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(Reccived May 25, 1992)

1. INTRODUCTION

Often the approach to studying abcelian groups is to view them as modules over
their endomorphism rings. This approach was initiated by J. Reid and continued by
several others. (For example, [A], [R], [AP], [VW], [V]).

One natural problem is to describe the injective hull of A as a module over its
endomorphism ring E(A). In particular, when does the injective hull of the E(A)-
module A coincide with the divisible hull of the abelian group A? A description of
the E(A)-injective hull of A was given in [VW] for torsion-free groups of finite rank
and an answer to the question was given in [V] under further restrictions on A.

Our purpose is to address this question further. This leads to the following prop-
erty which is dual to flatness. A torsion-free group A is called coflat if, for every n,
whenever B is a pure subgroup of A™ which contains an epimorphic image of A™ as
an essential subgroup for some m, then A™/B is a subgroup of a direct sum of copics
of A.

In Section 2, we explore the coflat property and give various characterizations of
coflatness in Theorem 2.4. These results are applied to finite rank coflat groups in
Section 3. In particular we show that a finite rank group A is coflat if and only if
the E(A)-injective and Z-divisible hulls of A coincide.

Section 4 discusses the relationship between the coflatness of A and ring-theoretic
properties of E(A4). We show that in order for A to be coflat, E(A) must be of a
certain genre, so we introduce the concept of a coflat ring. A ring R is called coflat
if whenever M is an R-module with M torsion-frec and 0 - V = @, R — M — 0
is exact with V' containing a finitely generated module U with V/U torsion, then M
is a submodule of a finitely generated projective module. We show that when A is
faithfully flat as an E(A)-module, A is coflat if and only if E(A) is a coflat ring. This
is in sharp contrast to the case when A is flat over E(A), since for every cotorsion-free
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reduced ring E there is a faithfully flat group A with E = E(A). Furthermore, our
results allow us to give examples of coflat groups and non-coflat groups.

We write Rp(A) for {ker f | f: A = B}. The symbols H4 and T, denote the
functors H4(G) = Hom(A,G) and Ta(M) = M @pga) A respectively. Associated
with these functors is the evaluation map 0g: TaHA(G) — G. The class €4 of
A-solvable groups consists of the abelian groups G for which 8 is an isomorphisin.
The natural map from a right E(A)-module M into H4aT4(M) will be denoted by
@A -

2. COFLAT GROUPS OF ARBITRARY RANK

Our description of coflat group requires the following discussion of finitely A-
generated subgroups of A’ i.e. subgroups which are images of A™ for some n. We
say that a submodule U of the left E(A)-module Hom(A™, A) is an annihilator if
U = {f € Hom(A™, A) | f(X) = 0} for some subset X of A™.

Theorem 2.1. The following conditions arc equivalent for a torsion-free abelian
group A:
(a) Hom(A™, A) has the ACC for annihilators for all n < w.
(b) For every index-set I and every finitely A-generated subgroup U of Al there
is a finite subset J of I such that kerm; NU = 0 where m;: AT — AY is the
projection whose kernel is A\ .

Proof. We will first show that (a) = (b).

Let U be a finitely A-generated subgroup of A’ for some index-set I. There are
m < w and an epimorphism ¢: A™ — U. Assume, kerm; N U # 0 for all finite
subsets .J of I. Let jo € I be arbitrary. If we have found J, = {jo,...,jn} C I, then
Unkermy, # 0 allows us to choose an index j,41 € I\ J, and un4; € U Nkerny,
with 7, (un41) # 0.

Let X,, be the kernel of the map 7, and U, = ann(X,), an annihilator in
Hom(A™, A). Because of J, C Ju41, we have X, 41 C X, and U, C Upnqq. Since
Hom(A™, A) has the ACC for annihilators, there is & < w with U, = U, for all
n > k. If v € A™ satisfies p(x) = ups1, then 7, p(x) # 0. Since up4r € kermy,,
we have © € Xj.. Therefore, 7j,,, ¢ & Ux = Uiq1. On the other hand, let z € Xgq.
Then 7,,,¢(z) = 0 implies 7j,,, ¢(z) = 0. Hence, mj,,, ¢ € Ury1, which results in
a contradiction.

