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Czechoslovak Mathematical Journal, 44 (119) 1994, Praha 

ON EXTENDED CYCLIC ORDERS 

JAN JAKUBI'K, Kosice 

(Received November 16, 1992) 

The notion of cyclically ordered set will be applied in the same sense as in the 

papers [5] and [6]. 

Let G be a nonempty set and let C be a cyclic order on C. We define a ternary 

relation C0 on C by putting, for any x,y,z G C, 

(x, y, z) G Co iff either (x, y, z) G C or x = y = z. 

The relation Co will be said to be an extended cyclic order (corresponding to the 
cyclic order C). 

It is clear that C and Co are uniquely determined by each other. Hence every 

result on Co can be considered in a certain sense as a result on C. 

The pair (G, C0) will be said to be an ec-set. If, moreover, G is a group such that 

the group operation is compatible with the relation Co, then (G, +, Co) will be called 

an ec-group. 

The present paper deals with subdirect product decompositions of ec-sets and 

direct product decompositions of ec-groups. 

1 . PRELIMINARIES 

For the sake of completeness we recall here the basic definitions on cyclic orders. 

A ternary relation C on a set G ?- 0 is called a cyclic order whenever the following 

conditions are satisfied: 

(I) If (x, y, z) G C, then (z, y, x) G C. 

(II) If (x,y,z) G C, then (z,x,y) G C. 

(Ill) If (x,2/,z) G G and (x,z,u) G C, then (x,y,u) G C. 
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Under the above conditions, the pair G = (G, C) is said to be a cyclically ordered 
set. G is called a cycle if, moreover, for each (x,y,z) G G3 such that the elements 
x,y and z are distinct we have either (x,y,z) G G or (z,y,x) G G. 

We denote by ^ the class of all cyclically ordered sets. If G G *£, then (I) and 
(II) imply that whenever (x,y,z) G G, then card{a;,u,2:} = 3. 

For G = (G, G) G ^ let G0 be as above. The pair G0 = (G, G0) will be said to be 
an ec-set. The class of all ec-sets will be denoted by c€0. Next, we denote by ^ the 
class of all cycles; let ^0 be the class of all (G, G0) G % such that (G, G) e &l. 

Isomorphisms between cyclically ordered sets (or ec-sets) are defined in an obvious 
way. If two cyclically ordered sets G and H are isomorphic, then we express this 
fact by writing G = H; a similar notation will be applied for elements of %• 

Let G = (G;Go) G ^o- An element a G G will be said to be isolated (in G) if 
there are no elements b and c in G with b ^ a ^ c such that (a, b, c) £ C0. 

Let (G, ^ ) be a partially ordered set. We define a ternary relation G^ on G as 
follows. For x,y,z G G we put (x,y,z) G G^ iff some of the following condition is 
valid: 

x < y < z; y < z < x; z < x < y. 

It is easy to verify that (G, G^) belongs to *€. 

Again, let G E ^ and let G\ be a nonempty subset of G. Put G1 = G n G\. 

Then Gi = (G\, C1) belongs to c6>; it will be called a subsystem of G. Analogously, 
d o = (G\, Go) is said to be a subsystem of Go-

2 . DIRECT AND SUBDIRECT PRODUCTS 

In this section the notions of direct and subdirect product of ec-sets will be defined 
and it will be proved that each ec-set (G,Go) with cardG > 1 can be represented 
as a subdirect product of ec-sets (Gi,do) (i £ I) such that for each i G I either 
cardG; = 2 or cardG; = 3 is valid. 

Assume that I is a nonempty set and that G{ = (Gi, Ci) G ^o f° r each i G I. Put 
G = Y\Gi and let G be a ternary relation on G such that for x,y,z G G we have 

iei 
(x,y,z) G G iff (x(i),y(i),z(i)) G d for each i G I. Then G = (G,C) G % and we 
denote G = Yl G*; we also say that G is the direct product of ec-sets Gi. 

iei 
Let us apply the above notation and let G1 be a nonempty subset of G. Then 

we can construct the corresponding subsystem G1 of G as above. For i G I we 
put Gx(i) = {t G G{: there is g1 G G1 with gl(i) = t}. If Gx(i) = G{ for each 
i G I, then G1 will be said to be the subdirect product of e-cyclically ordered sets 
Gi (i G I). 
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The direct products of cyclically ordered sets and of ordered sets are defined 
analogously (cf. [1] and [6]). Also, the notion of the subdirect product for these 
cases can be introduced in the same way as in the case of e-cyclically ordered sets 
above. 

