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1. This paper is concerned with the study of oscillatory/nonoscillatory behaviour
of solutions of nonhomogeneous third order differential equations of the form

(1.1) y" +a(t)y" +0(t)y + c(t)y = f(t),

where a, b, ¢ and f are real-valued continuous functions on [o, ), ¢ € R, under the
assumption that the associated homogeneous equation

(1.2) v +a®)y" +0(t)y +c(t)y=0

is oscillatory/nonoscillatory.

A great deal of work on oscillation theory of (1.2) has been done during the last
several years (see Gregu$ [2], Hanan [3], Jones [4-6], Lazer [9], Parhi and Das [11,13]
and the references therein). The first author and S. Parhi obtained sufficient condi-
tions for oscillation and nonoscillation of (1.1) in [15-17]. However, the techniques
employed here are different from the former ones.

A continuous real-valued function y on [o,00) is said to be oscillatory if it has
arbitrarily large zeros in [0, 00); otherwise, it is said to be nonoscillatory. Eq. (1.1)
or (1.2) is said to be oscillatory if it has an oscillatory solution, and it is said to be
nonoscillatory if all of its solutions are nonoscillatory.

Following Hanan [3], Eq. (1.2) is said to be of Class I or Cy if any solution y(t)
of the equation with y(to) = v'(to) = 0, y"(to) > 0, to > o, satisfies y(t) > 0
for o0 < t < to. It is said to be of Class II or Cy; if any solution y(¢) of it with
y(to) = y'(to) = 0, y"(to) > 0, to > o satisfies y(t) > 0 for t > tg. We say that

* This work was done under a scheme supported by the U.G.C., India, under Grant No.
F. 8-9/87(SR-III).
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Eq. (1.1) has no solution with (2,2)-distribution of zeros if it has no solution with
two consecutive double zeros.

The motivation for the present work had come from the work of Sitter and Tefteller
[19] and from certain observations of the properties of solutions of the third order
differential cquations with constant coefficients of the form

(1.3) y"' +ay’ + by +ey=f
and the associated homogeneous equations
(1.4) y" +ay" + by’ +cy =0,

where a, 0, c and f € R such that f # 0. Clearly, all solutions of (1.4) are nonoscil-
latory if and only if its characteristic equation

(1.5) m® +am +bm+c=0

has only real roots, say v;, i = 1,2, 3. Consequently, the general solution of (1.3) for
¢ # 0, is given by
_f

3
t) = /\i _Yita /\i R
y(t) . +§ e €

which is nonoscillatory. Hence nonoscillation of (1.4) implies nonoscillation of (1.3).
On the other hand, oscillation of (1.4) nced not imply the oscillation of (1.3). Indceed,
a solution basis of

ym _ 2y' —4y=0

is given by
p— —_— . 92
{e"*cost, e sint,e*}.

So the gencral solution of the corresponding nonhomogencous equation
y' -2 -4y =f,
where f € R and f # 0, is of the form
y(t) = —£ + Are~tcost + Age " sint + Age?,
which is nonoscillatory for all real A;,7 = 1,2,3. However, for a > 0 (or < 0). b <0
and ¢ > 0, oscillation of (1.4) implies the oscillation of (1.3). Indeed, oscillation of

(1.4) implies that (1.5) adnits two complex roots a + i3 and a — i and a negative
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real root . Clearly, b = y(a+i8) +v(a +13) + (a+i8) (o +i/3) implies that 2ay < b
and hence o > 0. Consequently, y(t) = % + Xe®t cos At is an oscillatory solution of
(1.3). Thus, fora > 0 (< 0), b < 0 and ¢ > 0, (1.3) is oscillatory if and only if
(1.4) is oscillatory. Further, under these conditions on cocfficients, Eq. (1.5) admits
complex roots, that is, (1.4) is oscillatory if and only if

2a3 al)+c_ 2 (91_1,)3/2>0
27 3 3v/3\3 '

2. Equations (1.1) and (1.2) may be written, respectively, as

(2.1) (rt)y") +qt)y' +p(t)y = F(t)
and
(2.2) (r(t)y") +q(t)y" + p(t)y =0,

where r(1) = exp(f s)ds), q(t) = b(t)r(t), p(t) = c(t)r(t) and F(t) = f(t)r(1).
Let {uy,uz,uz} be a solutlon basis for (2.2) such that

u (t) uz(t) ugz(t)
W(ur,ug,u3)(t) =| uj(t) wh(t) uz(t) [=1
rtuy(t) r(uy(t) r(t)us(t)

