Put £(*) = u;(*) for t e DG, 8(t) = #(*) for t G I \ DG. 

Let P C I be an interval. Let A = {(t, J)} be a o'-fine o-regular partition of P . Put 
ft = {(£,J) G A; ^ D G } , Q = {(t,J) £A;teP\DG}. Then 

| ^g(t)m(J) - G(J)\ < Y, \9(t)m(J) - G(J)\ + £ |G(J)| 
A ft e 

^ ] T m(Iv )e/2m(I) + e/2 ^ e. 

D 

Theorem 3.2. Let (2.1) and (1.2) hold (in addition to (3.1)). Let f: I -> R and 
iet F be an interval function on I. Then the following two conditions are equivalent: 
(A) / is g-integrable and F is its primitive, 

(B) m(I \ DF) = 0, (3.2) holds and f = F' a.e. 

P r o o f . (B) follows from (A) by Theorems 2.8 and 1.10. (A) follows from (B) 

by Theorem 3.1 and Proposition 1.9 (i). D 

Corollary 3.3. Let g fulfil (1.2), (2.1) and (3.1). Let f be g-integrable, F being 
its primitive. Let to: I x (0, oo) -> [0,1] fulfil (1.2), (2.1), (3.1) andu(t,a) ^ g(t,a) 
forteI\ DF (no inequality being assumed for t G DF). Then f is u-integrable and 
F is its primitive. Briefly: the values of g are essential only in a neighbourhood of 
I\DF. 

4. T H E STRONG O-INTEGRAL 

It will be proved in a forthcoming paper that every strongly o-integrable function 
as defined below is the limit of a sequence of step functions in a suitable conver­
gence compatible with strong ^integration (i.e. every limit of a sequence of strongly 
o-integrable functions is strongly o-integrable). Thus strong o-integration can be 
viewed as an extension of elementary integration of step functions. It will be as­
sumed throughout this section that (1.1) holds. 
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Definition 4.1. / : I -» R is called strongly g-integrable, if there exists an addi­

tive interval function F such that for every e > 0 there is a gauge 5 such that 

i 

(4.1) Yl \f(*k)m(Mk) - F(Mk)\ <k e 
k=l 

holds provided A = {(tk,Jk); k = 1,2,...,/} is a J-fine O-regular system and M = 

{Mk,k = 1, 2,...,/} is a set of intervals such that Mk C Jk for k = 1, 2, ..., I. 

Note that tk G Mk is not required and no restriction is imposed on reg Mk. 

Note 4.2. Every strongly D-integrable function / is D-integrable, since (4.1) 

implies that 

\Y,f{t)m(J)-F(K)Ue 
A 

for every J-fine ^-regular partition A of K, K being an interval, K C I. Moreover, 

F is the primitive of /. 

Therefore the previous results can be used for strongly D-integrable functions. If 

(2.1) and (1.2) hold, then F is continuous at any interval L C IntI; F is regularly 

differentiable to f(t) at almost all t and / is measurable (Theorems 2.1, 2.6 and 2.7). 

On the other hand, Theorems 1.10-1.13, 3.1 and 3.2 will be modified. 

An example of a function which is ,0-integrable but not strongly D-integrable is 

given in Section 5. 

Note 4.3. In the case n = 1 every integrable function is strongly integrable. 

Let / : [a,b] 4 R be integrable, e > 0 and let the gauge 8 correspond to e by 

Definition 1.2. Let A{(tk, [ck,dk]); k = 1,2,...,/} be a Wine system and let M = 

{[p*.0fc]; k = 1,2,...,/} with ck ^pk <qk ^ dk. Put 

Ai ={(tk,Tk) 

A2 = {(tk,Tk) 

Дз = {(**, Tfc) 

Д 4 = {(«*, Гk) 

Д 5 = {(«*, Гfc) 

Pk ^ ťfc < 9fc,Tfc = [pfc,9fc]}, 

ífc < pfc.Гfc = [ífc,Pit]}, 

<fc < Pfc.rfc = [ífc,gfc]}, 

k < tk,Tk = [?fc,ŕfc]}, 

qk < tk,Tk = [pfc,ífc]}-

Obviously A{ is a J-fine system for i = 1, 2, ..., 5 and by Lemma 1.6 we have 

52\f(tk)(lk-Pk)-F(\pk,qk])\ 
A 

5 

< E E l/(ř*M-T.) - TO)! < 10є-
г=ì AІ 
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Note 4.4. Usually a brief notation will be used and (4.1) will be written in the 

form 
J2\F(M)-f(t)m(M)\<e, 
A,M 

A = {(t ,J)},M = {M}. 