Conversely, suppose that the groups A’ have the described property for their
finitely A-generated subgroups. Let {Uy,}n<o be an ascending chain of annihilator
submodules of Hom(A™, A) where m < w. For cach n < w, choose f,, € Uy \ Un
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and define a map a: A™ — A¥ by a(z) = (fn(.v))n<w for all z € A™. Since o(A™)
is a finitely A-generated subgroup of A, there exists a finite subset, J C w such
that a(A™) Nkerm; = 0. Let ¢ be the largest element of J.

Write U,, = ann(X,), and choose z € X; with fi;1(z) # 0. This = exists because
of fiy1 € Uip1 \U;. Forn < i, we have f, € U, C U; and f,(z) = 0. Therefore, a(x)
is a non-zero clement of a(A™) which is contained in 7, —; A C ker 7, a contradiction.

O

Corollary 2.2. If E(A) has finite rank as an abelian group or is left Noetlherian,
then Hom(A™, A) has the ascending chain condition for annihilators.

Proof. Observe that Hom(A™, A) is a finitely generated free left E(A)-module,
and that annihilators are pure subgroups of Hom(A™, A). O

A partial characterization of the groups A such that Hom(A™, A) has the ACC for
annihilators is obtained in

Theorem 2.3. The following conditions are equivalent for a torsion-free abelian
group A whicl is faithfully flat as an E(A)-module and has a strongly non-singular
cndomorphism ring:

(a) E(A) has finite Goldie-dimension as a right E(A)-module.
(b) The module Hom(A™, A) has the ACC for annihilators for all n < w.

Proof. (a) = (b): Suppose that (b) fails. By Theorem 2.1, there exists m < w
such that we can find an infinite sequence 0 < ¢; < ... < (, < ... < w and
maps 3, € Hom(A™, A%) with ker 8,41 C ker 3,,. To simplify our notation, write
U, = kerf,. Since A is flat as an E(A)-module, U, is A-solvable because €4 is
A-closed [Al]. Moreover, we have an exact sequence 0 — H4(U,) — Ha(A™) —
H,(B.(A™)) where Ha(B,(A™)) C Ha(A%) is a non-singular right E(A4)-module.
Thus, Hx(A™)/HA(U,) is non-singular for all n < w. In particular, H(U,41)
is not essential in H4(U,,) since otherwise H4(U,)/HA(Un+1) would be a singular
submodule of HA(A™)/HA(U,41), which is isomorphic to a submodule of E(A)‘".
But this is only possible if HA(U,) = Ha(Uy41). Since U, and U, arc A-solvable,
this would yicld U,, = U,,41, which contradicts U, 4+, € U,. Therefore, we can choose
a non-zero submodule W,, of Ha(U,,) with W, N H5(U,+1) = 0. Then D, Wnis
an infinite direct sum of non-zero submodules of H4(A™) = @, E(A), which has
finite Goldic dimension by (a), contradiction.

(b) = (a): Suppose that E(A) has infinite right Goldic dimension, and let Uy @
...@ U, @...be an infinite direct sum of non-zero right ideals of E(4). Denote the
S -closure of EB@,,L U, in E(A) by V,, ([G]). We have V,,1; C V,, since V41 = V,

=
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would imply U,, C V,4+1. On the other hand, QBan U; is essential in V)4 ;. Thus,
U,nNn ®i>n+1 U; # 0, which is not possible.

Since E(A) is strongly non-singular, we obtain that E(A)/V,, C E(A)" for some
suitable ¢, < w. For n > 0, we have that Ty (E(A)/V,) is a non-zero subgroup
of At = T, (E(A)®) since A is faithfully flat and E(A)/V,, # 0. In particular,
Vi+1A4 is a proper subgroup of V,,A = T4 (V,,) again by the faithful flatness of A.
For n > 0, there is a map o, : A - A% with kera,, = V,,A. Define a: A — ] A%

n>0
by a(a) = ((\'n(a))n>0.