An ec-set G = (G,Co) will be said to be elementary if either (i) cardG = 2, or 
(ii) cardG = 3 and C ^ 0. It is obvious that whenever G t = (Gi,Cot) {i = 1,2) are 
elementary ec-sets such that cardGi = cardG2, then Gi and G2 are isomorphic. 
Hence there are, up to isomorphism, only two elementary ec-sets. 

We define A2 and A 3 in ^ as follows. We put A2 = (A2 ,C2), where A2 = {0,1} 
and C2 is the diagonal of A2. Next, let A 3 = (A3 ,C3), where A3 = {0,1,2} and 
C3 = (C^)o, where ^ is the natural linear order on A3. 

2.1. Theorem. Let G = {G,C0) G %, cardG ^ 2. Then G is isomorphic to a 

subdirect product of ec-sets G; {i G I) where I is a nonempty set and for each i G I 

either G t = A2 or Gz- = A3 . 

P r o o f . Let Ii be a set having the property that there exists a one-to-one 
mapping (Di of C onto I\. Next, let G° be the set of all isolated elements of G and 
let </?2 be a one-to-one mapping of G° onto a set I2, where Ii DI2 = 0 . Put I = Ii UI2. 
Let us remark that Ii can be empty, and similarly for I2. 

We set G^i) = A3 and Gt(2) = A2 for each i{\) G Ii and each i{2) G I2. Now we 
construct the direct product f] G t which will be denoted by H = {H,C). 

iei 
Let us define a mapping / : G —> II as follows. For a € G and i G I we have to 

define f{a){i). 

First let i G Ii- There are distinct elements x,y and z in G such that {x,y,z) G C 
and <Pil{i) = {x,y,z). We put 

f{a){i) = 0 if either x = a or a£{x,y,z}, 

f{a){i) = 1 if y = a, 

f{a){i) = 2 if z = a. 

Next, let i G I2. There is x G G° with <D2~l(i) --- x. We put f{a){i) — 1 if x = a, and 
f{a){i) = 0 otherwise. 

Put / (G) = H' and let C" be the extended cyclic order on H' which is inherited 
from C. Let a and a' be distinct elements of G. If a is isolated, then for i = (D2(a) 
we have f{a){i) ^ f{a'){i), thus f{a) ^ / (a ' ) . Next, assume that a fails to be 
isolated. Then there are b,c G G with b ^ a ^ c such that (6, a, c) G C. Denote 
<£i((6,a,c)) = i. Thus f{a){i) = 1 and f{a'){i) 7- 1. Therefore / is injective. 

Let a,b,c e G and assume that (a,6,c) G C0. If a = b = c, then we have clearly 
(/(a)>/(&)>/(c)) £ G". Suppose that a,b and c are distinct. Hence (a, 6, c) G C and 
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there is i G Ii with i = (Di(a,6, c)). Thus (f(a)(i)J(b)(i)J(c)(i) G G3. Moreover, 
for each j G I with j / i the relation f(a)(j) = f(b)(j) = f(c)(j) = 0 is valid. 
Therefore we have again ( /(a) , /(b) , / (c)) G G". 

Now let us assume that a, b and c are elements of G such that (a, b, C)GGO- Hence 
at least two of the elements a,b and c are distinct. If a is isolated and <p2(a) = i, 
then (f(a)(i)J(b)(i)J(c)(i))eC2, whence (f(a)J(b)J(c))eC". Suppose that the 
element a is not isolated. Thus there are b' and c' in G with b' ^ a ^ c' such 
that (a,b ',c') G C. Put i = <Di(a,b',c'). Hence f(a)(i) = 0. If b' = b, then 
c' 7- c and thus /(c)(i) ^ 2 implying that (f(a)(i)J(b)(i)J(c)(i))eC3. If b' / b, 
then f(b)(i) ^ 1 and hence in this case we also have (f(a)(i)J(b)(i)J(c)(i))eC3. 