Theorem 4.5. Let f: I -> R be strongly Q-integrable, F being its primitive 

(cf Note 4.2), N CI, m{N) = 0. Then 

(4.2) for every £ > 0 there is a gauge u such that 

A,M 

for every u-hne Q-regular N-tagged system A = {(t, J)} and every 

set M = {M} such that a one-to-one correspondence between A 

and M is defined by M C J. 

The proof follows directly from Definition 4.1 and Lemma 1.8. 

Theorem 4.6. Let fj : I -> R be strongly Q-integrable, Fj being their primitives 
for j eN, let f: I -> R. Assume that 

(4.3) for every e > 0 there exists a gauge 6 such that 

Y^\fj(t)m(M)-Fj(M)\^e 
A,M 

holds for every 5-fine Q-regular system A = {(t, J)} and every set 
M of intervals M provided a one-to-one correspondence between M 
and A is defined by M C J 

and (1.6) hold. Then f is strongly Q-integrable and (1.7) holds. 

P r o o f , / i s D-integrable and (1.8), (1.7) hold by Theorem 1.11. Passing to the 
limit for j —> oo in (4.3) we conclude that / is strongly D-integrable. D 

Proposition 4.7. Let / : I -> R be strongly Q-integrable, F being its primitive. 
The set of g: I -> R such that g = / a.e. is the set of all strongly Q-integrable 
functions such that their primitive is F. 

P r o o f . If G = / a.e. then the strong O-integrability follows from Definition 4.1 
(which plays the role of the "strong Saks-Henstock Lemma," cf. Lemma 1.7) and 
Lemma 1.8. If g is strongly D-integrable with the primitive F , then g = / a.e. follows 
immediately from Proposition 1.9. D 
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Theorem 4.8. Let f: I -> R and let F be an additive interval function on I. 

The following two conditions are equivalent: 

(4.4) / is strongly g-integrable and F is its primitive; 

(4.5) there exists N C I, m(N) = 0 and for every £ > 0 there is a gauge $ such that 

(i) E A , M \f(t)m(M) - F(M)\ <: f for any d-hne g-regular (I \ N)-tagged 
system A = {(r, J)} and every set M = {M} of intervals M such that the 
inclusion M C J defines a one-to-one correspondence between M and A; 

(ii) E A , M \F(M)\ ^ f for any ti-fine g-regular N-tagged system A = {(r, J)} 
and every set M = {M} of intervals M such that the inclusion M C J defines 
a one-to-one correspondence between M and A. 

P r o o f . (4.5) follows from (4.4) by Definition 4.1 and Theorem 4.5, while (4.4) 
follows from (4.5) by Lemma 1.8. D 

We can now pass to the analogue of Theorem 1.13, i.e. a convergence theorem for 
strong O-integrals based on convergence a.e. 

Theo rem 4.9. Let g, gy. 1 -> R, j G N, let Gj, j e N, be additive interval 

functions on I. Assume that there exists NCI, m(N) = 0 and 

(4.6) for every £ > 0 there exists a gauge d such that 

(i) E A , M \9j(t)m(M) - Gj(M)\ ^ f for any ti-hne g-regular (I \ N)-tagged 
system A = {(r, J)}, every setM = {M} of intervals M such that the inclusion 
M C J defines a one-to-one correspondence between M and A, and aii j G N; 

(ii) E A M \Gj(M)\ ^ £ f°r anY fl-fine g-regular N-tagged system A = 
{(£, J)}, every set M = {M} of intervals M such that the inclusion M C J 
defines a one-to-one correspondence between M and A, and aii j E r\J; 

(4.7) Qj(x) -» g(x) for j -> oo, x e I \ N. 
Then g is strongly integrable and 

(4.8) Gj(K) -> G(K) for j —• oo and eveTy inteTvai K C I, where G is the primitive 

ofg. 

P r o o f is quite analogous to that of Theorem 1.13. The functions gj are strongly 
D-integrable by Theorem 4.8 and we use Proposition 4.7 and Theorem 4.6 instead of 
Proposition 1.9 and Theorem 1.11. D 

Theorem 4.10. Let (3.1) hold (in addition to (1.1),). Let G be an additive interval 

function in I, m(I \ DQ) = 0 (cf. Definition 2A). Assume that 

(4.9) for every £ > 0 there exists a gauge d such that ^ 1^(^-01 ^ £ f°r anY ^~^ne 

e,M 
g-regular (I \ Dc)-tagged system A = {(r,J)} and any set M of intervals M 

provided a one-to-one correspondence between M and A is defined by M C J 
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holds. Define g by (3.3). 
Then g is strongly g-integrable and G is its primitive. 

Lemma 4.11. Let G be an additive interval function in I, g G R, t G Int I, n > 0, 
0 < a < 1. Let G be a-differentiable to g at t. Then there exists Ti > 0 such that 

\G(M)-gm(M)\^r](2r2)
n 

for 0 < r2 ^ Ti and every interval M cV(t,r2). 