Then the general solution of (2.1) is given by

3
(2.3) y(t) = coui(t) + y,(8),
=1
where ¢y, ¢2, ¢3 are constants and y,,(t) is a particular solution of (2.1) and is given

by
JJu(t)  ua(t)  us(t)

w®= [ |l wls) usls)| Fs)ds.
7 lui(s) up(s) us(s)
Clearly, y,(0) = 0, y,(0) = 0 and y, (o) = 0. Following Sitter and Tefteller [19],
1W;(t) denotes the determinant obtained from W (uy,us, u3)(t) by replacing the ith-
column with the vector (0,0,1)7,i=1,2,3. So

yp(t) = Zuz / s)W;(s) ds
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and

3 t
y(t) = Zui(t) [ci + / F(s)W;(s) (ls}.
i=1 o
Lemma 2.1. Ify(t) is a solution of (2.1) given by (2.3), then

(2.4) ()W (#)y" (t) — ()W (t)y'(t)

+ aOWi) + (OW ) y(0) = i + / F(s)Wis) ds,

i=1,2,3.

Proof. We may see that S;(t) = ¢; + f; F(s)W(s)ds, i =1,2,3, where S;(t)
denotes the determinant obtained by replacing the ith-column of W (uy, us,us)(t)
with the vector (y(t),y'(t),r(t)y"(t))". Indeed, for i = 1 we write

y(t) u,(t) uz(t)
si=| v we G
r(t)y"(t) r(t)uy(t) r(t)us(t)
Then
y(t)  ux(t) us(t)
SIB =y W) wb) | = FOW)
F@) 0 0

implics that
t

S1(t) = Si(0) +/ F(s)Wi(s)ds.

g

But S (o) = ;W (o) = ¢;. Consequently, S (t) =c; + f; F(s)W(s)ds. Expanding
S1(t), we obtain (2.4) for ¢ = 1. Similarly, one may obtain (2.4) fori =2 and 3. O

Lemma 2.2. Suppose that W, (t) #0 fort > tg > o. If y(t) is a solution of (2.1)
given by (2.3), then it is a solution of the sccond order nonhomogencous equation

(2.5) (R()y") +Q(t)y =G(t), t=>to,
where
1 _qOWi(t) + (W ()’
0= Q0= T owee
and

t
G(t) = [01 + / F(s)W(s) ds] /r(t)wf-(t).
Proof. Dividing (2.4) with i = 1 by »(¢)IWW3(t), we obtain (2.5). a
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Lemma 2.3. If W (t) # 0 for t >ty > o, then uy(t) and us(t) satisfy
(2.6) (R(t)y) +Q(y =0, t>to

where R(t) and Q(t) are the same as in Lemma 2.2.

Proof. Clearly, ux(?) and uz(t) are solutions of the second order differential

equation
UZ(t) 'Ltg(t) T
uy(t) us(t) g =0
r(t)uy(t) r(t)uy(t) r(t)”
Expanding this determinant we obtain (2.6). a

Theorem 2.4. If Wi (t) 20 for t > tqg > o and
(2.7) (R(t)y") + Q(t)y = Gc(t), t > to,

is nonoscillatory for every constant ¢, where R(t) and Q(t) are the same as in Lemma

2.2 and
Qm=k+/

o

t

nmm@@ymmﬂm
then (2.1) is nonoscillatory.

The proof of the theorem follows from Lemma 2.2.

Remark 1. (i) The adjoint of (2.2) is given by
[(r(8)y")" + a(t)y] — p(t)y = 0.
If q(t) is differentiable, then it takes the form
(2.8) (r@®)y)" + )y’ + (d'(t) — p(t))y = 0.
It is easy to verify that Wy (t) satisfics (2.8). (ii) 1V (t) satisfies the equation
(r(5)z") +q(t)z = g(t),

where g(t) = r(t)(u)(t)uf (t) — uh(t)ul(t)).
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Proposition 2.5. (i) If p(t) > 0 and ¢(t) < 0, then (2.2) is of Cy.

(ii) If (p(t) < 0 and ¢(t) <0, then (2.2) is of Cyy.

(iii) If »'(t) > 0(< 0) and g € C'([o, ), R) isa such that 2p(t) — ¢'(t) > 0(< 0).
then (2.2) is of C(Cyy).

