
Czechoslovak Mathematical Journal

P. M. Gadea; A. Montesinos Amilibia
Totally umbilical pseudo-Riemannian submanifolds of the paracomplex projective
space

Czechoslovak Mathematical Journal, Vol. 44 (1994), No. 4, 741–756

Persistent URL: http://dml.cz/dmlcz/128493

Terms of use:
© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/128493
http://dml.cz


Czechoslovak Mathematical Journal, 44 (119) 1994, Praha 

TOTALLY UMBILICAL PSEUDO-RIEMANNIAN SUBMANIFOLDS 

OF THE PARACOMPLEX PROJECTIVE SPACE* 

P. M. GADEA, Madrid and A. MONTESINOS AMILIBIA, Burjasot 

(Received December 31, 1992) 

1. INTRODUCTION 

Para-Kaehlerian manifolds were introduced by Rasevskii [14] and Libermann [12], 
and studied by several authors (see Bejan [2] and the long list of references therein). 
An interesting class of para-Kaehlerian manifolds is the class of para-Hermitian sym­
metric spaces. Kaneyuki and Kozai [10] gave the infinitesimal classification in the 
case of semisimple group. A particular type is given by the paracomplex projec­
tive spaces, introduced by the authors in [4]. These spaces are harmonic symmetric 
spaces ([1], [5], [6]), and models of spaces of constant non vanishing paraholomorphic 
sectional curvature, which have a rich family of para-Kaehlerian space forms ([4], [8], 
[9]). These spaces have also been studied in [2] and [7]. 

Totally umbilical submanifolds of a given manifold, provided they exist, consti­
tute one of the most natural and useful families of submanifolds. They are known for 
several classes of important manifolds (see Chen [3]). In the present paper we deter­
mine all of the totally umbilical pseudo-Riemannian submanifolds of the paracomplex 
projective spaces. Let P(E 0 £ * ) be the paracomplex projective space naturally as­
sociated to the finite dimensional real vector space E. We prove that its non totally 
geodesic, totally umbilical pseudo-Riemannian submanifolds are of constant (ordi­
nary) sectional curvature. In fact, if h is any non-degenerate symmetric bilinear form 
in E and Sh = {x G E: h(x,x) = 1} is the corresponding sphere, then Sh can be 
isometrically immersed as a totally geodesic submanifold of P(E 0 E*) (cf. [7]). We 
prove that the parallels of 5^, that is its intersections with affine subspaces.of E, 

are then isometrically immersed as totally umbilical submanifolds of P(E®E*), and 

* Work partially supported by the DGICYT (Spain) grants n. PB 89-0004 and PB 90-0014-
C03-01. 

741 



that every non totally geodesic, totally umbilical pseudo-Riemannian submanifold of 
P(E 0 E*) of dimension greater that 1 is part of such an immersed parallel. 

2 . PRELIMINARIES 

Let E be an (r + l)-dimensional real vector space, and E* its dual. Typically, we 
shall write x + a to denote an element of E 0 E*. On the space E 0 E* there exist 
a natural non-degenerate bilinear form ( , ) given by 

(x + a,y + (5) = \(a(y) + (3(x)), 

and a linear automorphism J such that 

J\E =idjE, J\E. = - i d E - . 

We introduce in 

(E © £*)+ = {x + a G E 0 E* : (x + a, x + a) = a(x) > 0} 

the equivalence relation ~ such that x + a ~ ax + ba whenever 0 < a, b G R, and 
define the paracomplex projective space P(__£ 0 F*) by 

P ( £ 0 FT) = ( £ 0 £ * ) + / - . 

Let p denote the natural projection p: (E 0 E*)+ -» P(_E 0 E*). We define the 
vector fields n, v in E 0 _5* by nx_|_a = x + a, vx_f_a = x — a, so that Jn = v. The 
pseudosphere in E 0 E* is defined as 

5 = {x + a G ( £ © E * ) + : (x + a ,x + a) = a(x) = l } . 

