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A REMARK ON CONFLUENT CAUCHY 
AND CONFLUENT LOEWNER MATRICES 

ZDENĚK VAVŘÍN, Praha 

(Received December 23, 1992) 

1. INTRODUCTION 

Cauchy matrices are matrices (rectangular in general) with elements l/(yi — Zj), 
corresponding to two sequences of interpolation nodes 

(1) yS = (2/o,...,2/m-i), zS = (2 0 , . . . ,Zn 2 - l) 

(Hi, Zj are 7ii +n>2 mutually distinct nodes, complex in general). For a given function 
<p defined at least at the points \ji, Zj we denote by L^ € C(ys,zs) the 7ii-by-7i2 

Loewner matrix with elements (<p(yi) - <p(zj))/(yi - Zj) (where C(ys,zs) is the 

class of all such matrices for fixed sequences H5 and zs). Then the Cauchy matrix 

is a special case of Loewner matrices, obtained for <p(yi) = IVi and <p(zj) = OVj. 

Evidently the rational function 

( 2 ) *X) = as(x)+bs(x) 

where 

(3) bs(x) = H(x - Zj),as(x) = Y[(x - Vi) 

serves as au example. Denoting the Cauchy matrix by CystZs we obtain 

CystZs =L „s eC(ys,zs). 
a.S+l,S 

(Let us remark that the existence of a rational function <p of Mac-Millan degree1 n for 

the conditions <p(y{) = 1, ip(zj) = 0 follows from the fact that Cys^zs is nonsingular 

and by Locwner's theory connecting Loewner matrices with interpolation.) 

1 The Mac-Millan degree of a rational function is the maximum of the degrees of its nu­
merator and denominator. 
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The present note solves the problem whether the confluent Cauchy matrix, intro­
duced in [5] (see Definition 1 below) has the analogous property of being a special 
case of confluent Loewner matrices. Theorem 5 in Section 3 proves the validity of 
the formally identical equality 

CytZ=L* e£(y,z). 

2 . NOTATION AND PRELIMINARIES 

Besides the sequences of simple interpolation nodes 1, we introduce the multiple-
nodes sequences 

(4) y = (bo ,Po] , . . . , b r - l , ^ r - l ] ) , 
r - 1 

jiŽVi' i f i ^ i ' , ^r,Qi = ni, 
i=0 

(5) z = ([zo.^o],.-. . [zs_i,<7a_i]), 
s - 1 

ZJ^ZJ. if j-ij', Y^aJ=n'2 
3=0 

(Oi, Gj are positive integers—multiplicities). We introduce also the corresponding 

polynomials 

r - l s - 1 

(6) a(x) = Y[(x-yiy>, b(x) = Y[(x-zj)
0K 

1=0 j = o 

Definition 1. If yi ^ Zj Vi = 0, . . . , r - 1 and Vj = 0, . . . , s - 1 then we introduce 

the confluent Cauchy matrix Cy,z (of dimension ?ii-by-?i2) [5]: 

(7) Cy,Z = (Cij) 

i=0 , . . . , s - l 

(8) C - " ' ' + Г> < " ' > 
* J ІУІ - Zi)k+l+l, 

' KУ J ' ' fe=0,...,Єi-l 
i=0,. . . ,<Tj--l 

Qk+l 
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Remark 2. G. Heinig in his paper [3] introduced another generalization of 

Cauchy matrices, of the form 
( cfdj \ 
\yi -ZjJ 

where Q , dj are fc-term vectors (k <C n). Such matrices have connections with vector 

interpolation. 

Definition 3. If (p(x) is a function such that the values <f^ (Hi), i = 0, . . . , r — 1, 

k = 0, . . . , Qi — 1 and <p^(zj), j = 0, . . . , s — 1, / = 0, . . . , Gj — 1, exist then we 

introduce the confluent Loewner matrix L^ G £>(y,z) (of dimension ni-by-ri2) (see 

the "generalized Loewner matrix" in [4]) by 

( 9 ) ^ = ( ^ i = 0 , . . , r - l ' 
j = 0 , . . , s - l 

(10) L{j = [ ^ . . . , ^ , ^ , . . . , 2 ^ 
V > v ' > v ' / fc = 0 , . . , ^ - l 

( /c+l) t imes (Z + l ) t imes / = 0 , . . .cr^- l 

Here [.. ]r denotes the divided difference—see e.g. [2]. We admit xji = Zj for some i 

and j . If, however, Hi ^ Zj then 

3*+/ r ^ ( ? ? ) - ( p ( C ) l 

C=*i 

Remark 4. 1. The same definition was introduced one year before [4] in [1], up 

to the constants l/k\l\. 

2. The author decided here to change the name from "generalized" to "confluent" 

Loewner matrices since this corresponds better to the interpolation connections. 

3. T H E RESULT 

Theorem 5. If the sequences of interpolation nodes fulfil the condition 

(12) Vi^Zj, i = 0 , . . . , r - 1, j = 0 , . . . , s - 1 

then the confluent Loewner matrix 

L_t_ ЄC(y,z) 
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is defined and equals the confluent Cauchy matrix Cy>z. 

The proof will be very easy if we use the following lemma: 

Lemma 6. Let k and I be positive integers and let the function <D have derivatives 

up to orders k, I at the points n0, Q0 respectively (i]0 ^ (0). Then the partial 

derivative 

dk+l p>fa)-v>«)i 
dr,kd?\. v-Q U=v» 

C=Co 

exists and can be expressed in the form 

1 k 

(,?0 _ C o )^+i [E<P{K)<no)Pk,iAm,Co) 

£ ¥>(A)(CO)<7M,A(%, CO) + (-!)*(* + lYMvo) - v(Co))] 
I 

+ ' 
Л = l 

where pk,i,K, q/c,/,A are polynomials in two variables. 

The proof is easy by induction. 

Now we shall return to the proof of Theorem : 

P r o o f . Let us denote 
b(x) 

<p(x) = 
a(x) + b(x) 

Then 
,. a(x)b'(x) — a'(x)b(x) 

(D (x) = -, . 

(a(x) + b(x))2 

This shows that (ff(x) is divisible by (x — yi)Qi~1 and by (x — Zj)aj~l. As an easy 

consequence wre get that 

<p(y{) = 1, f{K)(yi) = 0, K = 1,.. ., Qi - 1, 

^ ( A ) ( ^ - ) = 0 , A = 0 , . . . , O j - l . 

This together with Lemma G proves Theorem 5. • 
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