By (b), there is a k < w such that the projection mx: [] A% — A% @ ... @ AL

n>0
with kerm, = [] A% satisfies kermy N a(A) = 0. Let @ € ViA \ Vig1A. Then
n>k
ars1(x) # 0, but a;(x) = 0 for all i < k. Hence, o(z) is a non-zcro clement of
[T A%, which is not possible. a
n>k

We now apply the results of the last theorems to obtain our main result.

Theorem 2.4. The following conditions are equivalent for a torsion-free abelian
group A such that Hom(A™, A) has the ACC for annihilators for all n < w:
(a) A is coflat.
(b) If n <w and f € Hom(A, A™), then Ry (A™/[f(A)].) = 0.
(¢) Hom(QA, Q) is a flat QE(A)-module.
Proof. (a) = (b) is obvious.
(b) = (c): By [Rn, Exercise 3.39], it suffices to show that, whenever Y a; f; = 0 for
i=1
some ay,...,a, € Hom(QA4,Q) and f1,..., fn € QE(A), there exists gi;; € QE(A)

m

and 3; € Hom(QA,Q) for j = 1,...,mand i = 1,...,n with ) fj¢;; = a; and
=1

Z 9ijfi = 0.
Choose a non-zero integer s with sf; € E(A), and define f: A — A™ by f(a) =
(sfi(a), ., 8fn(a)). By (b), there exists an index-set I and a monomorphism :

A"/[f(A ].k — A!. Because of Theorem 2.1, we may assume that I = m for some
m < w since im ¢ is a finitely A-generated subgroup of AL

Let vi: A — A™ be the embedding into the ith coordinate; and m;: A™ — A be
the projection onto the jth coordinate. Denote thc projection 4” = A™/[f(4)].

by €, and sct g;; = mpev;. For a € A, we have Z gijsfi(a) = Z mipzv;s fi(a) =
7n

mipef(a) = 0. Thus, Y gij(sfi) = 0 in E(A) and the same holds for Z gijfi =
i=1 i=1

L Z‘ng,»j(sfi) in QE(A).
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It remains to construct By, ..., B,,. Define a map a: A® - Q by a(ay,...,a,) =

n

> «i(a;). Then af = 0, and a induces a map a: A*/[f(A)]« = Q defined by
i=1

ale+[f(4)]s) = a(x). Since Q is injective, there is §: A™ — Q with Bp = a. Set
3; = p restricted to the jth component of A™. Since Q is injective, we may regard

m

B; asamap f;: QA = Q. If x = (w1.....2:n) € A™, then B(2) = Y fjmi(x).
j=1
Let a € A. Then ev;(a) E A™/[f(A)]. and @evi(a) = a;(a). On the other hand,

asvi(a) = Poevi(a) Z B;gij(a). Thus (a; — 3 f3; 91])[,; = 0. Since QA/A is
ji=1 j=1

torsion, we have o; = Z B;gi;-

(¢) = (a): Let m < wand B = A™. We show in the first step that A =
Hom(QB,Q) is a flat QE(B)-module. For this, we compute the character module
Homz(M,Q/Z) and show that it is injective. We have

M = Homz (Homgp(a) (QE(A)™, QA), Q) = Homz(QA, Q) @qp) QE(A)™.

