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The notion of an MV -algebra originally constructed for giving an algebraic struc-
ture to the infinite-valued Lukasiewicz propositional logics (Chang [4]), turned out
to be related to the theory of linearly ordered groups (Chang [5]), the theory of cychi-
cally ordered groups (Gluschankof [6]), the fuzzy set theory (Belluce [1}), functional
analysis and lattice ordered groups (Mundici [10]).

The systems of axioms for defining the notion of an M V-algebra can be formulated
in various ways; cf. [2], [4], [6]. We shall apply the notation and axioms from [6].

To each MV-algebra A = (4; @, x,-,0, 1) we can assign a lattice L(A) = (4;V,A),
where the operations V and A are defined as follows:

(1) zvy=(zxwy) @y,
(2) xAy =—(~zV-y)
(cf. [4], [5], [6]).

Let us remark that if A; and A are MV-algebras such that the lattices £(A4;)
and L(A,) are isomorphic, then A; and A; need not be isomorphic. Thus A cannot
be reconstructed from L(A).

Direct products of MV-algebras have been dealt with in [4] and [2]. If ¢ is an
isomorphism of an MV-algebra A onto a direct product [] A;, then by means of ¢
we can construct an internal direct decomposition e

wo: A— HA?,
icl
where for each i € I, A? is isomorphic to A; and the underlying set of A? is a subset
of A containing the element 0. (The method is similar to that which is well-known
in the theory of groups; cf. e.g. Kurosh [9], p. 104.) Analogously we can construct
internal direct product decompositions of the lattice £(A).
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In this paper it will be shown that there exists a one-to-one correspondence be-
tween the internal product decompositions of an MV -algebra A and the internal
product decompositions of the lattice £(A). In fact, in a certain sense (specified in
3.3, 3.4 and 3.5) we can say that the internal product decompositions of .4 and those
of L(A) are very closely related. As a corollary we obtain that any two internal prod-
uct decompositions of an M V-algebra have a common refinement. Consequently, any
two direct decompositions of an M V-algebra have isomorphic refinements.

By applying some results of [8] on direct product decompositions of a complete
lattice ordered group we establish analogous theorems for direct product decompo-
sitions of complete MV -algebras. In this way we obtain a generalization of Belluce’s
theorem [2, Theorem 12] concerning a two-factor direct decomposition of a complete
MV -algebra, where the first factor is atomic and the second is atomless.

It is well-known that each polar of a complete lattice ordered group is a direct
factor. A question of the relations between polars of an MV-algebra A and prime
ideals of A which was proposed in (1] will be solved.

1. PRELIMINARIES
We recall the definition of an MV-algebra (cf. [6]).

1.1. Definition. An MV -algebra is a system A = (A;®, *,-,0,1), (where @, *
are binary operations, — is a unary operation and 0, 1 are nullary operations) such
that the following identities are satisfied:

(m) z@(ydz)=(zdYy) 2

(m3) T 0 = z;

(m3) z0Yy=y®z;

(mg) zd1=1;

(ms) -z =z;

(mg) -0 =1;

(m7) z® -z =1;

(mg) ~(rz@y)Oy=-(z®y) &z;
(mg) zxy=—(-z® y).

For the following lemma cf, [6] or [2].

1.2. Lemma. Let A= (A;®,%,,0,1) be an MV -algebra. Then the system
L(A) = (A,V,A), where V and A are binary operations on A defined by (1) and (2)
above, is a distributive lattice with the least element 0 and the greatest element 1.
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In what follows, when we consider a partial order on a set A, then it is always the
partial order defined by means of the lattice £(A) from 1.2.

From 1.2 we infer that the above system of axioms is equivalent to that given
in [4].

For lattice ordered groups we use the same notation as in [3].

Propositions 1.3 and 1.4 are due to Mundici {10} (Theorem 2.5 and 3.8).

1.3. Proposition. Let G be an abelian lattice ordered group with a strong unit
u. Let A be the interval [0,u] of G. For each a and b in A we put

a®db=(a+b)Au, -a=u-a, 1l=u

Next, let the binary operation x on A be defined by (mg). Then A = (A; ®,*,—,0,1)
is an MV -algebra.