The proof in cach case is straigthforward and hence is omitted.

Theorem 2.6. Suppose that (2.2) is of C; or C; and F(t) does not change sign
for large t. If (2.2) is nonoscillatory, then (2.1) is nonoscillatory.

Proof. As (2.2) is nonoscillatory, it follows from Theorem 4.7 due to Hanan
[3] that (2.8) is nonoscillatory. So W) (t) is nonoscillatory. Suppose W, (t) # 0 for
t > to 2 o. Further, from Lemma 2.3 and the fact that (2.2) is nonoscillatory it is
clear that (2.6) is nonoscillatory. Suppose that F(t) > 0 or < 0 for t > t; > to. For
any constant c,

h(t) =c+ /L Wi(s)F(s)ds

[ed

is nonoscillatory, because /() > 0 or < 0 for ¢ > t;. Hence it is clear from Theorem
3 due to Keener [8] that (2.7) is nonoscillatory for every constant ¢. Thus the
conclusion of the theorem follows from Theorem 2.4. O

Example. Consider the equation
(2.9) y" 4oy 427y =3+, t>0.

Theorem 2.2 due to Hanan [3] and Theorem 3.5 due to Lazer [9] imply that the ho-
mogencous equation associated with (2.9) is of C; and nonoscillatory. Conscequently,
t

by Theorem 2.6, all solutions of (2.9) are nonoscillatory. In particular, y(t) = ¢ is a

nonoscillatory solution of (2.9).

Remark 2. (i) Hanan in [3] and Lazer in [9] have obtained various sufficient
conditions for nonoscillation of (2.2).

(ii) Although Kcener [8] has proved his Theorem 3 for r(t) = 1,p(t) > 0 and
f(t) > 0, his result holds good for

(r@)y") +pt)y = f(1),

where 7(t) > 0 and f(t) does not change sign for large ¢. There is no sign restriction
on p(t).

448



If F(t) is allowed to change sign for large t, then (2.7) is nonoscillatory provided
(2.6) is nonoscillatory and

(2.10) /t G.(s)P(s)ds

is nonoscillatory, where ®(t) is a solution of (2.6) (see [14], Theorem 4.1). Hence we
have the following result:

Theorem 2.7. Supposc that (2.2) is of C; or Cy and (2.10) is nonoscillatory,
where ®(t) is a solution of (2.6). Then (2.2) is nonoscillatory implies that (2.1) is
nonoscillatory.

The following result due to Leighton and Nehari [10, Lemma 1.2] is used in the
sequel.

Lemma 2.8. Let u and v € C'((a,b), R), and let v(t) be of constant sign in (a, b).
If a and (a < a < 3 < b) are consccutive zeros of u(t), then there exists a nonzero
constant A such that the function u(t) — Av(¢t) has a double zcro in (a, 3).

Theorem 2.9. If (2.2) is of C; and Cyy, then it is nonoscillatory.

Proof. Since (2.2) is of Cjy, the solution y(t) of (2.2) with initial conditions
y(o) =y'(0) = 0,y"(0) > 0 has the property that y(t) > 0 for ¢t > o. If possible, let
z(t) be an oscillatory solution of (2.2). Let ag, 81, a2, 82(0 < a; < f1 < az < 32) be
succesive zeros of z(t) such that z(t) > 0 for ¢t € (a1,6;) U (a2, 82). By Lemma 2.8,
there exists non-zero constants A\; and A, such that z;(¢) = z(t) — M\ y(¢) has a double
zero at ty € (ay, A1) and z3(t) = z(t) — Ay(t) has a double zero at ty € (aa, B2).
Since z(1) > 0 in (a1, B;) and (a2, 32) and y(t) > 0 for t > o, we have A\; > 0 and
Ao > 0. If Ay > Ay, then zo(t1) = 2(t1) — Aay(t1) > z(t1) — My(t1) = 21(¢1) = 0 and
(1) = 2(A1) — Ay(B1) = —\y(B1) < 0. Thus 2,(t) is a solution of (2.2) with a
zero in (ty, £1) and a double zero at t,, which constradicts the assumption that (2.2)
is of Cp. If Ay < Ag, then z(82) = 2(t2) — Miy(t2) = 2(t2) — A2y(ta) = 22(t2) = 0
and z1(81) = z(B1) — My(B1) = =My(B1) < 0. Hence z(t) is a solution of (2.2)
with a zero in (f31,t2] and a double zero at t;, a contradiction to the assumption
that (2.2) is of Cr;. Hence (2.2) cannot have an oscillatory solution. Thus (2.2) is
nonoscillatory. This completes the proof of the theorem. 0