Hence,

1R

Homz(M,Q/Z) = Homz (Homz(QA,Q) ®qr) QE(A)™,Q/1)

Homgp(a) (QE(A)™, Homz (Homz(QA,Q),Q/Z))

1R

in which Homz(QA4,Q), is a flat QE(A)-module whose character module is injec-
tive. Since Homgg(a) (RE(A)™,-) is a category cquivalence between ¢pa).# and
QEe(B)-# which preserves injectives, we have that Homz (M, Q/Z) is injective.
Suppose f € Hom(B,B™) and let T be a non-zero clement of Rp (B"/[f(B)]*).
Set C = B*/[f(B)]« and choose a pure corank-1 subgroup K of C with Z ¢ . Let
e: C/K = Q be a monomorphism, and ¢: B* = C/K the factor map. As before
v;: B — DB™ is the embedding into the ith coordinate. Set a; = epr;. Since Q is
injective, a; extends to a map in Hom(Q B, Q). Denote the ¢th component map of f

by fi € E(B). We have Y a;fi(0) = Y ep, fi(b) = epf(b) = 0 for all b € B. Since
i=1
QDB/DB is torsion, Z aifi =0. Let = (21,...,2,) € A™ with p(2) =T+ I{ = 0.
=1

Then z ai(x;) = Y cpri(x;) = ep(x) # 0 since € is one-to-one.
Sm(e Hom(QB Q) is a flat QE(B)-module, there are g;; € QE(B) and j3; €

m

Hom(QDB, Q) with E gi; fi = 0 and Z Bj9i; = a;. There is a non-zero integer s
i=1

with sg;; € E(B). Define g;: B" — B” by gi (b1, bn) = (5915 (b1), - - -, $gn;(bn)),
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and 0: B™ — B by a(by,...,b,) = 3 b;. We obtain,

i=1
n

00 0) = 30050, o Fi0),0,0) = 3 sui ilt) = 0.

i=1
Thus, og; induces a map h;: B*/[f(B)]« — B for each j.
Define i: C = B™ by h(y) = (I (y), ..., hm(y)) fory € C, and B: (QB)™ — Q™
by 8= (S1,---,5m). If v: B™ — B is the summation map, then

Bh(z) = B(hi(T),.... hn(T)) = Blog (), ..., 00m(x))
= /3( ; sgir(zi), ..., é:] $gim (i)

= (/jl Z Sgi1 (Ii), s 7ﬂm lezl Sgim(-'l"i)) .

i=1

m

Hence, v8h(z) = Z ( Z Bisgij)(xi) = s Z ai(x) # 0 since Z """ i) #0and Q is

i=1 j=1
torsion-free. Therefore i(T) # 0, and T ¢ RB(C), a LOIltld(llCthll.

Finally, let f € Hom(A™, A™), and view f as an element Homn(B, B™). There
exists an index-set I with A"/[f(A™)]. C B"/[f(B)]. € B' = (A™)!. Thus,
A™/[f(A™)]. is a finitely A-generated subgroup of (4™)!, and there exists a k < w
with A™/[f(A™)]. C A* by Theorem 2.1 since Hom(A™, A) has the ACC for annihi-
lators. _ O

3. COFLAT GROUPS OF FINITE RANK

We will explore various equivalent characterizations of coflat finite rank groups.
The first gives a description of the groups A such that QA is injective as an E(A)-
module. We note that if A has finite rank, then QA* = Hom(QA, Q) carries a
natural right QE(A) structure and QA** =, QA.

Proposition 3.1. Let A have finite rank. Then A is coflat if and only if QA is
the injective hull of A as an E(A)-module.

Proof. Assume that A is coflat. Then by Corollary 2.2 and Theorem 2.4, Q A~
is projective since QE(A) is Artinian. For an idecal I of QE(A4), QA* is projective
with respect to 0 = (QE(A)/I)" — QE(A)* — I* — 0. Consequently, QA™* = QA
is injective with respect to

0— I — QE(A)*

Ti Ti

0— I — QE(A).
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This implies that QA is injective over QE(A) by Baer’s injective test lemma. Thus
Q4 is injective as a QE(A)-module. This is equivalent to QA being injective as an
E(A)-module.

If QA is injective as an E(A)-module, then QA is injective over QE(A). Let
QE(A)* — QA* be a resolution of QA*. Then 0 — QA** — (QE(A)*)k is split so
QA* =2 QA** is a summand of a free module. By Corollary 2.2 and Theorem 2.4,
A is coflat.