If G and A are as in 1.3 then we denote A = Ag(G,u).

1.4. Proposition. Let A be an MV-algebra. Then there exists an abelian
lattice ordered group G with a strong unit u such that A = Aq(G,u).

Let us also remark that if A = Ap(G,u), then the operations V and A as defined
by (1) and (2) coincide with the original operations V and A on G (reduced to the
set A).

The following example shows that if A; and A, are MV -algebras and if £(A;) is
isomorphic to £(A3), then 4; need not be isomorphic to A,.

Let G, be the additive group of all rationals with the natural linear order and
G, = Gy o G1, where o is the operation of the lexicographic product. Put u; = 1
and ug = (1,0). Then u; is a strong unit in G; (¢ = 1,2). The interval [0,u,] of G;
is isomorphic to the interval [0,us] of G2. Let the MV-algebra A; be constructed
from G; (¢ =1,2) asin 1.3. Then £(A;) = [0,u1] and L(A3) = [0, us], hence L(A;)
is isomorphic to L£(Az). It is easy to verify that A; is not isomorphic to A;.

2. STRONG UNITS AND DIRECT DECOMPOSITIONS

In this section some auxiliary results on direct decompositions of a lattice ordered
group with a strong unit will be deduced.

Let G be a lattice ordered group and suppose that ¢ is an isomorphism of G onto
the direct product [] G; of lattice ordered groups G;. For i(1) € I and z € G we
denote by z;(;) the lceolmponent, of z in G;(;) with the respect to the isomorphism ¢.
We say that ¢ is a direct decomposition of G.

727



Next, let G?(n ={g9 € G: g;=0foreachi€ I\ {i(1)}}, z;1) € Gi1) and let m?(x
be the element of G?(1) such that (73?(1))5(1) = z;(1). Then the map

1) ¢*: G — HIG’?
i€

)

where ¢%(g9) = (...,20,...)ics is an isomorphism of G onto [][ G?. The direct
decomposition ¢° will be called internal and G? are the intemall(eiilrect factors of G.
All G¥’s are convex {-subgroups of G.

In what follows we shall deal only with internal direct decompositions and internal
direct factors of lattice ordered groups, the word “internal” will therefore be omitted.

A direct factor G? will be called trivial if GY = {0}. For the case G # {0} the
trivial direct factors G? can be cancelled in (1).

Let (1) be valid and let H be a convex ¢-subgroup of G such that G? C H for each
t € I. Then H is said to be a completely subdirect product of the lattice ordered
groups G? (i € I); this notion is due to Sik [11].

The following result is well-known.

2.1. Lemma. A convex ¢-subgroup K of G is a direct factor of G if and only if
for each x € G the set K N[0, z] has a greatest element; next, this greatest element
is the component of z in K.

As a corollary we obtain that for each y € G the component of y in a direct factor
K is uniquely determined. More thoroughly: if (1) is valid and if we have another
direct decomposition

oG — H Ggl
jed
such that there are i(1) € I and j(1) € J with G’?(l) = G?(ll), then for each y € G
the component of y in G?(l) (with respect to ¢°) is the same as the component of y
in G%,, (with respect to ¢%!).

Let us remark that an analogous result concerning uniqueness of components does

not hold in general for internal direct decompositions of groups.

2.2. Proposition. Let G be a lattice ordered group with a strong unit. Assume
that (1) is valid and that all direct factors G? are nontrivial. Then the set I is finite.

Proof. By way of contradiction, suppose that the set [ is infinite. Thus there
are distinct indices i(n) € I (n = 1,2,3,...). Let u be a strong unit in G. There
exists z € G such that for each positive integer n we have z?(") = nu?(l). Then for
each positive integer m the relation z € mu is valid, which is a contradiction. O
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Let L be the interval [0,u] of G. For direct decompositions of the lattice L we
shall apply similar notation as in the case of lattice ordered groups. To each direct
decomposition

P L — H L;
iel
of L we can construct the corresponding internal decomposition (analogously as in
the case of lattice ordered groups)