Remark 3. (1) If p(¢) > 0,¢(t) < 0 and p(t) — ¢'(¢t) < 0, then (2.2) is of C;
and Cy;. Indeed, Proposition 2.5 (i) yields that (2.2) is of C;. Next we show that
the adjoint of (2.2), given by (2.8), is of C;. If not, then y(t) is a solution of (2.8)
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with y(a) = y'(a) = 0,3”(a) > 0 and y(to) = 0 for some ¢ < ty < . Consequently.
there exists a 8 € (to, ) such that y'(#) = 0 and y(t) > 0,y'(t) < 0 for t € (3, ).
Multiplying (2.8) by r(t)y’(t) and integrating the resulting identity from 3 to a we
obtain

0= [wwea s [ roaowe? e

+ "0 (1) - p(O(O' () dt <0,
B

a contradiction. Hence (2.8) is of C;. Consequently, by Lemma 2.9 due to Hanan
[3], (2.2) is of Cyy.

(ii) If p(¢) < 0,q(t) < 0 and p(t) —¢'(t) = 0, then (2.2) is of C; and Cy;. Indeed, it
follows from Proposition 2.5 (ii) that (2.2) is of C;;. Now we show that the adjoint
of (2.2), that is, (2.8) is of Cy;. If not, suppose that y(t) is a solution of (2.8) with
the property y(a) = y'(a) = 0,y"(a) > 0 and y(to) = O for some t;z > a > o.
Consequently, there exists a 8 > a such that y'(3) = 0 and y(t) > 0,y'(t) > 0 for
t € (o, B). Multiplying (2.8) by r(¢)y'(t) and integrating the resulting identity from
a to 3 we obtain a contradiction. Hence, by Lemma 2.9 due to Hanan (3], (2.2) is of
Cy.

Corollary 2.10. Suppose that conditions of Theorem 2.9 are satisfied and F(t)
does not change sign for large t. Then (2.1) is nonoscillatory.

The proof follows from Theorem 2.6 and 2.9.

Remark 4. In [16, Theorem 2.1], Parhi and Parhi have proved that F(t) >
0, p(t) > 0, q(t) < 0 and p(t) — ¢'(t) < 0 imply that all solutions of (2.1) are
nonoscillatory. Remark 2(i) implies that Corollary 2.10 is a generalization of their
result.

Lemma 2.11. If W, (t) is nonoscillatory, then every solution of (2.7) is a solution
of (2.1).

Proof. From the discussions at the begining of this section it folows that
Aui(t) + yp(t), A € R, is a solution of (2.1) and (2.7). Since {uz,u3} forms a fun-
damental set of solutions of (2.6) (see Lemma 2.3), the general solution of (2.7) is

given by
y(t) = Aup (t) + yp(t) + Aaua(t) + Asus(t)
= /\Ul(t) + /\Q'll,z(t) + /\3U3(t) + yl,(f),/\'z,/\g € R,
which is a solution of (2.1). a
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Theorem 2.12. If W(t) is nonoscillatory and, for some constant ¢, Eq. (2.7) has
an oscillatory solution, then (2.1) is oscillatory.

The proof follows from Lemma 2.11.

Theorem 2.13. Suppose that (2.2) either is of Ct or is of Cy; and oscillatory.
Further, assume that the second order nonhomogeneous equation

(2.11) 2"+ g1(t)z = ha(t),

where )
g(t) | (r@OWI@)  1W'() 3 (Wi(1)?

gi(t) = 0 + rOWi(t)  2Wi(t) 4 W2(t)

and

ha(t) = 1 - /U F(s)Wi(s)ds,

() (W (t

has an oscillatory solution. Then (2.1) is oscillatory.

Proof. Suppose that (2.2) is of C;. Let the solution basis {uy,us,uz} of (2.2)
satisfy the initial conditions

ui(o) =1, wuj(o) =0, uf (o) =0,
uz(o) =0, uh(o) =1, uy (o) =0,
uz(0) =0, uh(o) =0, uf(o)=1/r(o).