In [RW] the authors consider a class €° of modules described by a term T'. They
form the class £(€") of all exact sequences €: 0 - U — V — W — 0 in the module
category, relative to which each X € € is projective. They call a module M a co-T
module, if M is injective with respect to each € in £(%7). The sequences € in £(¢)
are called proper (with respect to €).

For example, if € is the class of all flat modules, then the co-flat modules are the
modules injective with respect to each ¢ in £(%). a

Corollary 3.2. Let A have finite rank. Then, in the category of all left E(A)-
modules, QA is co-flat if and only if A is a coflat group.

Proof. If Ais coflat then QA is injective as an E(A)-module so it is certainly
co-flat. Conversely, it is clear that QA is co-flat in the category of all left QE(A)-
modules. We will show that any sequence 0 » U — V — W — 0 with V a finitely
generated QE(A)-module, is proper (with respect to the flat QE(A)-modules).

Let F'be aflat QE(A)-module and a: F — W. Since F* is injective (Theorem 3.44
in [Rn]) the diagramn

00— W* — VvV~

C\'l
F*

can be completed. Let @: V* —» F* make the diagram commute.
By the contravariance and naturality of Homg(:, @), the diagram

I:‘ C F**
B la
V — W — 0
i al

V= — W* —0

is commutative where 8 = a*| p Hence any sequence 0 - U — V = W — 0 with
V finitely generated is proper. In particular, 0 = I — QE(A) is proper for any left
ideal I of QE(A), and QA is injective by Baer’s criterion. a



When A has finite rank, there is an X' < @Q of least type such that A is isomorphic
to a subgroup of X" for r = rank A. The type of .Y is the outer type of A, OT(A)
(81 in [A]).

Lemma 3.3. Let A lhave finite rank and X < Q have type OT(A). Then G =
A& X is coflat.

Proof. If f € Hom(G",G™) then OT (G™/[f(G™)].) < OT(G™) = OT(A) =
type X. Therefore, if » = rank 4, the group G™/{f(G")). is isomorphic to a sub-
group of ‘\"m.(r—(»l) < G1n(r+1)' O

Although Lemma 3.3 points out the complexity of coflat groups, we can determine
the almost completely decomposable groups for which the divisible and E-injective
hulls coincide. This description is equivalent to the one given in [VW]:

Theorem 3.4. Assume that A is quasi-isomorphic to A; & ... & A, where each
A; is a rank-1 group of type ;. Then QA is the E-injective hull of A if and only if
for every i, j and k, if ; A T; > 7y, then for some m, T,, 2> i V T;.

Proof. Assume QA is injective as an E-module and Z < A, < Q for all (.
If 7; A 7; > 7, then there is an integer s # 0 such that sAp C A; N Aj. Define f:
Ay = A Aj by f(a) = (sa,sa). Now type (A; & A;)/[f(Ax)]« = 7 V 75, and since
A s coflat, A; @ A;j/[f(Ar)]« embeds in A, so consequently 7, > 7; V 7; for some m.

Conversely, let jup, ..., /i, be the maximal elements in T'= {r; | { = 1,2,...,r}.
Because of the condition on the types, connected components in the graph of 7" have
a unique maximal clement. Therefore, B; = @{4; | 75 < ju} is fully invariant
in A and A is quasi-isomorphic to By @ ... B,. Since E(A) is quasi-isomorphic
to E(By) x ... x E(B,), it suffices to show that QDB; is injective over E(B;). But
B; = C; & X; where X; has type ji; and C; = 0 or OT(C;) < p;. So B; is coflat by
Lemma 3.3. d

4. ENDOMORPHISM RINGS OF COFLAT ABELIAN GROUPS

A ring IR whose additive groups is torsion-frec is coflat if every module M which
admits an exact sequence 0 = V' — @, R — M — 0 in which V' is the Z-purification
of a finitely generated submodule of @, R, is contained in a finitely generated free

module.