Then n is the unit normal to S. We have a principal bundle p: S —•> P ( £ 0 _5*) 
with group R+. This group acts on the right upon S by (x + a)a = ax + a _ 1 a , for 
a G IR+. If 5 is given the pseudo-Riemannian metric induced by that of E 0 E*, 
then IR"1" acts on S by isometries. Thus, it induces a pseudo-Riemannian metric g on 
P(E 0 F*) so that p is a pseudo-Riemannian submersion. The vector field v, when 
restricted to S is parallel to the fibres of p. Therefore, a vector tangent to S is p-
horizontal iff it is orthogonal to v. Also, J passes to the quotient and gives an almost 
product structure J on P(E®E*) such that J2 = 1 and g(JX,Y) = -g(X, JY). If 
V is the Levi-Civita connection on P(E 0 E*), then VJ = 0. Thus P(E 0 E*) is a 
para-Kaehlerian manifold, and if r > 1 it is simply connected. Also, it has constant 
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para-holomorphic sectional curvature (equal to 4) [4], that is the Riemann-Christoffel 
tensor field is given by 

(1) R(X, Y, Z, W) = g(X, Z)g(Y, W) - g(X, W)g(Y, Z) - g(X, JZ)g(Y, JW) 

+ g(X, JW)g(Y, JZ) - 2g(X, JY)g(Z, JW). 

where we define the Riemann-Christoffel tensor field by 

R(X,Y,Z,W)=g(R(X,Y)Z,W) 

and the curvature operator by R(X, Y) = V[x,Y] - [Vx, Vy-]. 

We shall study (regular) pseudo-Riemannian submanifolds of P(E © E*), that is 
imbedded submanifolds i:V-¥ P(E 0 E*) such that i*g is non-degenerate. Let 

1 < s = dim V. If m G V then we shall put 

J/
m = (Tmv)±, jr= |J ^m. 

mev 

Thus TmP(E®E*) = TmV _L JTm, and we shall denote by r and v the corresponding 
projectors to TmV and JTm. Let P = r o J, Q = v o J. Then if X, Y <E &{V) and 
11,ix e T{JT) we have g(X,PY) = -g(PX,Y), g(Qr),») = -g(rl,Q/i), and if V 
denotes the Levi-Civita connection on V we put 

V x F = r V x F , a(X, Y) = ^ V , 

A^K = -TVXV, DXV = v^xV-

We have 

g(Ar)X,Y)=g(a(X,Y),r1). 

We say that V is totally umbilical iff there exists £ £ T(JT) such that 

(2) a ( X , F ) = 5 ( X , F ) £ 

for every X, Y G 3£{V). Then, £ is called the normal curvature vector field. 
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3 . TOTALLY UMBILICAL SUBMANIFOLDS OF P(E 0 E*) 

EITHER ARE TOTALLY GEODESIC OR HAVE CONSTANT CURVATURE 

In the following, V will be a totally umbilical pseudo-Riemannian submanifold of 
P(E 0 E*) with normal curvature vector field f. Let X,Y,Z 6 3C(V). Codazzi's 
equation [11, Vol. II, p. 25] reads 

-uR(X, Y)Z = (Vxa)(Y, Z) - (VYa)(X, Z), 

where Va is defined by 

(Vxa)(Y, Z) = Dx (a(Y, Z)) - a(VXY, Z) - a(Y, VXZ). 

Having in mind (2), that is 

(Vxa)(Y, Z) = Dx {g(Y, Z)t) - g(VxY, Z)Z - g(Y, VxZ)i = g(Y, Z)DX^. 

Then, Codazzi's equation is 

(3) g(X, PZ)g(Y, Prj) - g(Y, PZ)g(X, Prj) + 2g(X, PY)g(Z, Prj) 

= g(Y, Z)g(Dxi, rj) - g(X, Z)g(DY^ v), 

where 77 G T(Jf). 

Let RD be the curvature of the connection D in t/V. Then Ricci's equation [15, 

Vol. 4, p. 60] is 

vR(X, Y)r] = RD(X, Y)r] - a(A71X, Y) + a(Ar]Y, X). 

Since g(AvX,Y) = g(a(X,Y),r]) = g(X,Y)g(^,i]), we have AVX = g(Z,r,)X and 
a(AvX, Y) = g(£,r])g(X,Y)t;. Ricci's equation reduces thus to 

(4) vR(X,Y)r] = RD(X,Y)r1. 

We take the trace of (3) in the arguments X, Z. Let {e;} be a G-orthonormal local 
reference for V, in the sense that e; € &(U), U C V, g(ei,ej) = SiSij, £i = ±1. 
Then 

s 

0 -= £ > (g(eu Pei)g(Y, Prj) - g(Y, Pei)g(eu Prj) + 2g(e{, PY)g(ei, Prj) 
i=\ 

- g(Y, ei)g(Dei£, r?) + g(ei,ei)g(DY£, r])) 

= (s-l)g(DY^f])-3g(QPY,rJ). 
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Since g\^ is non-degenerate and 77 e T(</V) is arbitrary, we conclude that 

(5) DYZ = J-TQPY 
5 — 1 

If we bring (5) to (3), we get 

(6) g(X, PZ)g(Y, Pr,) - g(Y, PZ)g(X, Pr,) + 2g(X, PY)g(Z, Pn) 

+ 7 3 Y {9{Y, Z)g(PX, Pr,) - g(X, Z)g(PY, Pr,)) = 0. 