See [4], Section 2, Corollary 2. 

P r o o f of T h e o r e m 4.10. g is D-integr able and G is its primitive by Theorem 
3.L We have to prove that g is strongly O-integrable. Let e > 0. By (3.1) there 
exists a gauge UJ such that 

(4.10) g(t, a) ^ A(*)/2 for t G I, 0 < a ^ u(t) 

and 

(4.11) \G(M) - g(t)m(M)\ < e(X(t))n2-2n-1(2r2)
n/m(I) 

for t G Int I and any interval M C V(t,r2), 0 < r2 ^ u(£). Put f = e/2 and let d 

correspond to f by (4.4). Put 6(f) = u(t) for * G D G , 6(t) = tf(t) forteI\ DG. 

Let A = {(t, J)} be a 6-fine D-regular system and let M be a set of intervals M such 
that a one-to-one correspondence between M and A is defined by M C J. Put 

Ai = {(*, J) G A; t G DG}, A2 = {(*, J) G A; t G I \ F>G}, 

Mi = { M G M ; M C J for some (*, J) G A x } , 

M2 = {M G M; M C J for some (t, J) G A 2 }. 

Then by (4.11) we have 

(4.12) £ | G ( M ) - 9 ( t ) m ( M ) | 
A,M 

^ Y \G(M)-g(t)m(M)\+ £ \G(M) - g(t)m(M)\ 
A i , M i A 2 , M 2 

^ Y e(X(t))n2-2n-1(2r2(t,J))n/m(I)+ £ \G(t) - g(t)m(M)\, 
A i , M i A 2 , M 2 
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where r2(t,J) = sup{||a; - t\\; x € J } , (t,J) € Ax. If (t, J) 6 Ai, then d(J) ^ 
r2(£, J ) , J is A(i)/2-regular by (4.10) so that any edge of J is greater than or equal 
to r2(t, J)X(t)/2, m(J) > (r2(t, J)X(t)/2)n and 

(4.13) J2 e{X(t))n2-2n-1(2r2(t,J))n/m(I)^ J^ m(J)e/2m(I) ^e/2. 
Ai,Mi Ai.Mi 

The system A2 is $-fine ^regular (I \ Da)-tagged. Since g(t) = 0 for t e I \ DG we 
get by (4.9) 

(4-14) J2 \G(M)-g(t)m(M)\<Z = e/2. 
A2,M2 

The assertion follows from (4.12), (4.13) and (4.14). D 

The following descriptive characterization of strongly D-integrable functions is a 
direct consequence of Theorem 4.10, Lemma 1.7, Theorem 4.5, Note 4.2 and Theo­
rem 2.8. 

Theorem 4.12. Let (1.2), (2.1) and (3.1) hold. Let f: I -» R and let F be an 

interval function on I. Then the following two conditions are equivalent: 

(A) / is strongly g-integrable and F is its primitive, 
(B) F is additive, m{I \ DF) = 0, (4.4) holds and F' = f a.e. 

5 . D-INTEGRABILITY DOES NOT IMPLY STRONG D-INTEGRABILITY 

In this section we will construct a function / : I -> R which is O-integrable over 
I but not strongly D-integrable. Actually, we will not do it for quite general D but, 
nonetheless, for a rather wide class of functions D characterized by conditions (5.1)-
(5.4) below. For simplicity of exposition we will assume n = 2, i.e. I C R2, and 
I = [—1,2] x [—1,2]. A modification to Rn with n > 2 and to a general interval is 
routine. We will modify the idea of the construction introduced in [5, Sec 3]. 

Let D be a function defined on I x (0, oo) and satisfying the following conditions: 
(5.1) 0 < g{t,d) < 1 for all {t,d) el x (0,oo); 
(5.2) the function dg{t,d) is increasing in d for every t G I; 
(5.3) there is a function UJ: (0, oo) —> (0,1) such that 

(i) the function du{d) is increasing; 
(ii) uj{d) ^ g{t,d) for all {t,d) G I x (0,oo); 

(5.4) g is continuous on I x (0, oo). 
Note that evidently 
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(5.5) lim dg(t,d) = 0 for evey t G I, 
d-+0+ 

(5.6) for every (t,d) G I x (0,oo) there is a = <r(£,d) > 0 such that 

7 
<?(w,6) > g^(*,d) 

for every (u,b) G V((t,d),cr). 
First we will construct a Cantor discontinuum on [0,1]. Choose to G (0,1), find 

do such that 

doQ(to,d0) < m i n | - ( j ( - J , l - £ 0 J 

(cf. (5.5)) and put 

t\ = t0 + doQ(to,d0). 

By (5.4), (5.2), (5.5) and the inequality |CJ( | J ^ ^Q[t\, | J there is di such that 

dig(ti,di) = d0Q(to,d0), d\ < - . 