Therefore (/(a), /(b), f(c))eC". 

Thus we have proved that / is an isomorphism of G onto (H', G"). It remains to 
verify that (H',C") is a subdirect product of ec-sets G, (i G I). 

Let i G Ii and t G {0, V 2}. There is (a, ^ c J E C such that (Di((a, b, c)) = i. Hence 
there is x G {a,b,c} such that f(x)(i) = £. 

Next, let i G I2 and t G {0,1}. Hence there is a G G° such that (D2(«) = ^ Then 
f(a)(i) = 1. Since cardG > 1 there is a' G G with a' ^ a. Hence f(a')(i) = 0. 

Summarizing, we conclude that (H ' ,G") is a subdirect product of the system 
{G{}{£/; the proof is complete. D 

2.2. Corollary. Let G = (G,C0) G %, cardG ^ 2. Assume that G has no 

isolated element. Then G is isomorphic to a subdirect product of ec-sets Gt- (i G I) 
where I is a nonempty set and G{ = A3 for each i G I. 

2.3. Remark. The above result 2.1 can be considered to be a representation 
theorem for ec-sets G = (G, Go) with cardG ^ 2 (i.e., it gives an embedding of 
G into a direct product of "standard" ec-sets Gt-; the "standardness" of G{ means 
that all G{ are elementary ec-sets). A representation theorem for cyclically ordered 
sets was proved in [6]; in the corresponding theorem of [6] all direct factors under 
consideration are isomorphic, but a subdirect product representation is obtained. 

2.4. Remark. If I is as in 2.1 and if we put Ht- = A2 x A3 for each i G I, then 

by an obvious modification of the proof of 2.1 we obtain an embedding / ' of G into 
the direct product Yi H;5 but in such a case f'(G) fails to be a subdirect product of 

iei 
the system {H z } ? € / . 

By a direct product decomposition of a cyclically ordered set G we understand a 
triple (G, Y[ GiJ), where all G, are cyclically ordered sets and / is an isomorphism 

iei 
of G onto n Gi 

iei 
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In an analogous manner we can define direct product decompositions of ec-sets 
and of partially ordered sets. 

The natural question arises whether the relations between different types of direct 
product decompositions are "good". 

For example: let G = (G,C) e ff and let (G, f] Gi,f) be a direct product 
iei 

decomposition of G. Put G0 = (G, Go); we can ask whether (G0 , Y[ G{0 , / ) must 
iei 

be a direct decomposition of G 0 (where G* = (Gi,Ci) and Gi0 = (Gt,Gi0)). 
The answers to this question and to some other analogous questions are negative 

in general (cf. 2.5-2.7; the proofs are routine and so they will be omitted). 
Let us remark that there exist positive results for an analogous situation in the 

theory of directed groups (cf. [3]). 
In 2.5 and 2.6 we apply the above introduced notation. 

2.5. Proposition. Let G G ^ and let (G, Y[ Gt, / ) be a direct product decom-
iei 

position of G. Assume that there is a £ G such that a fails to be isolated. Then 
(G0, Y\ Gio,f) is not a direct decomposition of G0. 

iei 

2.6. Proposition. Let G e tf and let (G0, n G»o,/) be a direct product 
iei 

decomposition of Go. Assume that there is a G G such that a fails to be isolated. 

Then (G, f] G t , / ) is not a direct product decomposition ofG. 
iei 

2.7. Proposition. Let (G, ^ ) be a partially ordered set, C = C^. Let 

((G, ^), IK^i'^)*/) oe a direct product decomposition of ( G , ^ ) . Assume that 
iei 

there are i(l), i(2) G I, i(l) ^ i(2) and elements a\,a2 G Gi(i), h,b2 G G;(2) such 
that ai < a2 and bi < b2. Let Ci be the cyclic order defined by means of the rela­

tion ^ on Gi. Then ((G, C), f ] (Gi,Ci), f) is not a direct product decomposition of 
iei 

(G,C); similarly, ((G,CQ), \~l(Gi,Cio),f) is not a direct product decomposition of 
iei 

(G,C0). 