If we put Y = Z, then 

(7) g(X, PZ)g(Z, Pr,) + - L - (g(Z, Z)g(PX, Pr,) - g(X, Z)g(PZ, Pr,)) = 0. 

Since X is arbitrary and i*g is non-degenerate, wc have 

( K z ^ P Z - - ! - < , ( ; ? , Z)P27> - J—g(PZ,Pr,)Z = 0. 
5 — 1 5 — 1 

Finally, we put Z = Prj, and have 

(8) (s-2)g(Pr],PT])P2r] = 0 

for any 77 G r(c/V). Thus, it is clear that wc must separate the case 5 = 2 from 
the others. Assume first that s > 2. Then, (8) reads g(Px],Pr])P2r} = 0 for any 
i] G T(t/V). Assume that we have chosen such a field 7/ and that in some open subset 
U of the submanifold V we have F2?7 9-- 0. Then g(Pr],Pri) = 0 in U. Putting 
Y = Pr] in (6) we obtain 

g(P2r,, Z)g(Pr,, X) + <2±^-g(Pn, Z)g(P2
n, X) = 0. 

5 — 1 

Since X, Z are arbitrary, we conclude that 

25 — 5 
P2i] ®Pr]+ P^ ® P2?7 = 0. 

This implies that Pr] and P277 are linearly dependent, but this is absurd because 
1 + (25 - 5)/(s - 1) = 3(5 - 2)j(s - 1) # 0 and P2r] ^ 0. Therefore we have proved 
that P2t] = 0 for every r] <E T(Jf). Then, by (7) we have g(Pri,Z)g(PX,Z) = 0, 
and by polarization g(Pr], Y)g(PX, Z) + g(Pr], Z)g(PX, Y) = 0, from which 

(9) Pi] 0 PX + PX ® Pr] = 0. 
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Lemma 1. Let V be a totally umbilical pseudo-Riemannian submanifold of 

P(E © E*) with s = dim V > 2 and let £ be its normal curvature vector field. Let 

X,Y,Z € %{V) and v € V(J"). Then: 

(i) vR(X,Y)Z = 0; 

(ii) Dxt, = 0; 
(hi) R(X,Y, TJ,O = 0. 

P r o o f . From (9) we see that at each point m € V we have that either P(TmV) = 

0 or P(jYm) = 0. Then if we multiply (5) by ^ we have 

g(DYS,n) = ?-9(PY,Pri=0, 
5 — 1 

and (ii) follows. Then the right hand side of Codazzi's equation vanishes identically 
and this is (i). From (ii) we have RD(X, Y)£ = 0. Hence, by (4) we have (iii). • 

Assume now that s = dim V = 2. Let m G V and let vm, wm be an orthonormal 
base of TmV, that is g(vm,vm) = a, g(wm,wm) = b, g(vm,wm) = 0, a2 = b2 = 1. 
For u in a neighborhood of 0, let ^(u) be the geodesic in V with initial condition 
(m,wm). Let v(u) be the V-parallel displacement of vm along 7. Let t »-» tp(t,u) 

be the geodesic in V with initial condition (j(u), v(u)). We thus have a local chart 
(t, u) i-r <p(t, u) of V defined in a neighborhood of 0 E U2. We define two local vector 
fields v, w as follows: if mi = ip(t\,ui), then we put 

dip 
Vrni = d/~ 

and wmi is defined as the V-parallel displacement of 7(^1) along the curve t H-> 
(f(t,ui) up to the point mi. By this construction, it is clear that g(v,v) = a, 

g(w,w) = b, g(v,w) = 0, and that 

V ^ = 0, Vvw = 0, (Vwv)o7 = 0, (Vww)o<y = 0. 

