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Czechoslovak Mathemat ica l Journal , 44 (119) 1994, P r a h a 

EIGENVALUE FREQUENCY 

AND CONSISTENT SIGN PATTERN MATRICES 

CAROLYN A. ESCHENBACII,* FRANK J. HALL, ZIIONGSHAN LI, Atlanta 

(Received July 22, 1992) 

An n x n sign pattern matrix A is fc-consistent if every real matrix whose sign 
pattern is indicated by A has fc real eigenvalues and n — fc nonrcal eigenvalues. First 
we establish several general properties of fc-consistent patterns, for any integer fc, 
where 0 ^ fc ^ ?i. We then characterize patterns that are permutation similar to 
an irreducible, sign symmetric, tridiagonal matrix. Further, we establish a graph 
theoretic necessary condition for irreducible, tridiagonal patterns to be consistent, 
and we relate this condition to the cycle structure of the matrix. Finally we provide 
other interesting classes of consistent sign patterns. 

0. INTRODUCTION 

A matrix whose entries consist of the symbols +, - , and 0 is called a sign pattern 
matrix. For a real matrix H, by sgnZ? we mean the sign pattern matrix in which 
each positive (respectively, negative, zero) entry is replaced by + (respectively, - , 
0). For each n x n sign pattern matrix A, there is a natural class of real matrices 
whose entries have the signs indicated by A. If A = (a{j) is an n x n sign pattern 
matrix, then the sign pattern class of A is defined by 

Q(A) = {13 e Mn(R) \ sgnB = A}. 

To avoid repetition, we often use the word pattern to mean sign pattern matrix. 

We shall be interested in the cycles in a sign pattern matrix, since every real 
matrix associated with it has the same qualitative cycle structure. If A = (a{j) is 
an n x n sign pattern matrix, then a product of the form 7 = ahi2ai2h • • -aikil, in 

* The work of this author was supported in part by the National Science Foundation grant 
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which the index set { i i , i2, • . . , 4 } consists of distinct indices is called a simple cycle 

of length k. A cycle is said to be negative (respectively, positive) if it contains an Odd 

(respectively, even) number of negative entries and no entries equal to zero. In the 

remainder of this paper, when we say simple cycle we mean a nonzero simple cycle. 

A matching of size k in an n x n matrix A — (aij) corresponds to fc entries 

in the matr ix among whose collective initial indices there are no repetitions, and 

among whose collective terminal indices there are no repetitions. We call a matching 

principal if the set of initial indices is the same as the set of terminal indices. The 

product of entries in a principal matching of size fc is cither a simple fc-cycle or a 

product of simple cycles whose total length is fc and whose index sets are mutually 

disjoint. Henceforth, when we use the term principal matching, we mean the product 

of entries in the matching. Further, £(7) denotes the size (length) of the matching. 

Suppose P is a property a real matrix may or may not have. Then A is said to 

require P if every real matrix in Q(A) has property P , or to allow P if some real 

matr ix in Q(A) has property P. Let D be an- n x n real matrix, and define the 

eigenvalue frequency of D to be the ordered pair SB = (k,n — fc), where fc is the 

number of real eigenvalues and n — fc is the number of nonreal eigenvalues of D. A 

sign pa t te rn matr ix A of order n is said to be k-consistent, for some fixed integer fc 

such tha t 0 ^ fc ^ n, if SB = (fc,n — fc) for every D in Q(A). Henceforth we write 

5,4 = (fc,7i — fc) whenever A is fc-consistcnt. When we say A is consistent we mean 

A is fc-consistent for some integer fc, such that 0 ^ fc ^ n. 

If A is an n x n reducible sign pat tern matrix, recall tha t A is permutat ion similar 

to a matr ix in Probcnius normal form. Since the spectrum of a real matr ix (the set 

of all eigenvalues) is a similarity invariant, we may assume that a reducible matr ix is 

in Frobenius normal form. Clearly a sign pat tern A is consistent if and only if each 

irreducible component An is consistent. Thus the question of which sign pat terns are 

consistent reduces to which irreducible sign pat terns are consistent. The consistent 

sign pat terns for which SA = (0,n) and the patterns for which SA = (n ,0) arc 

characterized in [EJ1], and the pat terns for which SA = ( 1 , H - 1) are characterized 

in [E], All these pat terns are nicely structured and have several common properties. 

Our purpose here is to establish some properties of consistent pat terns for arbitrary 

fc, and to provide several interesting examples. 