3 . GROUPS ENDOWED WITH AN EXTENDED CYCLIC ORDER 

In the present section we will investigate direct product decompositions of ec-
groups. A sufficient condition for cancellability of direct factors will be found. This 
result will be applied in the next section for studying a particular type of direct 
product decompositions. 
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Cyclically ordered groups (G,+,C) such that (G,C) is a cycle were investigated 
by several authors; cf., e.g., the citations in [4]; the more general case where (G,C) 
is any cyclically ordered set was dealt with in [8], [9] and [10]. 

We will apply the folioving definition. 

Let (G, +) be a group and let (G, C) be a cyclically ordered set such that whenever 
(a, b, c) G C and x,y G G, then 

(x + a + y,x + b + y,x + c + y) G C and (-c, -b, -a) G C. 

Under these assumption (G, +, C) is said to be a cyclically ordered group. The class 
of all cyclically ordered groups will be denoted by Sfc. 

Next, we denote by Sfc° the class of all structures (G, +, C0), where (G, +, C) G #c-
The elements of Sfc° will be called ec-groups. If (G,+,C0) G ^c°,cardG > 2 and 
(G, Co) G ̂ 0 (cf. Section 1), then (G, +,Co) is said to be an £c-group. 

Let I be a nonempty set and for each i G I let Gj = (Gi, +, Ci0) G Sfc° and G G ^c°. 

The direct product [ ] G{ is defined in an obvious way. The meaning of the notation 
iei 

((G, J~[ G{, / ) is analogous to that introduced in Section 2. 
iei 

Under the above notation let i(l) G I. Put 

IIi(i) = {x£G: f(x)(i) = 0 for each i el\{i(l)}}. 

The corresponding ec-group (with the extended cyclic order and the group oper­
ation inherited from G) will be denoted by H ^ ) . We will call H ^ ) a direct factor 
of G . 

Let F(G) be the system of all direct factors of G; this system is partially ordered 
by inclusion. Then G and O = {{0},+, (0,0,0)} are the greatest and the least 
elements of F(G), respectively. 

In an analogous way we can define the system S(G) of direct factors of a directed 
group G. It is well-known that S(G) is a Boolean algebra. 

Returning to F(G) let us remark that the question whether F(G) is a lattice 
remains open. Some results concerning F(G) will be proved below. 

Let G = (G, +, Co) G Sfc° and let H be a subgroup of G. The ec-group H is defined 
by the inherited extended cyclic order; this will be denoted by C0(H). (Analogous 
notation are applied below.) 

3.1. Lemma. Let G and H be as above. Then the following conditions are 

equivalent: 

(i) H e F(G) . 
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(ii) There exists a subgroup H' of G such that the group G is a direct product 

of H and H' and for each triple (x,y,z) G C3 the relation (x,y,z) G Co is valid 

iff(x(H),y(H),z(H)) G C0(H) and (x(H'),y(H'),z(H')) G Co(H') (where x(H') is 

the component of x in H or in H' with respect to the direct product decomposition 

G = H x H', and similarly for y and z). 

P r o o f . This is an immediate consequence of the definition of F(G). • 

If the condition (ii) from 3.1 is satisfied then we write G = H x H'. 
More generally, let A\, A2,..., An be subgroups of G. The corresponding ec-groups 

will be denoted by Ai , A 2 , . . . , A n . We will write G = Ai x . . . x A n if 
(i) the group G is a direct product of its subgroups A\, A2,..., An; 

(ii) if g{ G G, g{ = a[ + a\ + ... + an with i = 1,2,3, and a) G A) for j = 1,2,..., n 

and i = 1,2,3, then the relation (g1,^2,^3) G C is valid iff (a^a^a?) G C(Aj) holds 
for each j G {1,2, . . .,n}. 

It is clear that each Aj belongs to F(G). The above definition yields 

3.2. Lemma. Let G = A x B, A = C x D. Then G = C x D x B. 

3.3. Lemma. Let H and Hi be elements of F(G) such that Hi C H. Let H ' 

and Hi be defined analogously as in 3.1. Then H = Hi x H 2 , where H2 = H n H[. 