Consequently, 

ti = to + d\Q(ti,di). 

Put 
c = max{d0 ,di}, r = -(to + h) 

and find a0 = a(t0,c), a{ = (j(t\,c) from (5.6). Set 

ofj = m i n | a o , - ( ^ i - *o ) J , 

OT =min | a 1 * , - (^ i - t0)j 

and denote 

so = max{£o — 0"o,O}, si = min{£i + Or, 1}. 

We now repeat the above construction on the intervals [so,£o] an(^ [̂ i? -^l]- Let us 
describe the general step. 

Let B denote a binary multiindex (i.e. a finite sequence of zeros and ones) and 

assume we already have numbers tso, tsi, SBO, SBI, dso, dsi, CB, TB satisfying 

0 ^ SBO < tBo < tBi < SBI ^ 1 

and 

(5.7) tB\ -tso = dBoQ(tBO,dso) = dBiQ(tBi,dBi) < ^ [ ^ f ^ ] " ) , 

cB = max{dBo,dBi}, rB = ^BO + ^BI)-
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(Here and in the sequel \B\ s tands for the number of digits of the multiindex B. 

We choose 

£BOO £ (sBo,tBo), tBio £ (tBl,SBl), 

find dsoo, ^ B I O such tha t 

dBooQ(tBoo,dBoo) < m i n { 2 - l B l - 1 ^ ( 2 - ' B l - 1 ) , c B O - *BOO}, 

dBi0g(tBl0,dBl0) < m i n { 2 - l B l - 1 c D ( 2 - l B | - 1 ) , 5 B i - *BIO} 

and put 

^BOI = ^BOO + dsooQ(tBOO,dBoo), 

tBll = *B10 + ^BlOP^BlO, ^Bio)-

Now we find dsoi, dBu such that 

^B01^(^B01,C?B0l) = C?BOO^(^BOO,^BOO), 

^Bll^(^Bll,C?Bll) = ^ B l O ^ B l O ^ B l o ) 

so tha t 

^BOI = ^BOO + dB0ig(tB0i,dB0i), 

tBll = tBi0 + rfBllp(^Bll,^Bll)-

CBO = max{dBoo,c?Boi}, CBI = max{OJBio,c?Bii}, 

~BO = ^(^BOO + ^BOl), TBI = T^BlO + *Bll)-

Further, we find from (5.6) the values of 

We set 

put 

°"вoo ~ <""(řвoo,cвo), cгБ Oi = Cг(üßoi,Cß0), 

^вю — &(tвw,cвi), &вii — a(tвn,cвi), 

O-ßoo = min|Oßoo> 7 ( ^ 0 1 - ^вoo) j , 

Oßoi = min | O ß o i , -(ífìoi - ífìoo) I , 

Oßю = min | O в ю , 7 ( ^ 1 1 ~~ tвю)\, 

O-ßn = min l O в i i , 7 ( ^ 1 1 _ ćßio) j , 
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and denote 

(5.8) 5/ioo = max{6#oo — &BOO,SBO}, SBQI = min{£#oi + &Boi,tBo}, 

sBio = max{r5io - &Bio,tBi}, sBn = m i n i m i + OBii,SBi}. 

In this way we construct a sequence of tagged intervals of the form (rB, [tso, tB\] x 
[0, cB]). Any such interval with |H| = k will be called an interval of k-th order; there 
is one interval of order zero, two of order one, generally 2k tagged intervals of order 
k. For brevity, we will denote [tBo,tBi] = TB, [sB0, tB0] = SB0, [tBi,sBi] = SBi. 

CO 

Let us notice that the set D = f] \J SB is a Cantor discontinuum. 
k=0\B\=k 

Now we introduce a function / which we will prove to be D-integrable but not 
strongly D-integrable. To this end, let us choose sequences of positive numbers £&, 
777c, Pk all decreasing to zero and such that the sum of (3k diverges, i.e. 

CO 

(5.9) £ b \ 0 , » f c \ 0 , (3k\0, ^ / 3 * = oo. 
k=0 

(We will subject these numbers to some further conditions later.) For every tagged 
interval constructed above, let us denote 

QB = [rB ~£\B\,TB] x [CB,CB + V\B\], 

QB = [TB,TB+€\B\] X [CB,CB+T1\B\\, 

QB=QBUQ+, 

and set 

(5.10) f(x) = { 

-/?|B1(2lBlm(Qš)) ' forxelntQs, 

f3m(2lBlm(Q+))_1 for a; € IntQ+, 

10 elsewhere. 

Note that / is Lebesgue integrable over any compact set H, Hn ([0,1] x {0}) = 0. 
Therefore we can prove the D-integrability of / via the following proposition. 