Let us call / = g(v, Jw). Then 

QPv = Q(TJV) = Q(ag(v, Jv)v + bg(w, Jv)w) 

= —bfQw = —bf[Jw - ag(v, Jw)v) = bf(afv - Jw), 

QPw = af(Jv + bfw), 

Vvv = Vvv + a(v, v) = a£, Vvw = g(v, w)£ = 0, 

Vv£ = -A^v + Dv£ = - g ( £ , c > + 3QPv = -g(£,Z)v + 3bf(afv - Jw), 

V . ( = -g (£ , O™ + 3a/( Ju + 6/ti7), 

(Vww) 07 = ^ 0 7 , (Vwv) 07 = 0, 

*>(/) = Vvg(i;, Jw) = a#(£, Jw), uj(/) 07 = bg(v, JO o 7. 
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Thus, as computation shows, 

(R(v, w)Z) o 7 = ( - 3g(v, J£)Jw + 3g(w, J£)Jv 

- 6g(v,Jw)J£ + 12f(ag(J£t,v)v + bg(J£,w)w)^ 07 , 

whereas by (1) we have 

R(v, w)£ = g(v, J£)Jw - g(w, J£)Jv + 2g(v, Jw)J£. 

Therefore 

(g(J£,w)Jv - g(J£,v)Jw - 2g(v, Jw)J£ + 3f(ag(J£,v)v + 6p(Jf, w)w)) 07 = 0. 

If we apply J and then make the inner product by v we have along 7: 

ag(Ji,w) + 2>bfg(JZ,w)g(v, Jw) = g(J£,w)(a + 36/2) = 0. 

Assume that g(J£,w)m 7- 0. Then, / o 7 is constant in a neighborhood of 
0 and equal to J— ^ab. But then, by the preceding formulae, we would have 
d(f ° 7)/du = w(f) 0 7 = bg(v,J£) o 7 = 0 in that neighborhood. In particu­
lar, g(J£,v)rn = 0. Then P£m = bg(J£,w)rnw7n. Since / is real we have that 
—a6 is positive, so that a = — 6. Let c be an arbitrary real number and put 
i;m = vm cosh c + Wm sinh c, wm = vm sinh c + wm cosh c. Then ^(vm ,vm) = a, 

g(w'rn,w'rn) = 6, #(vm, wm) = 0, so that we have another orthonormal base of TmV. 

Then P^m = a^(J£ m , i ; m ) i ; m +6^(J£ m , ^ m )^ m = ^ J f , w)m(umasinhc+wm6coshc). 
If c 7-: 0 we have an orthonormal base of TmV on which both components of P£m are 
non-zero. Since the whole construction could have been done starting from the new 
base, we have reached a contradiction. We conclude that g(J£,w)m = g(J£, v)m = 0 
and as a consequence, if £m 7-= 0 one has moreover g(v, Jw)m = 0. Since m is ar­
bitrary, the same holds in the whole V. Then, if £ ^ 0, we have / = 0, D£ = 0, 
J(TV) CjT,J^e T(JV), VR(X,Y)Z = 0, R(X,Y,n,0 = 0 and g(Z,0 is constant. 

Theorem 2. Let V be a connected totally umbilical pseudo-Riemannian sub-
manifold of P(E © E*) with dimV > 1 and let JV be the bundle orthogonal to 
TV. Then, either V is totally geodesic or J (TV) C JV and in this case V is a 
pseudo-Riemannian manifold with constant sectional curvature. 

P r o o f . Let s > 2. Then, we put 

^={rneV:(Pov)\TnP{E(BE.)=0}, ^ = {m € V: ( P O T ) ^ ^ ^ = 0 } . 
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Clearly, these subsets are closed in V. By (9), srf U $ = V. If m G ^ n J , then 
P = T o J = 0 on TnxP(E 0 E*), and this is absurd because J is an isomorphism. 
Then ^ 0 / ^ = 0, and therefore either stf = V or & = V. Assume that .*/ = V. 
Then, by (1) and Lemma 1, (iii) we have 

(10) R(X, Y, 77, i) = -2g(X, JY)g(r], Jf) = 2<?(X, JY)g(JrJ,0 = 0. 

Now g(Jr\,X) = g(Prj,X) = 0, whence J(Jf) C ^K. Then, applying (10) to J77 
instead of 77, and having in mind that X, Y are arbitrary, we conclude that (7(77, £) = 0, 
that is £ = 0, and so V is totally geodesic. 