O

It may be casily verified that the Wronskian W (uy,us,us)(t) = 1 and Wy(t) =
wp (L) us(t) — uy(t)us(t) is a solution of (2.8) with the properties Wi (o) = W{ (o) = 0,
W/{'(c) = 1. From Lemma 2.9 due to Hanan [3], it follows that (2.8) is of C;;. Hence
Wi(t) > 0 for t > . The transformation y(t) = z(t)(W;(t))'/? transforms (2.7)
with ¢ = 0 to (2.11). Hence the given hypotheses imply that (2.7) with ¢ = 0 has
an oscillatory solution. Consequently, the oscillation of (2.1) follows from Theorem
2.12. Thus the proof of the theorem is completed when (2.2) is of Cj.

Next, suppose that Eq. (2.2) is of C;; and oscillatory. To complete the proof of
the theorem it is sufficient to construct a solution basis {u;,uz,u3} of (2.2) such
that Wi (t) = wa(t)uy(t) — uh(t)us(t) > 0 for large t. Indeed, in that case we use
the transformation y(t) = z(t)(Wyi(t))'/? and proceed as above to arrive at the
conclusion.

Let y1(t) be an oscillatory solution of (2.2). Let 8 > o be such that y;(3) # 0.
Suppose that (t,)oo, is a sequence of zeros of y;(t) in (3, 00) such that t, = oc as
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oo
n=

n — co. Define a sequence (z,,(t)),—, of nontrivial solutions of (2.2) on /3, 00) with
the boundary conditions

In(/}) = In(tn) =0.

3
Then there exist real constants ¢y, ¢z, and csp, such that x,,(t) = Y ¢;pvi(t) with

=1

3> ¢, =1, where {vi,v2,v3} is a solution basis of (2.2). We claim that the zeros of

in
;/:](f) and x,,(t) separate each other in (3,t,). If possible, let a; and az(a; < ay)
be consecutive zeros of y1 () in (3,t,) and let a,(t) > 0 or < 0 for t € [a;,a]. It
follows from Lemma 2.8 that there exists a constant A such that y;(¢) — Az, (t) has
a double zero in (ay,a3). This contradicts the fact that (2.2) is of Cy; because the
solution y; (t) — Az, (t) of (2.2) has a zero at t = ¢,,. Since y; (t) and z,,(¢) are linearly
independent solutions of (2.2) and ¢, is a common zero, Theorem 2.10 due to Hanan
[3] yields that 2:,(t) cannot vanish at a; or az. Hence z,(t) has a zero in (aq, ay).
Similarly, it may be shown that y;(¢) has a zero between two consecutive zeros of
2, (t) in (B,t,). Thus our claim holds. Since the sequence (cin)oo,, i = 1,2,3, is

n=1"
bounded, it admits a convergent subsequence (cim_)zo:l, say, with limit ¢;, 7 = 1,2, 3.
3
So {z,, } converges uniformly to a solution y2(t) = 3 c;v; of (2.2). Thus y2(3) =0

i=1
and hence y,(t) and y,(t) are linearly independent. We claim that the zeros of

y1(t) and y,(t) separate each other in (M, o00) for some M > 3. From Theorem
2.10 due to Hanan [3], it is clear that y;(t) and y2(¢) can have at most one zero in
common. Hence there exists M > 3 such that y;(¢) and y»(t) have no common zero
in (M,00). Suppose that a; and ay € (M,00) (a; < as) are consecutive zeros of
y1(t). Clearly, y2(t) does not vanish at a; and as. Suppose that y2(t) > 0 or < 0 for
t € [a1,a3]. Without any loss of generality, we may take y,(t) > 0 for t € [a;, az].
Then there exists an ¢ > 0 such that y,(t) > ¢ > 0 for t € [, a2]. Since the
sequence (x,,) converges uniformly to y2 on [ay, as], there exists an integer N > 0
such that |y2(t) — a,, ()] < /2 for t € [a1,a2] and ng > N. Thus, for ngy > N such
that t,,, > a2,