In our proofs, we use the fact that the eigenvalues depend continuously upon the 

entries of a matr ix. Suppose A — (ciij) is an n x 71 sign pat tern matrix that has a 

simple fc-cycle 7. Define the 71 x 71 real matrix Dy(0) = (b7(0)ZJ) by 

(0-1) 

' 1 if ciij = -f and is in 7, 

Ľy(0)ij = < — 1 if ӣij — — and is in 7, 

, 0 elsewhere, 
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and define the perturbed matrix B^(e) = (b-f(e)ij) by 

' b-y(0)ij if a,ij is in 7, 

e if a.ij = + and is not in 7, 

—e if Oij = — and is not in 7, 

0 elsewhere, 

(0.2) ЬJ(Є)ІJ = < 

for some e > 0. Since the nonzero eigenvalues of B1(0) are algebraically simple 

eigenvalues (eigenvalues of algebraic multiplicity one), for sufficiently small pertur­

bations of the entries of I?7(0), the perturbed matrix By(e) has k algebraically simple 

eigenvalues close to the fc distinct eigenvalues of B*y(0). Hence B*y(e) is a matrix in 

the sign pattern class of A that has fc distinct eigenvalues close to the fcth complex 

roots of 1 or —1 (depending upon whether 7 is positive or negative). Therefore if 7 

is a negative even cycle of length fc, then B~y(0) has fc distinct nonreal eigenvalues 

that are bounded away from the real axis. For sufficiently small e > 0, the entries 

of B1(0) can be perturbed and all the fc nonreal eigenvalues of By(e) will remain 

bounded away from the real axis. Similarly if 7 is a positive even cycle of length fc, 

then B7(0) has real eigenvalues A = 1 and A = —1. For sufficiently small e > 0, the 

nonzero real eigenvalues of B1(e) remain algebraically simple, and cannot coalesce 

to form a complex conjugate pair. 

Let 7 = 7i7*2 . . . 7 m be a principal matching, where each 7; is a simple cycle of 

length /7(7,-), and the index sets of the 7;'s are mutually disjoint. Of course, if m = 1, 

7 is a simple cycle of length £(71). Henceforth, we use the symbol 7 to represent a 

principal matching. Define the matrix B1(e) — (b1(e)ij) G Q(A) by 

' 1 if a,ij is in 71, 

2 if ciij is in 72, 

(0.3) \by(eh 
m if a.ij is in j m , 

e if ciij 7-: 0 and is not in 7, 

10 elsewhere, 

for some e > 0. For e = 0, we define B1(0) by (0.3) with e = 0. By permutation 

similarity (if necessary), the simple cycles 7;, i = 1,2,... ,?n, arc in successive diag­

onal blocks in the matrix. Thus, for s = 0, the set of nonzero eigenvalues of £7(0) 

is given by 

\JWj, y.-hcrcWj = \jx re(ъ) -
1 if 7j is positive 

— 1 if 7j is negative 
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Clearly By(0) lias ^T ?(li) distinct nonzero eigenvalues. Consequently, for sufficiently 
i = i 

small s > 0, these nonzero eigenvalues remain distinct, that is, algebraically simple. 

In several of our results, we use graph theoretic concepts. Therefore recall that 

the undirected graph G(A) of an n x n sign pat tern matrix A is the undirected graph 

on n vertices 1,2,... ,n such that there is an undirected edge in G(A) from i to j , 

denoted by the unordered pair {i, j}, if and only if O/7- / 0 or Oji ^ 0. The directed 

graph D(A) of A is the directed graph on n vertices 1,2, . . . , / i , such that there is 

a directed edge in D(A), denoted by the ordered pair (i,j), if and only if O/7- ^ 0. 

The set of all vertices is called the vertex set V, and the set of all edges is called the 

edge set E. An undirected path in G(A) from i to j is a sequence of undirected edges 

{ i , i i } , {ii,i2},..., {i/c-i, j } , where the indices i,ii,..., U - i , j are distinct. Here the 

number of successive edges, k, is called the length of the undirected path. We note 

tha t a 1-cycle, tha t is, a nonzero diagonal entry an in a matrix A = (O/7) corresponds 

to an undirected (directed) loop at the vertex i in G(A), respectively, D(A). 

1. PROPERTIES OF CONSISTENT SIGN PATTERNS 

Let C be the class of all consistent sign pat tern matrices. Since the results in our 

first lemma are clear, we state it without proof. 

1.1 L e m m a . The class C is closed under the following operations: 

(i) Permutation similarity; 

(ii) Signature similarity SAS, where A £ C and S is any uonsingular diagonal 

matrix; 

(iii) Transposition; and 

(iv) Negation. 

In order to simplify some of our statements, we define several quantities associated 

with a consistent sign pat tern matrix A. We denote the maximum length of the 

principal matchings in A by C(A). For a (nonzero) principal matching 7 in .4, we let 

0(7) = (number of odd simple cycles in 7) -f-2(nuiiibcr of positive even simple cycles 

in 7) . Define n i ( A ) = niaxjrc - C(A) + 0(7)}, and n2(A) = max{ l (7) - ,0(7)}. 
7 7 

1.2 T h e o r e m . If A is an n x n k-cousistent pattern, then 

(i) For any principal matching 7 with £(7) — C(A), n\ (A) = n - C(A) + 0(7) c\nd 

n2(.,l) = f ( 7 ) - f f ( 7 ) ; 

(ii) k = n\(A); 

(iii) u — k = 112(A); 

(iv) 7ii(;4) -f 112(A) — n; and 
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(v) A; ^ number of nonzero diagonal entries in A. 