P r o o f . The validity of the relation H = Hi x H2 in the group theoretical sense 
is obvious. The remaining part of the proof concerning the extended cyclic order on 
H is a consequence of the relation G = Hi x H^. • 

3.4. Corollary. Let H, K and Hi be elements ofF(G) such that Hi CH,HXC 

K and HC K. Then HnH[cKnH[. 

3.5. Lemma. Let H, K and Hi be elements ofF(G) such that Hi C H, Hi C K 

andHgK. Then HnH[gKnH[ (where H[ is as in 3.3). 

P r o o f . By way of contradiction; if H n H[ C K n H[, then in view of 3.3 we 
would have H C K. • 

Now, 3.1, 3.4 and 3.5 yield 

3.6. Proposition. Let G = H x H' G ^c°. Put L = {X G F(G): H C X} 
and (D(X) = Y, where Y = H' n X for each X G L. Let L be partially ordered by 
inclusion. Then <p is an isomorphism of L onto F(H'). 

Next, from 3.4 we infer 
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3.7. Lemma. Let G = H x H'. Put L\ = {X £ F(G): X C H}. Then 
L\=F(H). 

3.8. Corollary. Let G = H x H'. Assume that F(G) is a lattice. Then F(H) 
is a lattice as well. 

An ec-group G = (C,C) will be said to be a dc-group if it satisfies the following 
condition: 

(i) Whenever a and b are distinct elements of G, then there exists c G G such that 
either (a, 6, c) G C or (6, a, c) € C. 

The condition (i) is obviously equivalent to the condition 
(ii) Whenever a G C and a^-0 , then there exists b G C such that either (0, a, b) G 

C or (a, 0,6) G C. 

3.9. Theorem. Let G be an ec-group, G = A x B and G = A x D. Assume 

that D is a dc-group. Then B = D. 

P r o o f . Since the extended cyclic orders on B and D are inherited from the 
cyclic order on G it suffices to verify that B = D. By way of contradiction, assume 
that B # D. 

First, suppose that D c B. Hence in view of 3.3 there exists a direct decomposition 
B = D x Bi with B\ ?- {0}. Thus according to 3.2 we have 

(1) G = A x D x B i . 

There exists b\ G B\ with b\ ?- 0. The relation (1) yields that b\ does not belong 
to A + D. But from G = A x D we infer that b\ is an element of A + D, which is a 
contradiction. 

Next, suppose that D fails to be a subset of B. Hence there is g G D \ B. Since 
D is a dc-group there exists h G D such that either (0, g, h) G C or (0, /i, g) G C. 

Let (0,#,/i) G C (the case (0,/i,#) G C is analogous). Then g ^ 0 ?- /i and thus 
gG-4, /iG-4. Next, the relation h € B would imply that g G B\ therefore h does not 
belong to B. 

There are uniquely determined elements g\>h\ G A and g2,h2 € -9 such that 
g = <7i + 92 and h = h\ + h2. Prom the above mentioned relation we infer that the 
elements 0,gi,/ii are distinct; similarly, the elements 0, #2, h2 are distinct. Hence 

(2) (0 ,y i , / i i )GC and 
(3) {0,g2,h2)eC. 
Next, from the relations 

g2 = -gi + g, ^2 = - h i + /i 

and from G = A x D we obtain (by applying (3)) that (0, -gly -h\) holds, which 
contradicts (2). • 
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Let (C, < , + ) be a partially ordered group. Put C = C<-. Then (C ,C0 ,+) is an 
ec-group; it will be said to be generated by the partially ordered group (C, ^ , +) . 

An ec-group G is said to be directly indecomposable if, whenever G = Gi x G2 , 
then either cardCi = 1 or cardC2 = 1. 

3.10. Theorem. Let G be an ec-group which is generated by a nonzero directed 

group (C, ^ , +) . Then G is directly indecomposable. 

P r o o f . By way of contradiction, let us suppose that G = A x B, card A > 1, 
cardH > 1. 