To, (t) > y2(t) —€/22e—¢/2=¢/2 for te€[ar,a2],

which contradicts the fact that x,, (t) has a zero between any two consccutive zeros
of yi(t) in (B, %, ). Hence y2(t) has a zero in (ay,as). Next we show that y; (t) has
a zero between two consecutive zeros of y»(t). Let oy and ay € (M, 00), oy < as,
be consecutive zeros of y»(t). We may assume, without any loss of generality, that
y2(t) > 0 for t € (ay,a2). Suppose that y;(t) # 0 for ¢t € [a;,az]. Since y(t) is
oscillatory it is possible to find £; and B2 such that 8, < a1 < ay < B2, 11(31) =
0 = yi1(B2) and y,(t) # 0 for t € (B1,82). (If such a B; does not exist, then we
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choose M to be the zero of y,(t) which is just before the first zero of y;(t).) Since
(2.2) is of Cyy, the zeros a; and as of y»(t) are simple. Hence it is possible to
find a positive number ¢,t; € (B1,a1) and ty € (ay,az) such that y2(t;) < —e and
y2(t2) > €. It follows from the definition of y,(t) that there exists an integer Ny > 0
such that |x,x(t) — y2(t)| < € for ng, > N, and t > M. This in turn implies that
Tn, (t1) < y2(t1) + € < 0 and x,, (t2) > y2(t2) — e > 0 for ng > Ny. Thus x,,, (t) has
a zero in (tp,ty) for ny > Np. Similarly, there exist an integer Ny > 0, t3 € (ay, a2)
aud ty € (az,32) such that x,, (t) has a zero in (t3,t4) for nx < Ny. Choosing ny
large enough such that ny > max{N;, N>} and t,, > B2, we see that z,, (t) has two
zeros in (81, f2), a contradiction to the fact that the zeros of z,, (1) and y; (f) are
interlaced in (S, t,, ). Hence y;(t) has a zero in (a1, az). Thus we have shown that
the zeros of y (¢) and y»(¢) are interlaced in (M, 00), M > .

Next we claim that every linear combination of y;(t) and y2(t) is oscillatory. If
possible, suppose that piy; () + uoy2(t) is nonoscillatory for some nonzero relas ju
and 2. Without any loss of gencrality, we may assume that p;y1(t) + p2y2(t) > 0
for t > to > M. If ty, ta, t3 (t1 < t2 < t3) are succesive zeros of y;(t) in [tg, 00),
then poy»(t;) > 0, ¢ = 1,2,3. This contradicts the fact that the zeros of y(t)
and y»(t) are interlaced in (M,00). Hence our claim holds. Now we show that
y1(O)ys(t) — yi(®)y2(t) # 0 for ¢ > M. Otherwise, there exists a v > M such
that y1 (7)y5(y) = y1 (v)y2(y) = 0. Since the zeros of y; (t) and y»(t) arc interlaced in
(M, 00), then y; () and y2(y) are not zeros simultaneously. Hence v(t) = y1 (v)y2(t)—
y2(7)y1(t) is a nontrivial solution of (2.2) with v(y) = v'(y) = 0 and v"(y) # 0.
Consequently, (2.2) is of Cy; impplies that v(t) > 0 or < 0 for ¢ > =, a contradiction
to the fact that every linear combination of y;(¢) and y»(t) is oscillatory. Hence
y1(t)ys(t) — yi(t)y2(t) # 0 for t > M. We assume, without any loss of generality,
that y ()y5(t) — y1(t)y2(t) > 0 for t > M.

Let y3(t) be a solution of (2.2) with y3(3) = y4(8) = 0,y5(8) = 1. Clearly
y1(t),y2(t) and y3(¢) are linearly independent. Hence I.V(yl,y-z,yg)(t) =k #0. Now
setting

ur(t) = y3(t),ua(t) = y1(t) and ws(t) = ya(t)
we see that {uy,uz,u3} is a solution basis of (2.2) with Wi(t) = uz(t)ul(t) —
uh(t)us(t) > 0 for large t.
Hence the theorem is proved.

Remark 5. Eq.(1.2) admits a nontrivial solution y(t) with the property y(«) =
y(3) = 0 where 0 < o < . Indeed, the solutions y; (t) and y»(t) of (2.2) with initial
conditions

yi(a) =0,y1(a) =0,y (a) =1
y2(a) = 0,y5(a) = 1,95 () =0
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arc lincarly independent. If either y,(3) = 0 or y2(8) = 0, then there is nothing to
prove. Otherwise,

= 8O
y(t) = y1(t) yz(ﬂ)yZ(t)

is the required nontrivial solution of (2.2) with the property y(a) = y(3) = 0.

Theorem 2.14. Suppose that (2.2) is of Cy. If (2.1) does not admit a solution
with (2, 2)-distribution of zeros and F(t) does not change sign for large t, then a
necessary and sufficient condition for (2.1) to be oscillatory is that (2.11) has an
oscillatory solution.