WO L — H LY,
i€l
where for each i(1) € I, L?(1) is the set of all x € L such that the component of
z in L; under ¢ is the least element of L; whenever ¢ € I'\ {i(1)}. Then all L?’s
are convex sublattices of L with the least element 0. Each L? possesses a greatest
element which will be denoted by z; and which is the component of v in the direct
factor LY under the isomorphism 0. It is easy to verify that for each z € L and

each i € I the component of z in L? under ¢° is the element z A z;.
For each subset X of G let X° be the set

X% ={y€G: |y|A|z| =0 for each z € X}.
2.3. Lemma. Let u be a strong unit of a lattice ordered group G. Assume that
¥: [0,u] — P xQ

is an internal direct decomposition of the lattice [0,u]. Then for each x € G with
0 < a the set [0,x] N P% has a largest element, and similarly for Q%. Further, the
join of these largest elements is x.

Proof. Foreach z € Gt there exists a positive integer n such that z < nu. We
apply induction on n. Let pg and go be the components of u in P or Q, respectively
(with respect to 1). Then u = pg V qo, po A go = 0.

Assume that n = 1. Then

[0,2] N P% = ([0,2] N [0,u]) N P% = [0,2] N ([0,u] N P%¢) =[0,2] N P.

The component of = in P is the element = A po; hence this is the largest element
of the set [0,z] N P%. The case of Q% is analogous. Hence

z=zAu=zA(poVag)=(Apy)V(xAqg).
Thus the assertion is valid for n = 1.
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Next, assume that n > 1 and that the assertion is valid for n — 1. It follows from
0 < z < nz = (n — 1)z + z that there are elements z; and z, in [0, z] such that

r=z1+22, 71<(n-1)z, 22< 2

In view of the induction hypothesis there exist elements y;,y2,y3 and y4 in [0, u]
such that

y1 = sup([0,z1] N P*), y> = sup([0,2:] N Q*),
ys = sup([0, z2] N P%%),  y4 = sup([0,z2] N Q%), and
1 =y1 VY2, T2=Yy3Vys.
Clearly a A b= 0 for each a € P®® and each b € Q%, thus a + b =a Vv b. Then
= Vy)+(ysVys) = 1 +y2) +(ys+ys) = W1 +y3) + Y2 +ya) =

(Y1 +y3) V (Y2 + ya)-

We have y; +y3 € P, yo +y4 € Q%°. Let z € [0,z] N P%. Then z A (y2 + y4) =0,
hence

z=zAz=2A((y1 +y3)V (y2+v4)) =2 A (y1 +y3).

Therefore y; + y3 is the largest element of the set [0, z] N P%¢. Similarly, yo + y4 is
the largest element of the set [0, 2] N Q%. The proof is complete. a

2.4. Proposition. Let G,u,P and @ be as in 2.3. Then there is an internal
direct decomposition
W% G — P8 x Q%

of the lattice ordered group G.

Proof. In view of 2.1 and 2.3, both P%® and Q% are internal direct factors of
G. Next, (P?%)% = Q%. Hence G is an internal direct product of P%¢ and Q%. O

Let us remark that by the obvious induction we can generalize 2.4 to the case of
direct decompositions of the lattice [0,u] with any finite number of direct factors;
2.2 shows that this cannot be done for direct decompositions of [0, u] with an infinite
number of direct factors.

2.5. Proposition. Let G and u be as in 2.3. We denote by F([0,u]) and F(G)
the systems of all internal direct factors of the lattice [0,u] and of the lattice ordered
group G, respectively. Both F([0,u]) and F(G) are partially ordered by inclusion.
For each P € F([0,u]) put f(P) = P%. Then f is an isomorphism of F([0,u]) onto
F(G).
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Proof. Let P,P, € F([0,u]). According to 2.3 and the facts established in the
proof of 2.3, f(P;) € F(G) for i = 1,2. Moreover, P, C P, = f(P,) C f(P,).

Assume that P, ¢ P;. Hence there is z € P\ P;. Next there is P € F([0,u]) such
that [0,u] is an internal direct product of P, and P;. Let z(P;) and z(P]) be the
component of z in P; and in P], respectively. Then z(P;) < z and z = z(P,)Vz(P]),
hence z(P]) > 0. We have

z(P{) ¢ P}°, z(P{) € P,

thus f(Py) € f(P1). Therefore f is a monomorphism of the partially ordered set
F([u,v]) into F(G).