Proposition 5.1. Let I C Un be a compact interval, f: I -± U, S C I a closed 
set, f(x) = 0forxeS. Assume that for every closed set H C I with S n H = 0 the 
integral fH f exists in the Lebesgue sense, and let us denote its value by F(H). Let 
q e U3 Q'. I x (0,oo) -> [0,1). Then the following two assertions are equivalent: 
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(a) the g-integral (g) f{ f exists and is equal to q; 
(b) for every e > 0 there is a gauge S: S —> (0, oo) such that 

-(,\y.,)-, śє 

for every S-fine g-regular system A = {(t, J)} such that Int IJ J D S and t e S for 

all (*, J) G A. 

This result is a modification of Proposition 2 in [4] where it was proved for O = 

const. It was also used in [5] for the case O: (0, oo) —•> [0,1) (i.e. O independent of 

the tag t). Nonetheless, it is easily verified that the proof from [4] can be applied to 

the general case of g: I x (0, oo) —•> [0,1) since the only necessary prerequisite is the 

Saks-Henstock Lemma which is available in the general case (see Lemma 1.7). 

By virtue of this proposition, the next lemma yields O-integrability of the function 

/ defined above, with S = D x {0} and (g) Jf f = 0. 

L e m m a 5.2. Let p G N . Then there exists a gauge S such that 

(5T1) | F ( I \ U J ) | ^ 4 / 3 P + 1 

A 

for every S-fine g-regular system A = {(t, J)} satisfying 

(5.12) £ G D x { 0 } , 

(5.13) D x {0} C In t l JJ . 

A 

P r o o f . For p £ N let us choose a gauge S such that 

(5.14) S(t) ^min{c B ; \B\ = p} 

for t satisfying (5.12). 

Evidently 

(5A5) F(I\{JJ)=EF(Q\UJ) 
A Q A 

where the sum is taken over all intervals Q = QB such that F{Q \\JJ) ^ 0. 
A 

(Obviously there is only a finite number of such intervals.) If Q is such an interval, 

then there is (l, J) € A such that F(Q \ J) ^ 0. 



It is clear from the construction that for a fixed J there are at most two such 
intervals Q\ moreover, they are of the same order and the corresponding values 
F(Q \ J) have opposite signs. We will estimate the terms that contribute positive 
values to the sum (5A5); the estimate for those with negative contribution is quite 
analogous. 

Thus, let F(QB \ J) > 0 and let us denote 

J = [ui,u2] x [vi,v2]. 

Then TB - £\B\ < u2 < TB + £|5 |, vx <0,v2> cB. 

First, let u2 — u\ < v2 — v\. The O-regularity of J implies 

u2-ui 
> Q\t,v2 -vi). 

v2 -vi 

By virtue of (5.2) we have 

u2-ui > (v2 -vi)g(t,v2 -vi) > v2g(t,v2) > cBg(t,cB). 

Assume u\ > sB0. Then (5.6) together with the choice of sB0 yields 

7 
u2-ui> cBg(t,cB) > -cBg(tB0,cB), 

7 1 7 
Ui <u2 - -cBg(tB0,cB) < -^(tB0 + tB1) +£ |# | - -dB0g(tB0,dB0). 

Subjecting without loss of generality the numbers £& to the condition 

(5.16) & < i min{*Bi - *Bo; \B\ = k} 

we conclude using (5.7), (5.8) 

1 1 7 1 
^i < 2^tB0 + tBi) -f 7;(tBi — tB0) — -^(tBi - tB0) = tB0 - ~z(tB\ — tB0) < sB0, 

a contradiction. 
If, on the contrary, u2 — u\ ^ v2 — v\, then 

Ui^U2~ (V2 - Vi) < TB + f|fl| - cB 

and we obtain the inequality u\ < sB0 analogously as above. 
In both cases we have arrived to the conclusion that u\ < sB0. This inequality 

means that the interval TB0 = [tBOO,tBOi] of order \B\ + 1 immediately next to the 

99 



interval TB (to the left) is totally covered by [1*1,1*2]. hence for the corresponding 

QBO we have F(QBO \ J) = 0. Similar situation occurs for all intervals TB* with 

\B*\ > \B\ lying between the intervals TBO, TB mentioned above, i.e. with 2 Z - 2 

intervals of order \B\ + l, I ̂  2. Consequently, these intervals contribute nothing to 

the sum in (5.15). 