Proof. If (2.1) is oscillatory, then by Theorem 2.6 (2.2) is oscillatory. From
Theorem 2.12 due to Parhi and Das [12], it follows that y,(¢) is oscillatory. Pro-
ceeding as in the first part of Theorem 2.13, we obtain W (t) > 0. Since y,(t) is a
solution of (2.7) for ¢ = 0, then z(t) = y,(t)(W;(t))~'/? is an oscillatory solution of
(2.11). The sufficiency part follows from Theorem 2.13.

Hence the proof of the theorem is complete.

Remark 6. (i) (Sce Theorem 2.8 [12].) Suppose that p(t) > 0,p'(t) > 0, F(t) >
0and F'(t) <0. If

(2.12) (r®)z") +q(t)z=0

is nonoscillatory, then (2.2) is of C; and (2.1) does not admit a solution with (2,2)-
distribution of zeros.

(i) (See Theorem 2.10 [12].) Suppose that p(t) < 0, p'(t) > 0, F(t) > 0, F'(t) > 0,
'(t) = 0 and 2p(t) — ¢'(t) > 0. If (2.12) is nonoscillatory, then (2.2) is of C; and
(2.1) does not admit a solution with (2,2)-distribution of zeros.

Corollary 2.15. Suppose that p(t) > 0, p'(t) =2 0, ¢(t) <0, F(¢t) > 0, F'(t) < 0.
Then a necessary and sufficient condition for (2.1) to be oscillatory is that Eq. (2.11)

has an oscillatory solution.

Proof. Theorem 2.8 due to Parhi and Das [12] implies that (2.2) is of C; and
(2.1) docs not admit a solution with (2,2)-distribution of zeros. Hence the proof
follows from Theorem 2.14. ]

Remark 7. If p, q, r and F are real constants such that ¢ < Oor >0,p >0
and F > 0 and (2.2) is oscillatory, then (2.11) has an oscillatory solution. Indced, in
this case (2.1), (2.2) and (2.8) are reduced, respectively, to

"

y" +qy' +py = F,
(2.13) y" +qy +py =0,
(2.14) v +qy —piy =0,
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t > o, where p; = p/r, ¢ = q/r and Fy = F/r. The characteristic equations of
(2.13) and (2.14) are given respectively by

(2.15) m3 + qgm+p; =0,
nd + an—p; =0.

Since (2.13) is assumed to be oscillatory, Eq. (2.15) admits two complex roots, say
«a +if and a — i, and a real root, say v. Without any loss of generality, we may
assume that 3 > 0. Clearly,

(2.16) {e"*/k,e* cos Bt, e sin Bt}

forms a basis for the solution space of (2.13), where £ # 0 is the value of the
Wronskian of {e7!/k,et cos Bt,e* sin Bt}. Writing u;(t) = €' /k,u2(t) = e*! cos At,
and uz(t) = e* sin Bt, we see that W(u1,uz,u3)(t) = 1 and Wi (t) = ua(t)us(t) —
u)(t)uz(t) = Be®** > 0. Since p; > 0, we have v < 0 and hence (a + i) +
(a — B) + v = 0 implies that @ > 0. Consequently, g1(t) = ¢ + 3a?,h(t) =
W )Ry [fWi(s)ds > 0 and

Fle—at
2ﬂ1/2

for sufficiently large t. Clearly, uy(t) and uz(t) are linearly independent oscillatory

R (t) = [3e2(e= —1] <0

solutions of
uz(t) wuz(t) =
uh(t) wugz(t) 2'|=0
wf(t) W) 2"
that is, of

- ' W'+ aWi)\
217) (Wlu)) +( W )"”‘0‘

Since the transformation z(t) = z(t)(W;(t))!/? transforms (2.17) to

(2.18) 2"+ q1(t)2=0

this equation is oscillatory and hence g;(t) > 0. From Theorem 2.4 due to Skidmore
and Leighton [18], it follows that (2.11) has an oscillatory solution. Hence we have
the following proposition.

Proposition 2.16. Consider (2.1) and (2.2) with p, q, r and F are constants such
that p > 0 and F' > 0. Then (2.2) is oscillatory implies that (2.1) is oscillatory.

Proof. If ¢ <0, then the proof follows from Corollary 2.15 and Remark 7 (we
may note that this fact has been observed at the beginning of the paper).
If ¢ > 0 then the proof follows from Proposition 2.5 (iv) and Theorem 2.13. O
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3. In this section we obtain sufficient conditions in terms of coefficients and the
forcing terms for Eq. (1.1) to be oscillatory. First we state a result due to present
authors [12] to be used in the sequel.