Thus, assume that 88 = V. Then J (TV) C JY. By Gauss' equation we have 
directly 

R(X,Y,Z,W) = R(X,Y,Z,W)+g(a(X,Z),a(Y,W))-g(a(Y,Z),a(X,W)) 

= (1 + l)(g(X, Z)g(Y, W) - g(Y, Z)g(X, W)), 

where / = <?(£,£)> which by Lemma 1, (ii), is a constant. The same results hold 
obviously when 5 = 2. D 

4. PARALLELS AS TOTALLY UMBILICAL SUBMANIFOLDS OF P(E®E*) 

Let F, A be subspaces of E and E*, respectively, such that the pairing F x A -> U 
given by (x, a) t-> a(x) is non-degenerate. Let / : F —> A be an isomorphism such 
that f(x, y) = f(x)(y) = /(ty,.r) for any x,y e F. We shall use the following notation 

F x = {a e £*: a(x) = 0, if x e F}, AJL = {xeE: a(x) = 0, if a e A}. 

We put 

T, = {x e F: f(x,x) = a}, 0 ^ a e U, 

and consider it as a pseudo-Riemannian sphere defined by the pseudo-Riemannian 
metric / on F. Let x0 + a0 be some fixed element of E 0 E* such that 

(11) a0 e F 1 , x0 e A-1, a0(x0) + a = l. 

We map F into F 0 E* by means of j : F -> K 0 E* defined by 

j(x) = x + x0 + f(x) + a 0 . 
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It is clear that since i*(X) = X + f(X), j is an isometry. Let x G E; then 
(j(x)j(x)) = f(x,x + ^o) + &o(x + x0) = a + a0(x0) = 1. Thus, j(E) C S. Also, if 
-Y G FTS we have 

0 ; (X ) ,v j ( x ) ) = ( J Y - f / ( X ) , x 4 - x 0 - / ( - r ) - a o ) 

= \ (f(X, x + xo)- f(x, X) - ao(X)) = 0 

because JY G F. Therefore, j*(X) is p-horizontal and, as a consequence, p o j : 

E —•> P(F 0 E*) is an isometry. Let us prove that V = p(j(T,)) is a totally umbilical 
submanifold of P(E 0 E*). 

Let X G <r(j(E)) . Then X is p-horizontal and there are fields X G -2T(V), 
X G S£(Y,) such that 

J * o X = X o j , p * o X = X o p , j ( K , X ) - = ( K , K ) o i = ^ X , X ) o p o j . 

We shall also consider fields Y, y , y with the analogous properties. We denote 
by X(Y) and X(y) the canonical covariant derivative in E and in E 0 E*. Let V E , 
V 5 , V, V be the Levi-Civita connections in E, 5, P(E (B E*) and V, respectively. 
We have 

v | y - X ( y ) + (K,y)n. 

Also, ( X ( y ) , v ) o j = -(Y,X(v))oj = -(Y,JX)oj = _ ( y + / ( y ) , X - / ( K ) ) = 

- | ( / ( y , N ) - f(X,Y)) — 0. Since n is also orthogonal to v, we have that V ~ y 

is p-horizontal. Let x(t) G E be an integral curve of X\ then, j(x(t)) is an integral 

curve of A". If x = rr(0), then 

(A '(y)) j ( I )=^| t = 0^-(x(t))=^| t = 0j'**. (t) = ^ L t e w + / ( * - < * ) ) ) 

= (x(y) + /(x(y)))^. 

Therefore, if HU denotes the p-horizontal part of U G £~(S), we have 

( / J V | F ) o i = A ' ( Y ) + / ( A > ( y ) ) + / ( A > , y ) ( n o j ) . 

Since p: S —>• P(E<&E*) is a pseudo-Riemannian submersion, we know [13, p. 212] 
that 

p*o(Hvfy) = (vxy)oP . 

Therefore 

( V x Y ) o p o j = p . o ( x ( Y ) + / ( A ( f ) ) + / ( A \ Y ) ( n o j ) ) . 
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On the other hand, since p o j . E -> V is an isometry, we have 

(poj)*V^Y=(VxY)opoj. 

Since (V*Y - VxY) opoj = (uVXY) opoj = a(X,Y) opoj defines the second 
ndamental form of V, we ne* 

about pseudo-spheres, we have 
fundamental form of V, we need only to calculate V? Y. But as it is well known 

V | F = X(Y) - \f(X(Y),x)x = X(Y) + ±f(X,Y)x, 

where x denotes the vector field whose value at x is x. Thus 

a(X,Y)opoj =p.o (x(Y) + f(X(Y)) + f(X,Y)(noj) - X(Y) 

-f(X(Ý))-f(X,Y)^±^-) 