Let ki be the number of intervals QB of order / on the right hand side of (5.15) for 

which F(QB \ (J J) > 0- We have k0 = ki = ... = kp = 0 by (5.14), and by (5.13) 
A 

there exists ra G N such tha t kp+m+i = kp+m+2 = . . . = 0. Further, 

kp+i < 2 P + 1 , 

kp+2 ^ 2P — kp+i, 

kp+3 ^ 2P — kp+i — kp+2, 

fcp+4 ^ 2P — 2kp+\ — kp+2 — kp+3, 

kp+i ^ 2 — 2 kp+i — 2 kp+2 — . . . — kp+i-2 — kp+i-i, 

5 

U <" 9P+™ 9^i-3jL rxm — 4]! h. 
hp+m <z -- ~~ -- ^ p + 1 <<- ^ p + 2 • • • ftp+m — 1' 

Summing up these inequalities after transferring all but the first terms from the right 

to the lefthand sides we obtain 

Jbp+i(l + 1 + 1 + 2 + . . . + 2 m " 3 ) + kp+2(l + 1 + 1 + 2 + . . . + 2 m ~ 4 ) + . . . 

+ kp+/(l + 1 + 1 + 2 + . . . + 2 m " / - 2 ) + . . . + kp+m-2(l + 1 + 1) 

+ k p + m _ i ( l + 1) + kp+m < 2 p + 1 ( l + 2 + . . . + 2 m " x ) , 

hence 

kp+i(l + 2 m ~ 2 ) + kp+2(l + 2 m ~ 3 ) + . . . + kp+,(l + 2 m " / - 1 ) + . . . + 

kp+m_2(l + 21) + kp+m_i(l + 2°) + kp+m ^ 2 p + 1 ( 2 m - 1) 

and, a fortiori, 

(5.17) fcp+i2m-1 + kP+22
m"2 + . . . + kp+^n-121 + kp+m2° ^ 2 p + m + 2 , 

kp+i + kp+22-1 + ... + kp+m_i2"(m-2) + kp+m2"(m"1) *J 2 p + 3 . 

On the other hand, for \B\ = p + l the definition of / yields the evident estimate 

F(QB\[JJ) < / W ( P + 0 > 
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and summing up these values and using the inequality (5.17) we conclude 

£ F(Q \ (J J) ^ kp+i/?p+12-^+1) + kp+2/3p+22-^+2) + .. . 
+ A 

-4- k . i l l , o - ( p + m - l ) , u a 2~ (P+ m ) 

^ /3p+12-(p+1)[/cp+1 + kv+22'1 + . . . + kp+m_i2-m+2 + kp+m2~m+1] 

^4 /3 p + i . 

The subscript + at the summation symbol indicates that we add only the positive 
terms. Since the sum of the negative terms satisfies an analogous estimate, the 
inequality (5.11) immediately follows. • 

We have proved that the function / is O-integrable with vanishing integral. Con­
sequently, if / is strongly O-integrable then its strong O-integral must vanish as well. 
Thus to prove that / is not strongly D-integrable, it suffices to prove the following 
assertion: 

Lemma 5.3. For every gauge S on I there exists a g-regular S-Bne partition 

A = {(£, J)} of I and intervals M C J (one for each (£, J) G A) such that 

£ (F(M) - f(t)m(M)) > 1. 

P r o o f . We will again modify the construction of A from [4], proof of Lemma 4. 
Let S: I —> (0, oo) be an arbitrary but fixed gauge. Let us denote 

Wh = {w <E D; S(w,0) >j~Y ke N. 

By Baire's theorem on complete spaces there is p G N, z € D and u > 0 such that 

(5.18) DCI[Z-LJ,Z + UJ] C C\WP. 

oo 

Since z e D = f| \J SB there is q e N and B* with \B*\ = q such that 
k=0\B\=k 

(5.19) SB* C [Z-UJ,Z + U] 

and 

(5.20) max{cB; \B\>q}< ---. 
2p 
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Finally, since the sum of (3k diverges, see (5.9), there is m e N such that 

(5.21) 0q+0q+i + .-- + 0q+m>2*+1. 

Now there is an interval TB of order q such that TB C SB*, two intervals TB of order 

q+\ contained in SB*, generally 2j intervals TB of order q + j contained in SB+ for 

j = 0, 1, . . . , m. Since the number of all these intervals is finite (j ^ m) , for each 

of them there exists K = K(TB) > 0 such tha t all intervals fB = [tB0 - n,tBi + n] 

resulting by enlarging the original intervals by K are pair wise disjoint and contained 

in [z — LJ , z + CJ], and 

tBi - tB0 + 2K 

CB 

(Note tha t (tBi — tBo)/cB < 1 by construction.) 

Let e.g. CB — dso- (If CB — ds\, the procedure is analogous, only we use quantities 

with indices B\ instead of those with BO.) 

By continuity of the function Q there is A = Xk > 0 such tha t 

(5.22) iig(t, /x) - dBoQ(tBO, dso) < 2K 

provided \ii — dso\ < A, \t — tso\ < X and \B\ — k. By virtue of (5.18), (5.19) there 

is CBo € TB CiWp such that 

|CBo - £Bo| < A. 