First suppose that there exists a G A such that the element a is isolated in A. 
Then all elements are isolated in A. Since card .4 > 1, there is ai G A with ai 7- 0. 
Because G is directed, there are elements x and y in G such that 0 < x < y and 
ai < x < y. Hence we have 

(1) ( 0 , i , y ) € C , 
(2) ( o i , x , y ) € C . 
There are uniquely determined elements 03,04 G A and bi,b2 G B such that 

x = 03 + bi and y = 04 + 62. 
If 0 3 / 0 1 , then (2) implies that (01,03,04) belongs to C, which is a contradiction. 

Therefore a3 = a i . Hence according to (1) the triple (0,ai ,a4) belongs to C, which 
is impossible. Therefore there is no a G A which is isolated in A . 

Hence there are ai , a2 and a3 in A such that (a i ,a 2 ,a 3) G C. By a routine 
calculation we obtain that there are a[ and a2 in A with 0 < a[ < a2. Similarly, 
there are b[ and b2 in B such that 0 < b[ < b2. 

Hence 
(3) 0 < a[ < a[ +b[. 

Thus (0,01,01 + b'\) G C. From this and from the relation G = A x B we infer 
that (0,ai ,ai) G C, which is impossible. • 

4 . DIRECT PRODUCTS OF fc-GROUPS 

In this section it will be proved that if an ec-group G possesses a direct product 
decomposition such that all direct factors in this decomposition are ^c-groups, then 
the partially ordered set K(G) is an atomic Boolean algebra. 

In what follows we assume that G is an ec-group. 

4 .1 . Lemma. Each £c-group is directly indecomposable. 

P r o o f . Let G be an ^c-group and suppose that G = Gi x G2 , where card Ci > 
1 and cardC2 > 1. Thus there are elements g\ G Ci and o2 G C2 such that 
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9\ 7- 0 7- g2. Obviously gx 7- g2. Then neither (0,#2,#i) G C nor (0,#2,0i) is valid, 
which is a contradiction. • 

4.2. Lemma. Let G = H x H ; and let D be a direct factor of G such that D 
is an £c-group. Then either H n D = {0} or D C H. 

P r o o f . Assume that H D D 7- {0}. Hence there is d\ G D n H with di 7- 0. 
Let d2 G D,d2 7- di,d2 7- 0. Then either (0,di,d2) G C or (0,d2,di) G C. Therefore 
in view of G = H x H' we obtain that d2 G H and thus D C H. • 

4 .3. Lemma. Let G, H, H' and D be as in 4.2. Then either DCHorDCH'. 

P r o o f . By way of contradiction, assume that neither D C H nor D C H' is 
valid. Then in view of 4.2 

(1) DnH = {o} 

and 

(2) DHH' = {0}. 

There exist di and d2 in D such that 

(3) ( 0 , d ! , d 2 ) G C 

Next, there are uniquely determined elements a i ,a 2 G H and a\,o!2 G H' with 

di = a ; + a - (t = l,2). 

In view of (3) we have d\ 7- d2 and hence by applying (1) we get a\ 7- a2. Also, 
di 7-: 0 for i = 1,2 and hence ai 7- 0 7- a2. This yields that 

(4a) ( 0 , a i , a 2 ) G C 

Analogously we obtain that a[ y£ a'2,a[ ^ 0 ^ a'2 and 

(4b) ( 0 , a ; , a ^ G C 

There is a subgroup D' of G such that G = D x D'. Hence for each t G G there are 
uniquely determined elements t(D) G D and t(D') G D' such that t = *(£>) + t(D'). 
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In particular, we have ai = a\(D) + ai(D ;) , whence di - a[ — a\(D) + ai(D ;) and 

thus 

(5) - a i (D) + d\ = ai (D') + a[. 

From - a i ( D ) + dx € D we obtain that (-a\(D) + d\)(D') = 0. 

Thus (5) yields that 

(6) a/
1(D/) = - a 1 ( D / ) . 

Analogously we obtain 

(7) a'2(D') = -a2(D'). 

If a[(D') = 0, then according to (6) we have a\(D') = 0, thus ai = ai(D) G D, 

which is a contradiction (cf. (1)). Therefore 

(8) a'\(D')^0. 