Let X € F(G). Hence there is Y € F(G) such that there is an internal direct
decomposition ¢: G — X xY of the lattice ordered group G. Let X! be the natural
projection of [0,u] into X under ¢, and let Y! be defined analogously. Then it is
easy to verify that

X'=[0,ulnX, Y'=[0,unY.

If we put ¢y (t) = p(t) for each t € [0,u], then
10 [0,u] — X' x V!

is an internal direct decomposition of the lattice [0,u].

Clearly Y C (X1)% hence X =Y?® D (X')%. Let z € X,z > 0. There s a positive
integer n such that z < nu. Let u! and u? be the components of u in X! and in Y'!,
respectively (with respect to the isomorphism ¢;). Then nu = nu! +nu? = nu! vnu?
and

z=zAnu=(zAnu')V (zAnu?).

Since nu? € Y, we get £ Anu? = 0 and thus z = z Anu'. Consequently, z € (X1)%.
Hence X+ C (X1)% and therefore X = (X1)%,
We verified that f is an epimorphism. By summarizing, f is an isomorphism. 0O

3. INTERNAL DIRECT FACTORS OF MV -ALGEBRAS

When defining an internal direct decomposition of an MV -algebra we proceed
analogously as in the case of lattice ordered groups and lattices.
Let A = (A;®,%,7,0,1) and A; = (A;;®,*,,0,1) (i € I) be MV-algebras and
let
@: A— H.A,

i€l
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be an isomorphism of A onto [] A;. For a € A let a; be the component of a in A4;
i€l
with respect to ¢.

For each (1) € I we denote
AYyy={a€ A:a;=0foreachie I\ {i(1)}}.

Then A?(l) CAandOe€ A?(l)' In general, A?(l) need not be a subalgebra of A. In a
natural way we can introduce the MV -operations on the set A?(l); for distinguishing,
we shall denote these operations by ®;(1), *i(1), 2i(1), 0i(1) and 1;(1).

The operation ®;(;) is defined as follows. Let a,b € A?“) and let ¢ € A be such
that c;;) = (a @ b);1),ci = 0 for each ¢ € I'\ {i(1)}. Then c € A?(l); we put
a®d;qb=c

Analogously we define the operations *;(1), =1y and 1;(;). Clearly 0;;) = 0. Then
.A?(l) = (A?(1)§®i(1),*i(l),"‘i(x),O, 1;1)) is an MV-algebra.

For each i € I and each z° € A4; let ¢;(z*) be an element of A? such that (¢;(z?)); =
z'. Then ¢; is an isomorphism of A; onto A?.

This yields that the mapping ¢° of A into [] A4; given by

i€l

‘100(:1:) = ( o 7‘pi(xi)7 e )

is an isomorphism of A onto [] A?. We say that
i€l

0 A—)H.A?

i€l

is an internal direct decomposition of A; A? are called internal direct factors of A.
In the following lemma we assume that A is an M V-algebra. Then in view of 1.4
we can suppose that A = Ay(G,u).

3.1. Lemma. Let us have an internal direct product decomposition
(1) p:G— X XY

of a lattice ordered group G. Let u; and u; be the component of v in X and Y,
respectively. Then u; is a strong unit of X and uy is a strong unit in Y.

Proof. Thisis an immediate consequence of (1). O
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In view of 3.1 we can construct the MV-algebras 4; = Ag(X,u;) and Ay =
(Y,uz). The MV-algebra A; has the underlying set X° = X N [0,u] = [0,u4], and
analogously for As.

3.2. Lemma. Let us apply the same assumptions as in 3.1 and let A;, A,
be as above. Let 1 be the partial map ¢|jo,.w)- Then for each t € [0,u] we have
Y(t) € X° x Y° and the map

(2) ¥: [0,u] — XO x YO

defines an internal direct decomposition of the MV -algebra A with direct factors A;
and A;.