= (g(X,Y)opo j)pt o ( ^ - ( x + f(x)) + x0 + Q 0 ) , 

and this proves that V = p(j(E)) is a totally umbilical submanifold of P(E 0 E*) 
with normal curvature vector field £ given by £ opoj = p+ (-^-i (x + /(x)) + x0 + ao). 
We have 

( ( x + / ( x ) ) + x o + a o , v ) o j = / (x+f(x))+x0+aQ,x-f(x)+x0-ao\ = o 

because of (11). Thus, ^ - ( x + /(x)) + x0 + a0 is p-horizontal. Hence 

l=9&0 = ( ^ Z ~ ( x + /(x)) + : r 0 + a 0 , ^ - — ( x + /(x)) + x 0 + a 0 ) = ——. 
\ a a l a 

Let us suppose that / = 0. Then a = 1 and by (11) we have ao(xo) = 0. Hence, 
if dimF-1 = codimF = 1, the vector field £, which in this case would be given by 
£op = p*(x0 + a0), must be an eigen-vector field of J. In fact, the assumption x0 / 0 
would imply then that F 0 IR̂ o = E. Since a0 G F1- and a0(:ro) = 0, we conclude 
a0 = 0 and J£ = £. If x0 = 0, then J£ = —f. 

Note that a = 1/(1 +/) . Therefore, this construction cannot yield the case / = — 1. 
To deal with it, let 0 ^ z G F be such that f(z, z) = 0 and put // = f(z). We put 

£ = {x G F: f(x,x) = 1, /i(x) = 1}. 

If :r G E and D G T^F, then v G TXE iff f(x,v) = //(*;) = 0, so that x, z span the 
orthogonal space to TXE in F. The orthogonal projection of a vector v eTxF upon 
TXE is given by v »-> v + (/z(v) - f(x,v))z - p,(v)x. Then, if K,Y G «3f(E), we have 

v ? y = x(Y) + (/i(K(y)) - f(x,x(Y)))z -»(x(Y))x = x(y) + f(x,Y)z, 
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because 

f(x,X(Y)) = X(f(x,Y)) - f(X(x),Y) = -f(X,Y), 

»(X(Y))=X(»(Y))=0. 

We map E into S by 

j(x) =x + f(x). 

As in the other case, this is an isometry and j(E) is p-horizontal, so that p o j is an 
isometry. The only change in the computations lies in the connection V E . By using 
its new formula, we have immediately with the same notations: 

a(X,Y) opoj=p* o (X(Y) + f(X(Y)) + f(X,Y)(noj) 

- X(Y) - f(X(Y)) - f(X, Y)(z + f(z))) 

= (g(X,Y)opoj)p*o (x-z + f(x) -p). 

Thus, p(j(T,)) is a totally umbilical submanifold of P(E(&E*) with normal curvature 
vector field given by £ o p o j = p+ o (x — z + / (x) — p). We have (x — z + f(x) — 
M,v j(x)) = -(z + p,x- f(x)) = -\( - p(x) + p(x)) = 0. Therefore / = g(£,£) = 
(/(x) — p)(x — z) = 1 - p(x) - p(x) = - 1 , as desired. We shall call parallels of 
P(E 0 E*) the totally umbilical submanifolds defined in this section. 

5 . CONSTRUCTION OF ALL THE TOTALLY UMBILICAL SUBMANIFOLDS 

OF P(E®E*) 

Until near the end, we shall assume in this section that V is a non totally geodesic, 
totally umbilical submanifold of P(E ®E*) so that £ 7- 0. First of all we shall prove 
that the inclusion J(TV) C Jf is strict. From (1), we have now, for K, Y G 3£{V) 

and 77,// E r(<yV), that 

R(X, r , 77, p) = g(JX, p)g(JY, 77) - g(JX, r])g(JY, /1), 

and this is zero if /x = £, that is 

(12) <7(JK, z)9(jY, V) - g(JX, 77)P(Jy, 0 = 0. 

Assume that J (TV) = Jf. Then we can put /3 = JK, p = JY and consider that 
they are arbitrary sections of Jf. Thus g(fl<>i)g(p,i}) - g(P,ri)g(p,£) = 0, that is 
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r) 0 £ = £ <g> 77 for every r? G V(^V), and this would imply 5 = dim V = rank,/V = 1, 

which is contrary to the assumption s ^ 2. 