From (4b) and from G = D x D' we infer that 

(9) (0,a /
1(D /) ,a /(D /))GC o 

is valid. Now, (8) and (9) yield that 

(10) (0,a /
1(D /) ,a /(D /))GC. 

In view of (6), (7) and (10) we have 

(11) ( 0 , - a i ( D / ) , - a 2 ( D / ) ) G C 

In particular, the elements 0,ai(D /) and a2(D') are distinct. Thus according to (4a) 

(12) (0 ,a i (D / ) ,a 2 (D / ) )GC, 

which contradicts (11). • 

4.4. Lemma. Let G = Y\ A* and assume that all Ai are ic-groups. Suppose 
iei 

that D is a direct factor ofG and that D is an ic-group. Then there is i(0) e I such 
that D = Aj(o) • 

P r o o f . By way of contradiction, assume that D ^ A^Q) for each i(0) G I. Thus 
D 7- Ai{0) for each i(0) G I. Let i G I. If D n A{ 7- {0}, then from 4.3 we infer that 
D C Ai and, at the same time, Ai C D. Therefore D = A{, which is a contradiction. 
Hence Dn Ai = {0} for each i G I. Put G • = [ ] Aj for each i G I. According to 

ie/\{0 
4.3 the relation D C G\ is valid for each i G I. But f| G\ = {0} and thus D = {0}, 

iei 
which is a contradiction. • 
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4.5. Theorem. Let G be an ec-group. If G can be represented as a direct 
product of (.c-groups, then this representation is unique. 

P r o o f . This is a corollary of 4.4. D 

4.6. Lemma. Let G = A x B and let D be a direct factor of G such that D 
is an £c-group, G = D x D' . Assume that there is 0 ^ a G A with a = d + d' ,d G 
D,d' eD',d^0. Then DC A. 

P r o o f . By way of contradiction, suppose that D fails to be a subset of A. 
Then in view of 4.3 we have D C B. Next, according to 3.3 there exists a direct 
decomposition B = Bi x D. Hence G = A x Bi x D. Now, 3.9 yields that 
A x Bi = D'. Thus the component of the element a G G in D (with respect to the 
direct decomposition G = D x D') is the same as the component of a in D with 
respect to the direct decomposition G = A x Bi x D, whence d = 0, which is a 
contradiction. D 

4.7. Lemma. Let G = [ ] Gi, where all Gi are £c-groups. Let A be a nonzero 
iei 

direct factor ofG. Then there is a nonzero subset 1(1) of I such that A = Yl £*%• 
iei(i) 

P r o o f . There exists a direct decomposition G = A x B. Put I(l) = {i G I: 
d C A} and 1(2) = {i G I: G{ C B}. Then 1(1) n 1(2) = 0; next, according to 4.3 
we have 1(1) U 1(2) = I. If 1(1) = 0, then according to 4.2 the relation A n G{ = {0} 
is valid for each i G I(l). Thus by applying the same notation as in the proof of 4.4 
we infer that A C G\ for each i G I and hence A — {0}, which is a contradiction. 
Therefore 1(1) ^ 0. Put 

p= n G - Q= n G -
iei(i) iei(2) 

Hence G = P x Q. 

Let a G A, a 7- 0. Thus there exists i G I with a(i) 7- 0. In view of 4.6, each such 
i belongs to I(l) and hence a G P. Therefore A C P. Analogously we can verify 
that B CQ. 

Let p G P. There are uniquely determined elements ai G A and bi G B such that 
p = ai + bi. Because o f i C P and H C Q we infer that bi = 0 and ai = p. Hence 
P C A. Summarizing, we conclude that A = P . D 

4.8. Theorem. Let G be an ec-group possessing a direct product decomposition 
G = Y\Gi, where all Gi are £c-groups. Then F(G) is an atomic Boolean algebra. 

iei 

P r o o f . In view of 4.7, F(G) is a Boolean algebra. Then according to 4.1, F(G) 

is atomic. D 
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5 . EXAMPLES OF EC-GROUPS 

5.1. Let R be the additive group of all reals with the natural linear order ^ . 
Next, let C^ be the cyclic order on R defined by means of the linear order ^ . We 
denote by G the set of all triples (x,y,z) with x,y,z G R. The operation + on G 
is defined componentwise. Let us define a ternary relation C on G as follows. Let 
ai = (xi,yi,Zi) eG,i = 1,2,3. We put (ax,a2,a3) € C if (i) («ri,a,2,X3) £ C^, and 
(ii) 2/1=2/2= 2/3? z\ = z2 = z3. Then (G, +, C) is a cyclically ordered group, whence 
(G,+,Co) is a ec-group. (G,-\-,C) fails to be a dc-group (e.g., if a\ = (0,0,0), 
a2 = (0,1,0), a3 e G, then neither (a\,a2,a3) G C nor (ai,a3,a2) G C is valid). 