Proof. For each t € G let t; and t2 be the components of ¢t in X and in Y,
respectively (in view of (1)). Let ¢’ € X% and ¢” € Y°. Put ¢t = ¢' vt". Then
t =t Viyand t; =+, ty =t"”. Hence 1 is an epimorphism.

The operations in A; will be denoted by @;, *;, -, 0; and 1; (i = 1,2). Clearly
w Lave 0; =0 and 1; = u;, hence

¢(0) = (01,02), ¥(1) =9(u) = (11, 12).
Let a,b € [0,4]. In view of 1.3 we have
(a@b) = ((a+d)Au) = (a1 +b1) ANug = a1 D1 by,
and similarly for (a @ b)2, whence
Y(a®b) = (ay H; by,az G2 b>).
Next. (ma); = (v — a); = uy —a; = —1ay and analogously for (—a)2, whence
’1/1(“(') = (‘“1a1»'“2(l2)-

Since the operation * is defined by means of the operations @ and — (cf. (mg)) we

have also

y(a*b) = (ay *1 by, az *2 by).

Therefore (2) defines an internal direct product decomposition of the MV-algebra . !
with the direct fa tors A; and A,. O
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3.3. Lemma. Let A= Ay(G,u). Assume that
X: A— H'A’
el

is an internal direct product decomposition of A. For each i € I let u; be the
component of u in A;. Then the map

3) x: [0,u] — [0, ]

i€l
is, at the same time, an internal direct decomposition of the lattice [0, u].

Proof. Thisis an immediate consequence of the fact that the lattice operations
V and A are defined by means of the operations @, * and —. a

Again, let A = Ao(G,u). Suppose that (3) is an internal direct decomposition of
the lattice [0, u]. Let i(1) be a fixed element of J. In view of (3) there is u};,) € [0, u]
such that there is an internal direct decomposition

(4) xi): [0,u] — [0, uy1)]) % [0,uf(y)]
of [0,u]. Hence according to 2.4 there is an internal direct decomposition

Pi(1) G— Xi(l) X X{(l)

of the lattice ordered group G such that u;;) € Xju) and “2(1) € le(l). It is
easy to verify that u;;) and “2(1) are the components of u in X;(;) and in X{(l),
respectively (in view of ¢;)). Then according to 3.1, u;(1) is a strong unit in X;(;);
analogously, “2(1 ) is a strong unit in X 1{(1)' Hence we can construct the MV -algebras
Aiy = Ao(Xi), ui(1)) and A’i(l) = AO(X;(I),u’i(I)). Under this notation we have

3.4. Lemma. Let A be as above. Assume that (3) is an internal direct decom-

position of the lattice [0,u]. Then the map
X: A— H .Ai
i€l

determines an internal direct decomposition of A.

Proof. Let i(1l) be a fixed element of I. Then (4) is valid. According to 3.2 we
have an internal direct decomposition

(5) A— -Ai(l) X A;(l)’
where A;(1) has the underlying set [0, u;(1)] and AQ(I) has the underlying set [0, “:'(1)]‘

Consider the map x as defined above. From (3) and (5) we obtain that x: A —

I1 A: is an internal direct product decomposition of the MV -algebra A. ]
i€l
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By summarizing, 3.3 and 3.4 yield

3.5. Theorem. Let A= (A;®,*,—,0,1) be an MV -algebra and let L(A) =
(A; A, V) be the corresponding lattice. Then A and L(.A) have the same internal
direct decompositions (in the sense specified in 3.3 and 3.4).

Since any two internal direct decompositions of a lattice with the least element 0
have a common refinement, we obtain

3.6. Corollary. Any two internal direct decompositions of an MV -algebra A
have a common refinement. Any two direct decompositions of A have isomorphic
refinements.

4. COMPLETE MV-ALGEBRAS

An MV-algebra A is called complete if the corresponding lattice £(A) is complete.
An element a € A is an atom of A if it is an atom of £(A). Next, A is atomic if for
each y € A with y > 0 there is an atom z in A such that z < y (we apply the partial
order from £(A)). A is atomless if it has no atom. The set of all atoms of A will be
denoted by At.