Without loss of generality we may and will assume that 

(5.23) 7/* < m i n | — , A * J for k ^ q 

and choose ipk > 0 such tha t r]k + ipk < niin < ^z,Xk >. Denote 

(5.24) J = fB x [-ipk,dBo+r]\B\]-

Then 
T C B I - ^ B O + 2 ^ dsoQ(tBo,dBo) + 2K 

reg J = - = —: ; . 
dBo + W\B\ + *7|fl| dBo + W\B\ + V\B\ 

By (5.22) we have (dBo+ip\B\ +^|B|)^(CBo,^BO + il>\B\ +11\B\) < dBoQ(tBo,dBo) + ^^, 

hence 
reg J > Q((BO, dBo + ip\B\ +V\B\) = Q{(B0,d(J)). 

On the other hand, by (5.24) we have 

d(J) = dflo + *I>\B\ + rl\B\ < - • 
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Since CBo £ VVP, we have o~(C#o,0) > - and the pair (CBo,«I) is both D-regular and 
S-nne. 

Consequently, all pairs (t, J) constructed above form a S-hne D-regular system Ai. 
Now we have to complete this system to a partition of I with the required properties. 

Let us note that F(J) = 0 for every J, (t,J) G Ax. Since F(I) = 0, we have 
F(I \ | j J) = 0 as well. The set I - | j J is a finite union of intervals, and by the 

A i Ai 

Saks-Henstock Lemma 1.7 there is a o'-fine D-regular system A2 = {(t,K)} covering 
it for which 

^T\F(K)-f(t)m(K)\<l. 
A 2 

Now, A = Ai U A2 is a 5-nne D-regular partition of I. Choose M = QB where 

QB C J for (r, J) G Ai (there is a unique such QB), M = K for (*, K) G A2. Then 

J2 {F(M) - f(t)m(M)) > Y, (F(M) - fWMM)) - £ \F(R) ~ fWm(K)\ 
A A i A 2 

m 

^ 2 - ^ / 3 ^ - 1 ^ 1 

by virtue of (5.21). This proves the assertion, and hence nonexistence of the strong 

D-integral of / . • 

No te 5.4. If n > 2 the construction is analogous, the intervals QB being con­
structed over (n — l)-dimensional intervals that play the role of the Cantor discon-
tinuum. For example, for n = 3 we construct the (one-dimensional) intervals TB as 
above and form Cartesian products TB X TB (with the same multiindex B). These 
two-dimensional intervals are then used to construct QB- They are located along a 
diagonal of the square [0,1] x [0,1] and allow similar estimates as in the case n = 2. 

6. CONCERNING THE PROOF OF THEOREM 2.1 

Assume that (1.2) and (2.1) hold. The following lemma corresponds to Lemma 2.7 
in [3]. 

Lemma 6.1. Let / : I -> IR be g-integrable, F being its primitive. Let L be an 

interval, LCI. Then for every e > 0 there exists n > 0 such that 

(6.1) \F(L) - F(K)\ <: e for every interval K, 

L C K C I with m(K \L) ^n. 
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P r o o f . Put i](t) = limsupO(£,O-), t G I. Since rj(t) < 1 by (2.1), there is a 
_ <7->0 + 

gauge S such that g(t,a) < | ( l + 77(f)) for 0 < a ^ J(*). Put u;(c,O) = I (l + 77(f)) 
for £ G I, a > 0. Let F = [cr,di] x . . . x [cn,dn], e > 0. Let (5 correspond to e/3 by 
(1.3). Without loss of generality we may assume that 6(t) ^ S(t), 6(t) < min(<I.- -a) 

i 

for t G I. By Lemma 1.1 there exists a |o"-fine a;-regular partition ft = {(t, J)} of L. 

UT =[pi,qi]x ... x[pn, qn] C L, 0 < gt- - p{ < d{ - a for i = 1, 2, . . . , n, put 

Sj = (—(X),a{] provided pi = a, 

Si = [Pi, <fc] provided Ci < pi < qi < di, 

^i — (Pi, oo) provided q{ = di, i = 1, 2 , . . . , n, 

A(T) = Si x . . . x S n . 

A(Ji) and A(J2) are nonoverlapping provided (tl,Ji), (t2,J2) G 1), Ii / J2. 

Moreover, | JA(J ) = ^n- F o r a n interval K, L C K C I, and (£, J) G ft put 
Q 

J ' = A(J) fl K. Put ft' = {(£, J ' ) ; (*, J) G ft}, ft' is a partition of If. There exists 
770 > 0 such that ft' is both J-fine and D-regular if m(K \L) ^ rj0. Moreover, since 
ft is fixed, there is 77 G (0,770] such that 

(6.2) J2 l / W M ^ ' \ J) ^ e/3 P^vided m(K \ FK 77. 
n 

Assume that m(K\L) ^ 77. Since both ft and ft' are J-fine and D-regular, Lemma 1.6 
yields 

| £ / ( 0 m ( J ) - F ( L ) | ^ / 3 , 

\*£f(t)m(J')-F(K)\^e/3 
Q' 

and (6.1) follows by (6.2). D 

Note 6.2. If (2.1) is dropped and if (1.2) and (2.5) are assumed, then Lemma 
6.1 holds; it can be proved in the same way provided CJ is replaced by (Di, where 
u>i{t,a) = l ( l + D(r,O-)). 