Theorem 3.1 (Theorem 2.6 [12]). Suppose that (1.2) is of C; and (1.1) does not
admit a solution with (2, 2)-distribution of zeros. If (1.2) is oscillatory, then (1.1) is
oscillatory.

Theorem 3.2. Suppose that b(t) < 0, ¢(t) > 0, '(t) 20, f(1) > 0, f'(t) <
and 2b(t) — a'(t) < 0. Then (1.2) is of C, and (1.1) does not adnut a solution mth
(2, 2)-distribution of zeros.

Proof. The proof that (1.2) is of C; is straightforward and hence is omitted.
Let y(t) be a solution of (1.1) with consecutive double zeros at t = « and t = 3.
Suppose that y(t) > 0 for t € (a, 8). Multiplying (1.1) by »’(t) and then integrating
the resulting identity from « to 8 we have

a Ol
0> [ [y + BT gz - ) a

k
- / F )y de >0,

a contradiction.

Now suppose that y(t) < 0 for t € (a,8). Then there exists a point v € («, 3)
such that y'(y) = 0 and y'(t) > 0 for t € (v,3). Eq. (1.1) may be written as (2.1).
Multiplying (2.1) by 3'(t) and integrating the resulting identity from vy to 3 we obtain

B
0= [ [0 0 - a0 - powoy' o
-
+(t) f(t)y'(t)] dt >0,
a contradiction. Hence the proof is completed. O

Theorem 3.3. Suppose that a(t) > 0,0(t) < 0,c(t) > 0 and b(t) — a'(t) < 0. If

oo 3(t . b —a'
(3.1) /a [2“27(”—“(0( (t)3 O 4 1)
2 (lQ(t) 1 2 —
- (o0 Ja -

then equation (1.2) is oscillatory.
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Proof. Let u(t) be a nonoscillatory solution of (1.2). By Lemma 2.2 due to
Erbe [1], w(t)u/(t) 2 0 or £ 0 and u(t) > 0 for large ¢, say, for t >ty > 0. In view
of Lemma 2.3 due to Erbe [1], to complete the proof of the theorem it is enough to
show that u(t)u'(t) > 0 is not I)Ob\lble

Suppose flldt w(t)u'(t) = 0for t >ty > 0. Clearly z(t) = w'(t)/u(t) satisfies the
Riceati equation

(3.2) 243z Fa(t) = =[5 4 a(t) 2 4+ 0(1)z + c(t)].
Integrating (3.2) from tg to t we have

3z 2(f) 32%(to)
2

F

(3.3) SHOR +a(t)z(t) = 2'(to) + —— + alto)z(to)

- /' [(23(s) + a(s)=2(s) + (b(s) — a'(s))2(s) + c(s)] s

The minimum of [23(s) + a(s)22(s) + (b(s) — @/(s))z(s) + ¢(s)] for positive z(s) is
given by

3/2

20°(s)  a(s)(b(s) —a'(s)) | 2 ra®(s)
T ; +els) = 5= (5~ ) - o))

Subsituting this value into (3.3) we see that hm z'(t) = —oo. Consequently, z(t) < 0

t—o0
for large t, a contradiction.

This completes the proof of the theorem. O

Corollary 3.4. Supposc that a(t) > 0, b(t) < 0, c(t) > 0, b(t) — a'(t) < 0O,
d(t) =20, f(t) >0 and f'(t) < 0. If (3.1) holds, then (1.1) is oscillatory.

The proof of the Corollary follows from Theorems 3.1, 3.2 and 3.3.

Theorem 3.5. Suppose that a(t) <0, b(t) <0, ¢(t) > 0 and b(t) — a’(t) < 0. If

(3.4) /:o [ )7( ) u(t.)gb(f) Fe(t) - 3_%((,,2;) o) —a’(t)))m] U — o

then (1.2) is oscillatory.
This is Theorem 2.1 in [13] due to the present authors.

Corollary 3.6. Suppose that a(t) < 0, b(t) < 0, ¢(t) > 0, b(t) — a'(t) < 0.
() =20, f(t) =0 and f'(t) <0. If (3.4) holds, then (1.1) is oscillatory.

The proof of the Corollary follows from Theorems 3.1, 3.2 and 3.5.
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