Now, we prove that J£ G T(JV). In fact, since in (12) 77 is arbitrary we have 

g(JX, £)JY - g(JY, £)JX = 0. By multiplication by JX we get g(JX, £)JX A JY = 

0. Since J is an isomorphism and 5 ^ 2 , this implies g(JX,£) = —g(X, J£) = 

0, that is J£ G V(^V). From this, we can prove that if £ is not an eigen-vector 

field of J and / = 0 then s ^ r — 1. On these assumptions, let us consider the 

subbundle of jV generated by J (TV), £ and Jf, and suppose that there is some 

vector in the intersection of J (TV) with the subbundle generated by f and J£, namely 

JX = a £ + bJ£, with X G TV. Then X = aJ^ + 6f, whence X = 0. Therefore 

rank^V = 2r - s ^ s + 2. Now, <?(£, J O = 9&0 = </& J * ) = ~ g ( ^ , ^ ) = 0 for 

every X £ TV. The equal sign in 2r — s ^ s + 2 would then imply that g| ̂  be 

degenerate, for £ would be orthogonal to the whole JV\ so, 2r — s > 5 + 2, that is 

s < r — 1. 

The identity tensor field I can be decomposed into two projectors on the 

eigenspaces of J as I = | ( I + J ) + | ( I - J ) . Let Ttx = \(I + J)\TV> Tt2 = ^ ( I - J ) | r v / , 

v £ I^mV and suppose that K\(v) = 0. Then Jv = - u G c/Kn nT^V, whence v = 0. 

Thus, if Mi = Tti(TV) and M2 = Tt2(TV), we have that Ttx: TV -> M t and Tt2: 

TV —> M2 are isomorphisms. Let h be the isomorphism h: Mx —> M2 given by 

h = Tt2 o Tt^1. We claim that 

Tm - = { t ; + Л v : í ; Є ( M i ) m } . 

In fact, if v G ( M i ) m , then v = K\w, for some w G TmV. Thus tv = TtiHj + Tt2uj = 

Ttiuj + Tt2 o Tt^1 o Ttiuj = Ttiuj + h(K\w) = v + hv. Moreover, h is self-adjoint, that 

is g(hX,Y) = g(X,hY) for every X,Y G T(Mi), and the bilinear symmetric tensor 

field given by X,Y G T(Mi) i-> g(hX,Y) is non-degenerate at each point. To show 

this, we note that since Y + hY G S£(V) we have J(Y + hY) G T(jV), that is 

g(X + hX, J(Y + hY)) = g(X + hX,Y - hY) = g(hX,Y) - g(K,/iy) = 0. Also, 

g(X + hX, Y + hY) = 2g(hX, Y) by the above result, and the non-degeneracy of this 

bilinear symmetric tensor field follows from that of i*g. 

Let / + 1 ^ 0, so that V is not flat. Then, given a point m = p(y + 0) G V, with 
y + 0 G 5, we want to show that there is some parallel of P(E®E*), j (E) , defined as 
in Section 4, that passes by m having TmV as tangent space at m and £m as normal 
curvature vector at m. With the notations of Section 4, we want to determine x, x0, 
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f(x), a0, a such that if u + 7 is the p-horizontal lift of £m to y + (5, then 

x + xo + f(x) + a0 = y + /3, 
a— 1 a — 1 r / . 

x + x0 H / (x) + ao = w + 7> 
a a 

a 

The solution of this system is the following 

1 y-u ly + u r / x / ^ - 7 W + 7 
a = TTr X = TT7' *0 = 7TP f{x) = TT7' a° = TTT' 

We have 

(3(y) = l, i(u) = l, 7(2/) = 0, /3(u)=0, 

formulae that express that y + ft £ S, g(£,£) = /, u + 7 G Ty+pS and u + 7 is p-
horizontal. Let the superscript H denote the p-horizontal lift of TmV to Ty+pS. This 
lift preserves J and the inner product. Thus, as before we can see that (TmV)H = 
[v + f(v): v G MH = 7ti ((TmV)^)}, where / = TC2 O K^"1 with the obvious meaning. 
We put F = M^ + Rx. 

The formula for f(x), that until now was just a form, gives f(x)(x) = (fi — j)(y — 
u)/(l + I)2 = 1/(1 + I) = a. Also, f(x)(v) = 0 if v G Af/*. In fact, we have then 
v + f(v) G (TmV)11. But f, J<e G T(JV), whence <u + / (v) ,u + 7> = /(u)(ii) + 7 M = 0 
and (u + f(v),u — 7) = f(v)(u) — *y(v) = 0. Therefore f(v)(u) = 7(1;) = 0, and 
/(x)(u) = (/3(f) - 7(f ) ) / ( l + 0 = / 3 » / ( l + 0 and this is zero. In fact, v + f(v) 
is ^horizontal and tangent to 5, so that (v + f(v),y + j3) = (v + f(v),y — /3) = 0, 
whence /3(v) = f(v)(y) = 0. As a consequence, f(x) allows us to extend / to F by 
putting f(x,x) = f(x)(x) = a, f(x,v) = f(x)(v) = 0, and we have x G E, with E 
defined as in the preceding section. To complete our construction, we need to show 
that a0 G F±, x0 G /(F)-1 , and this is easily done using the same techniques used 
for proving that f(x)(v) = 0. 