4.1. Theorem. ([2], Theorem 9.) Let A be a complete MV -algebra. Assume
that At # 0 and that A is not atomic. Then A is isomorphic to a direct product
B x C, where B is complete and atomic and C is complete and atomless.

In the present section we shall prove a generalization of 4.1.

Let L be a lattice and let « be an infinite cardinal. We say that L has the property
p(a) if, whenever z,y € L and z < y, then there are z;,y; € Lwithz < z; <y; <y
such that card[z;,v1] < a.

The following two lemmas are easy to verify.

4.2. Lemma. Let A be an MV-algebra, card A > 1. Then the following
conditions are equivalent:

(i) A is atomic.

(i1) The lattice L(A) satisfies the condition p(Rg).

4.3. Lemma. Let A be an MV-algebra. Then the following conditions are
equivalent:
(i) A is atomless.
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(ii) If B is an interval of L(A), card B > 1, then B does not satisfy the condition
p(Ro).

It is easy to verify that each direct factor of a complete MV-algebra must be
complete. Hence in view of 4.2 and 4.3, Theorem 4.1 above can be expressed as
follows.

4.1'. Theorem. Let A be a complete MV -algebra. Then A is an internal direct
product of complete MV -algebras By and C; such that

(a) either By is a one-element MV -algebra or B, is atomic;

(b) C, satisfies the condition (ii) from 4.3.

Let A,G and u be as in 1.3 and 1.4. Assume that A is complete and that G is
an internal completely subdirect product of lattice ordered groups G; (i € I). Hence
each G; is an internal direct factor of G. For each 7 € I let u; be the component of
u in G;.

Under the above assumptions and notation we have

4.2. Proposition. A is an internal direct product of the MV -algebras A;
(i eI).

Proof. Let ¢(1) be a fixed element of I. Since G is an internal completely
subdirect product of the system {G;}ie there exists a convex ¢-subgroup GQ(I) such
that G is an internal direct product of lattice ordered groups G;(;) and Gi.(l). Let
;) be the component of u in Gj;). Then the lattice [0,u] is an internal direct
product of lattices [0,u1)] and [0,u};,]. Hence for each i € I, [0,u;] is a direct
factor of the lattice [0,u]. Thus according to 3.4 each M V-algebra A; is an internal
direct factor of A. For each = € [0,u] and ¢ € I the component of x in A; is @ A u;.
Consider the mapping ¢: [0,u] — H[O u;] defined by (p(z)); = = A u; for cach

1 € I. To complete the proof it sufﬁces to verify that ¢ is an epimorphism.
For each i € I choose z* € [0,u;]. Since [0,u] is a complete lattice there exists

2 € [0,u] such that = \/ 2%. Each interval of a lattice ordered group is infinitely
iel
distributive; thus for each i(1) € I,

Ui(1) Nr = Us(1) N <\/ Ii> = \/(ui(l) A Ii) = Uj(1) A :Ei(l) = aji(l)-
i€l iel
Hence o(x) = (z%);es, completing the proof. a

An interval of a lattice is called nontrivial if it has more than one element.
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4.3. Theorem. Let A be a complete MV -algebra. Then there exists an internal
direct decomposition ¢: A — [] A; such that for each i € I one of the following
i€l
conditions is satisfied:
(a) each nontrivial interval of A; is finite;
(b) there exists an infinite cardinal a; such that each nontrivial interval of A; has

cardinality o;; moreover, a?“ = ;.

Proof. Thisis a consequence of [5], Theorem 3.7 and of Proposition 4.2 above.
O

Let a be an infinite cardinal and let I be as in 4.3. We denote by I(1) the set of
all i € I such that a; > a; next, we put I(2) = I\ I(1). Then A is an internal direct
product of MV -algebras A! and A2, where

(i) A! is an internal direct product of MV-algebras A; (i € I(1)) if I(1) # 0,
and A! is a one-element MV-algebra otherwise,

(i) A? is an internal direct product of MV-algebras A; (i € I(2)) if 1(2) # 0,
and A? is a one-element M V-algebra otherwise.