Theorem 4.1. Let A be a torsion-free abelian group which is faithfully flat as an
E(A)-module. Then, A is coflat if and only if E(A) is a coflat ring.
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Proof. Let E(4) be a coflat ring and consider an exact sequence 0 — V X
D, A % G = 0 of torsion-free abelian groups, in which V contains a finitely A
generated subgroup U such that V/U is torsion, and iy is the inclusion map. Denote
the inclusion U C V' by 4. Then, iyiy is the inclusion U < @p,, A.

We may assume H (V) = imHy(iy) and Ha(U) = im Ha(iy) € Ha(V). Let
IV be the Z-purification of Ha(U) in Ha(€D,, A) and denote the embedding W C
Hi(6D, A) by <. Since Hy(V) is pure in Ha (€D, A). we obtain that 1V C Ha(V).
Define amap 0y : T4 (W) = V by 6, (a®a) = a(a) for « € W and a € A. Morcover,
Ha(iv:): HA(U) > W. For o € HA(U) and a € A, we obtain igy8y (o @ a) = o(a) =
0, TAH ,(i7). Consider the commutative diagram

0 — Ta(W) 28 Tyl (@, 4) 25 Ta(Ha (D, 4)/1V) — 0

Lo 1]0g,4 Lo-

0o— v ¥ @4 5 G — 0

in which 7 is the projection Ha (€D, 4) = Ha(@,, A)/W. The map 6, making the
diagram commute exists once we have established that the first square commutes.
Let a € Wand a € A. Then g 4Ta(e)(a®@a) = (ea)(a) = ala) and iv0 (a@u) =
a(a). Diagram chasing yiclds that 6, is onto.

Let @ € kerf,. Choose y € TaHA(@, A) with Ta(r)(y) = x. Since 0 =
TA(m)(y) = B0g  a(y), we have that 6gy 4(y) = iv(z) for some z € V. There is
a non-zero integer m such that mz € im (),,.v Hence, we can find u € TpHA(U) with
mz = ipfu(u) = 6, TAH(iy)(u) as shown before. Set w = TaHa(iy)(u). Then,
b, aTa(e)(w) = ivhi(w) = iv(mz) = g, a(my). Since g 4 is onec-to-one, we
obtain my = Ta(e)(w). Hence, me = Ta(m)(my) = Ta(m)Ta(e)(w) = 0. Conse-
quently, ker 6, is contained in the torsion-subgroup of T4 (Ha (€D, A)/W) which is
zero since A is flat and HA(GB“A)/W is torsion-free. Therefore, 8, is an isomor-
phism, and it suffices to show that T4 (Ha (€D, A))/W is contained in a finitely
generated free module since A is flat.

By the fact that E(A) is coflat ring, this holds once we have shown that H(U)
is finitely generated. There exists an exact sequence €, A 5 U - 0 since U is
finitcly A-generated. Because of U C @D,, 4, the group U is A-solvable, and H(0)
is onto since A is faithfully flat.

Conversely, suppose that A is coflat and consider an exact scquence 0 —» U —
@D, E(A) = M — 0such that M is torsion-free, and U contains a finitely generated
Vowith U/V torsion. There exist exact sequences 0 — T (U) — TA(@" E(A)) —
Ta(M) = 0and 0 = Ta(V) = Ta(U) = Ta(U/V) = 0 of torsion-free groups in
which T4 (V') is finitely A-generated and T4 (U/V) is torsion. Thus, T4 (U) is the A-
purification of a finitely A-generated subgroup of Ty ( @D, E(A)). Since 4 is coflat,
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there is a monomorphism a: Ty(M) = ,, A. Hence, HAT4(AM) is contained in a
finitely generated free module.