No te 6.3. Making use of Lemma 6.1 we can prove Theorem 2.1 in the same way 
as Theorem 2.5 in [3] was proved via Lemmas 2.7, 2.6 in [3]. 
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7. P R O O F OF LEMMA 1.1 

Let 
J = [c,d\ = [ci,di] x . . . x [cn,dn] C I. 

First, let us assume that dj—Cj, j = 1,2, ..., n are dyadically rational. Then J is the 
union of nonoverlapping n-dimensional cubes with the same length of edge equal to 
2~p, p a sufficiently large integer. By successively halving the edges of the cubes and 
applying the standard compactness argument used in the proof of Cousin's lemma 
we construct a 5-t\ne partition of J; since all intervals of this partition are cubes, it 
is D-regular as well since g(t, a) < 1 by definition. 

Further we proceed by induction, successively decreasing the number of edges of 
J which are dyadically rational. 

Let fc G { 0 , 1 , . . . ,n — 1} and let the assertion of Lemma 1.1 hold provided the 
interval J has fc + 1 edges of dyadically rational lengths. 

Let 
K = [g,h] = [gx,h{\ x [g2,h2] x . . . x [gn,hn] C I 

be an interval with fc dyadically rational edges with fc ^ 1; without loss of generality 
we will assume that hj — gj is dyadically rational for j = 1, 2, . . . , fc. (The case fc = 0 
will be considered later.) 

Denote L = [Gi, hi] x . . . x [gk,hk], 6k ((tx ,t2,..., tk)) = 6((tx,..., tk,gk+1,..., gn)) 
for tj E [gj, hj], j = 1, 2, . . . , fc. By the first part of the proof there exists a |ovfine 
partition 0 of L consisting of fc-dimensional cubes with dyadically rational edges, 
that is, for every (r, Q) £ 0 we have d(Q) = 2~q, regQ = 1. (Here of course r e Rk, 
Q C Uk, q is an integer depending on Q.) 

Let (T,Q) G 0 where r = (£i , . . . ,£*), d(Q) = X. For j = fc + 1, fc + 2, . . . , n find 
Xj such that 

(i) hj — gj — Xj is dyadically rational, 
(ii) Xg(t9,X) < Xj < X 

where t9 = (h,t2,... ,tk,gk+i,... ,gn). Denote 

MQ = Q x [gk+l,gk+i + Afc+i] x . . . x [gn,gn + An]. 

Since Xj < X < Sk((ti,t2,... ,tk)) = S(t9), the pair (t9,MQ) is J-fine; since A = 
d(MQ) and g(t9, X) < Xj/X, (t9,MQ) is o-regular. 

Now let us set 

Hj = [9^9j + A,-], H) = [gj + Xj,hj] 

for j = fc + 1, fc + 2, . . . , n. For <D: {fc + 1 , . . . ,n} -» {0,1} denote 

H* = H$+l) x HrJ2+2) x . . . x #£<»> 

105 



and 
M% = Q x H". 

Two intervals MgJ, MQ2 evidently do not overlap provided <pi ^ cp2 and/or Qi ^ Q2. 
On the other hand, K = (J Mg where the union is taken over all ip and all Q such 

that (T,Q) G 0 for some r. 

If (r, Q) e 9 and <D = 0 then MQ = Mg, hence the corresponding pair (tg, MQ) 

is J-fine and D-regular as shown above. 

If (r, Q) £ O and <p ^ 0 then M Q has k edges of a dyadically rational length A 
and at least one more edge of a dyadically rational length hj — gj — Xj (with j such 
that (p(j) = 1). Hence it has k + 1 dyadically rational edges, and by the induction 
hypothesis there exists a (5-fine D-regular partition of MQ . The union of all intervals 
MQ and all partitions of MQ for (D ^ 0 evidently forms the desired partition of I\. 

If k = 0 we have no L, 5k and O. It suffices to start with finding Ai < 6(g) 

satisfying (i) with j = 1, and proceed by choosing Aj, j = 2, 3, . . . , n satisfying (i), 
(ii) with A = Ai. We continue as above with the obvious modifications; in particular, 
the role of MQ is played by the intervals H^. They all have at least one dyadically 
rational edge (cf. (i)) except for H°, but the pair (o, H°) is o*-fine and H° is D-regular 
by (ii) and the choice of A. Consequently, the last induction step is completed by 
the same argument as above. 
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