Let I +1 = 0, so that V is flat. Now, we want to determine x, z, f(x), /z such that 
if u + 7 is the p-horizontal lift of £m to y + (3, then 

x + f(x) =y + P, 

x — z + f(x) — \1 = u + 7. 

Clearly, this implies 

z = y-u, x = y, /i = / ? - 7 , f(x)=(3. 
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F and / are defined as before. Then, f(x)(x) = (3(y) = 1, u.(z) = (/3 — ^)(y — u) = 

1 — 1 = 0. As in the other case, one can easily verify that this construction gives the 
desired parallel of P(E 0 E*). 

Theorem 3. Let V be a connected totally umbilical pseudo-Riemannian submani-

fold of P(E 0 E*) with s = dimV > 1 and assume that it is not totally geodesic. 

Then, V is contained in a parallel of P(E 0 E*) of the same dimension. 

P r o o f . As proved above, if m G V, there is a parallel of P(E 0 E*), p(j(Y,)), 
that passes by m having TmV as tangent space at m and £m as normal curvature 
vector at m. Let 7 be a geodesic of V. Then, we have 

V^7 = V^7 + 0 (7 ,7 )^ 07) = 0(7 ,7)^ o 7), 

V ^ = Dtf - Atf = -lr 

Thus, if we put x = £ ° 7, w e have a curve x m TP(E 0 E*), with projection 7 
on P(E 0 E*), that satisfies the following differential equations 

V^7 = g(7,7)x, 

V7X = - *7, 

where / is a constant. To convince oneself that this is a well posed system of ordinary 
differential equations, we can write it locally as 

& + (rjfc ° l)xjxk - (gjk o 'y)xjxkxi = 0, 

Xi + ^i
jkoy)x

jxk+lxi=0. 

Since the geodesies of both V and p(j(£)) starting from m satisfy the same system 
with the same initial conditions, we conclude that there is some open neighborhood 
of m where both submanifolds coincide. By a standard argument, we have our claim. 

• 
As for totally geodesic submanifolds of P(E 0 E*), we can separate them in three 

classes [6]. First, totally geodesic submanifolds with a degenerate metric i*g, which 
are of no interest here in the context of umbilical pseudo-Riemannian submanifolds. 

The second consists of the paracomplex projective subspaces. Let E = F(&G be a 
splitting of E in two subspaces, and let E* = F* 0C7* be the corresponding splitting 
for £*. Then, the inclusion i: F 0 F* -> E 0 E* passes to the quotient and gives 
the paracomplex projective subspace P(F ® F * ) 4 P(E 0 E*), which is a totally 
geodesic pseudo-Riemannian submanifold. 
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Submanifolds V of the third class are such that for each point m £ V, TmV = 

{v + hmv: v e (TmV) i}, where (TmV)i = (J + J)(TmV) and hm is a symmetric 

isomorphism from (TmV)1 to (TmV)2 = (I-J)(TmV). These are parallels of P(E<£> 

E*) given by the preceding formulae for the non-flat case when £ = 0. Then / = 0, 

a = 1, xo + cto = 0, and p o j : E —> P(E © E*) is a totally geodesic isometric 

immersion of the pseudo-Riemannian sphere E = {x € F: f(x,x) = 1}. Let us call 

meridians these submanifolds p[j(H)). 

Theorem 4. Let V be a connected totally umbilical pseudo-Riemannian sub-

manifold of the paracomplex projective space P(E© E*) with s = dimV > 1. Then: 

(1) If V is not totally geodesic, it is contained in a parallel of P(E © E*) of the 

same dimension s, and then V has constant sectional curvature. 

(2) If V is totally geodesic, then either it is contained in a paracomplex projective 

subspace P(F © F*) of P(E © E*) with dimF = ±s + 1 and then V has 

constant para-holomorphic sectional curvature, or it is contained in a meridian of 

P(E(BE*) of the same dimension s and then V has constant sectional curvature. 
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