Let @, E(4) & U — 0 be exact. Since U C €, E(A), we have that T4 (U) C
Ta(6D, E(A4)) is A-solvable. Hence HT(a) is onto, and

HaTA(@®, EW)) "5 HyTaA(U) —

T oo

D, E(A) = U — 0
yields that ¢ is onto. Consider the commutative diagram

0 — HaTA(U) — HATA(®,E(A)) — HATsA(M) — 0

Ts?u ITV(B,.E(A) TL;'M

0— U — D, E(A) — M — 0

whose rows are exact since Ty (M) C @,, 4 is A-solvable. Thus, ¢y is an isomor-
phism and the same holds for ppr. Thus M = HaTa(M) C D, £(A). O

Theorem 4.2. A torsion-frce ring R is coflat (iff QR is coflat) iff every finitely
related Q R-module is isomorphic to a submodule of a free module.

Proof. Let R be coflat, and consider an exact sequence 0 = U — @, QR —
A — 0 of finitely generated @ R-modules. Choose a finitely generated R-submodule
W of U such that V/WV is torsion; and set V. = U N, R. Then, @, R/V =
(@, R, U)/U = M is torsion-free, and U/V = (U, @, R)/ (D, R) is torsion. Thus,
(W, V)/V is bounded, and we may assume W C V. In particular, QI = QV =U
Let 1V, be the Z-purification of Win @, R. Then, W, C V, and @, R/W, is a sub-
module of a free R-module F. Hence Q( 6D, R)/QW. = Q(,, R/W.) C QF, afrce
QR-module. On the other hand, QW, = QV = U yields M = Q(P, R)/QW. C
QF.

Conversely, suppose the latter condition holds, and consider a pure exact sequence
0=V —>@,R— M — 0of R-modules in which V' contains a finitely generated
submodule U with V/U torsion. Then QV = QU is a finitely generated Q R-module,
and there is a free QR-module F such that QM = Q(@, R)/QV C F. Since
M C QM is finitely generated, there is a finitely generated free R-submodule P of
F and a non-zcro integer m such that mAl C P. Since M = mM, we have that M
is a submodule of a free R-module. a

Closely related to the notion of coflat is the following concept. An abelian group
A is strongly coflat if every subgroup U of A™, where n < w and Sx(U) = U. satisfies
A" /U, is a subgroup of an A-projective group of finite A-rank. Similarly, a ring R is
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strongly coflat if every finitely generated R-module which is torsion-free as abelian
group is contained in a free module.
Using the same methods as in the proof of the previous results, we obtain

Corollary 4.3. The following conditions are equivalent for a torsion-free abelian
group A which is faithfully as an E(A)-module:
(a) A is strongly coflat.
(b) E(A) is strongly coflat.
(¢) Finitely generated QE(A)-modules are submodules of free modules.

With this we obtain

Corollary 4.4. The following are equivalent for a torsion-free group A which is
faithfully flat as an E(A)-module:
(a) A is strongly coflat, and E(A) is non-singular.
(b) E(A) is nou-singular, finite dimensional ring, and A is coflat.
(¢) QA is semi-simple Artinian.

Proof. (a) = (c): Since E(A) is non-singular, the same holds for QE(A).
Suppose 0 # I is an essential right ideal of QE(A). Then QE(A)/I is a submodule
of a free module, and hence QE(A)/I is non-singular. This results in a contradiction
unless I = QE(A). Thus, QE(A) is semi-simple Artinian.

(¢) = (b) is obvious.

(b) = (a): Let U be a submodule of @, QE(A). Then, U contains a finitely
generated submodule V' which is essential since QFE(A) has finite Goldie-dimension.
By (b), @, QE(A4)/U is non-singular. Suppose V # U. Then 0 # V/U is a singular
submodule of the non-singular module @, QE(A)/U, a contradiction. 0O

Corollary 4.5. The following conditions are equivalent for a torsion-free abelian
group A which is faithfully flat as an E(A)-module and has an integral domain as
its endomorphism ring:

() A is coflat.
(b) A is strongly coflat.
(c) QE(A) is a field.

Example 4.6. Let A be faithfully flat with E(A) = Z[z]. Then A4 is not coflat.

Example 4.7. A generalized rank-1 group A is coflat if and only if QE(A) is
semi-simple Artinian.
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