5.2. If (G, ^ , + ) is a linearly ordered group, then (G,C<^,+) is an &-group. It 
is well-known that there exist ^c-groups which cannot be constructed in this way 
(cf. e.g. [2]). Each £c-group is a dc-group. 

5.3. Let G be the set of all pairs (x,y) with x,y G R. The operation + on G 
is defined componentwise. The ternary relation C on G is defined as follows. Let 
ai = (xi,yi), i = 1,2,3. We put (a\,a2,a3) G C if the following conditions are 
satisfied (we can consider ai to be points in a plane; the relation C.- has the same 
meaning as in 5.1): 

(i) 01, a2 and a3 are distinct and situated on a line; 

(ii) either (x1,x2,x3) G C<-, or xx = x2 = x3 and (2/1,2/2,2/3) € C^. 

Then (G, +, Co) is a dc-group which fails to be an fc-group. 

5.4. Let G0 be the set of all real functions defined on R. Next, let G be the set 
of all / G G0 having the property that the set of all points in which / fails to be 
continuous is finite. The operation + on G is defined componentwise. Let C^ be as 
in 5.L Next, let C be the set of all triples (f\,f2, f3) G G3 such that (i) fu f2 and f3 

are distinct, and (ii) for each i G R the relation (fi(i), f2(i), fs(i))) G (C-) 0 is valid. 
Then G = (G, C0, +) is an ec-group. The system F(G) of all direct factors of G is 
infinite and has no atom. 

5.5. Let (G,+,C 0) = G be as in 5.1. Put 

A = {(x,y,0):x,ye R}, B = {(0,0,2;): z G R}, 

D = {(0,y,z):y,zeU and y = z}. 
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Next, let A, B and D be the corresponding ec-groups (with the extended cyclic order 
inherited from G). 

Then we have 

(1) G = A x B 

and 

(2) G = A x D, 

but B / D . Hence the cancellation law for direct products does not hold in general. 
Next, if g G G, then the component of g in A with respect to the direct decompo­
sition (1) need not be equal to the component of g in A with respect to the direct 
decomposition (2). 

Let us consider the partially ordered set F(G). For X, Y and Z the notation 
X A Y = Z will mean that Z is the greatest lower bound of the system {X, Y} (and 
dually for V). We have 

AAB = AAD = O, 

A V B = A V B = G. 

Hence F(G) fails to be a distributive lattice. 

5.6. Let (G,CQ) be an ec-set and suppose that (C ,+) is a group such that 

(i) whenever a, 6, c, x,y G G and (a, 6, c) G C, then 

(x + a + y, x + 6 + y, x + c + y) G C. 

If, moreover, (G,C) is a cycle, then from the well-known representation theorem 
(cf. [7]) we easily obtain that also the following condition is valid: 

(ii) whenever (a, 6, c) G Co then (—c, —6, —a) G Co-

If we do not assume that (G, C) is a cycle, then the condition (ii) need not hold. 
Indeed, let (C ,+) be as in 5.1. Let us now define a ternary relation C on G as 
follows. Put ai = (1,0,0), a2 = (0,1,0), a3 = (0,0,1). For bub2,b3 G G we put 
(6i,62,63) G C if there exist z G G and a cyclic permutation (j(I), j(2), j(3)) of 
(1,2,3) such that bi = o^) + z is valid for i = 1,2,3. 

Then (G, C) is a cyclically ordered set and for the ec-set (G, Co) the condition (i) 
is satisfied. We have (61,62,63) G Co, but (—63, —62, —61) does not belong to Co-
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