Then A? satisfies the condition p(a) and either A! is a one-element MV -algebra
or A! fails to satisfy the condition p(a). Thus we have

4.4. Theorem. Let a be an infinite cardinal. Let A be a complete MV -
algebra. Then A is an internal direct product of MV -algebras A' and A? such that
A? satisfies the condition p(a), and either A' is a one-element MV -algebra or A'
fails to satisfy the condition p(a).

In view of 4.1’, Theorem 4.4 generalizes Theorem 4.1 above.
Let L be a lattice. Let [a,b] be a nontrivial interval of L and let R[a,b] be the
system of all maximal chains of [a,b]. We define the length s[a, b] of [a, b] by

sla,b] = min{card R: R € R[a,b]}.
From 4.2 and from Theorem 2.6 of [8] we obtain

4.5. Theorem. Let A be a complete MV -algebra, card A > 1. Then A is an
internal direct product of MV -algebras A; (i € I) such that for each i € I one of
the following conditions is satisfied:

(i) Every interval in A; is finite.

(ii) There is an infinite cardinal a; such that the length of each nontrivial interval
in A; is a;.
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By a method analogous to that in 4.4 we can verify that Theorem 4.1 can be
deduced from 4.5.

5. POLARS IN MV -ALGEBRAS

Again, let A be an M V-algebra and let the operations A and V be defined as in
the introduction. For each X C A we put

Xt ={a€A:xzAna=0foreach z € X}.

The set X is called a polar in A; it is also called the annihilator of X (cf. [1]).

A subset Y of A is said to be an ideal of A if it satisfies the following conditions:
ioeY; (i)ifz,yeY,thenzdy e Y, and (iii) ifz €Y and y < z, theny € Y.
(Cf. [4], Definition 4.1.)

For each ideal Y in A we can construct the factor structure A/Y’; it is an MV-
algebra; cf. [4] (1.18 and 4.3 (ii)).

An ideal Y of A will be called prime if the factor structure A4/Y is linearly ordered
(cf. [1], p. 1360).

5.1. Theorem. ([1], Theorem 26). IfY is a linearly ordered ideal of A then Y+
is a prime ideal.

In [1] it is remarked that it is not known if all prime ideals of A can be obtained
as annihilators in this manner. We shall answer this question in the negative.

Let B be a Boolean algebra such that B is infinite and has no atom. Hence no
nontrivial ideal of B is linearly ordered. The greatest element of B will be denoted
by u.

Let E be the vector lattice of all elementary Carathéodory functions on B (cf. 8],
Section 3, or Gofman [11]). Each nonzero element f of E can be expressed as

(1) f:a1b1+...+anbn

where a; # 0 are reals and b; € B, b; > 0, bj1) A bj2) = 0 whenever i(1) and i(2)
are distinct elements of {1,2,...,n}. We can identify the zero element of E with
the element 0 of B, and for any b € B we can put 1b = b. Let H be the subset of
E consisting of the zero element of E and of all elements f € F' that have the form
(1) where all a;’s (i = 1,2,...,n) are nonzero integers. Then H is a lattice ordered
group; the interval [0, u] of H coincides with the Boolean algebra B. Next, let G be
the convex ¢-subgroup of H which is generated by the element «. Then u is a strong
unit of the lattice ordered group G. Let us consider the MV-algebra 4 = Ay (G, u).
Hence A has the underlying set B.
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From the definition of G we obtain that for each x € G the relation 2z Au =z is
valid; hence z @ = z. Thus in view of Theorem 1.17, [4]

r®y=zVy, T*xYy=zcTAy

for each z, y in A. This yields that for a nonempty subset Y of A the following
conditions are equivalent:

(i) Y is an ideal of the Boolean algebra B,
(ii) Y is an ideal of the MV -algebra A.

Hence the notion of a maximal ideal in A and a maximal ideal in B coincide as well.

There exists a maximal ideal Z of the Boolean algebra B. Hence Z is a maximal
ideal of A. Thus according to [4] (Theorems 4.7 and 3.12) the MV-algebra A/Z is
linearly ordered and therefore Z is a prime ideal of .A. But Z cannot be represented
as Z = Y1, where Y is a linearly ordered ideal of A; namely, such an ideal Y of
A would be a nonzero linearly ordered ideal of the Boolean algebra B, which is
impossible.
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