P r o o f . Suppose A is an n x n fc-consistent pattern. By tlie results in [EJ2], A 

requires at least n - C(A) eigenvalues equal to 0. Let 7 be a principal matching in 
A. If By(0) and By(e) are defined as in (0.3), then, for sufficiently small e > 0, B1(e) 

is a matrix in Q(A) with at least r7 = n - C(A) + 0(7) real eigenvalues. 

By consistency, we know that every B in Q(A) has at least i7 real eigenvalues, 
and it follows that k ^ t1, for every principal matching 7 in A. Since equality is 
achieved when ^(7) = C(A), we conclude that statement (i) in the theorem follows. 
Further, A: ^ l7 for all principal matchings 7 in A implies that k = max l7 , that is, 

7 

k = n\(A), and statement (ii) follows. Since the proof of (hi) is similar, we omit the 
details. Statement (iv) follows from (ii) and (iii), and statement (v) is a special case 
of (ii). D 

We state the next obvious corollary without proof. 

1.3 Corollary. If A is a k-consistent pattern of order n, and A has at least n — 1 
nonzero diagonal entries, then k = n. 

If nr(A) (respectively, nc(A)) is the maximum number of real (respectively, non-
real) eigenvalues allowed by an 11 x n sign pattern matrix A, then A is consistent 
if and only if nr(A) + nc(A) = n. Clearly, nr(A) ^ n\(A) and nc(A) ^ n2(A), for 
any n x n sign pattern matrix A. However, if A is consistent, then n,\(A) -f7t2(^4) = 
n,nr(A) = iii (A) and nc(A) = n2(A), and the converse is obviously true. Further, 
we note that if n and n\(A) have different parity, then A is not consistent. 

1.4 Example. The 3 x 3 sign pattern matrix given below shows that the condi­
tion Oi(.4) + n2(A) = n is not sufficient for A to be consistent, where 

If 7 = O11O23O32, then the matrix B1(e) G Q(A) has two nonreal eigenvalues for 
sufficiently small £ > 0. Now setting the entries a23 and O32 equal to zero, wre obtain 
the subpattern 

/ 3 2 0 \ 
with B = j - 1 0 0 J G Q(A). 

\ 0 0 0 / 

Since a(B) = {0,1,2}, if we let B(e) be the matrix in Q(A) obtained from B with 
O2;, = £ and O32 = — £, then B(s) has three real eigenvalues close to 0,1, and 2 for 
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sufficiently small e > 0. Hence A is not consistent. However, iii(A) = 1, n2(A) = 2 
and rii(A) + n2(A) = n. Further, nr(A) = 3 and nc(A) = 2. 

1.5 Lemma. If an n x n sign pattern matrix A docs not allow repeated real 
eigenvalues, then A is consistent. 

P r o o f . For any B\ and B2 in Q(A), define 

B(t) = BX+ t(B2 -Bx) = (l- t)Bl + tB2, 

and SB(t) = (k(t),n - k(t)). Note that if bi = b2, then bi -f t(b2 - bi) = bi for any 
t; and if bi ^ b2 and sgnbi = sgnb2 then bi -f l(b2 - bi) has the same sign for any 
t e [0 - S, 1 +S], where 

0 < a < „ 1 , ,miii{|&i|.N}-
\U2 — Di | 

Consequently, for sufficiently small Si > 0, B(t) e Q(A) for any t in [0 - Si, 1 + Si]. 

Let c be in the interval [0,1], Then, by hypothesis, B(c) has distinct real eigenvalues, 

and, without loss of generality, we may assume the real eigenvalues are Ai, A2, . . . , 

Afc(c), and the nonreal eigenvalues are A/L.(C)+I, A (̂c)-i-27 • • •> Xn. Let 

£i = min < —-——— | 1 ^ i < j ^ n and A; 7- Aj > , 

e2 = min {|/m(Aj)| I fc(c) + 1 ^ j ^ ?i} , 

£c = min{5i,£2} ) and I?i = {a; G C | |x — A7| < ec} . 

Note that Df C\ Dj = 0 whenever A; ^ Xj. At this point, we make use of the fact 
that the eigenvalues of B(t) are continuous functions of t. Consequently, there exists 
a Sc > 0 such that for each i, 1 ^ i ^ k(c), the disk Dz- contains precisely one 
eigenvalue of B(t) whenever \t — c\ < Sc; and for each j,k(c) + 1 ^ j ^ n, if nij is 
the algebraic multiplicity of Xj, then the disk Dj contains exactly nij eigenvalues of 
B(t) whenever \t — c\ < Sc. Since B(t) is a real matrix for any real t, we know the 
nonreal eigenvalues occur in complex conjugate pairs, and it follows that each disk 
Di, 1 ^ i ^ k(c), contains exactly one real eigenvalue of B(t). The other n - k(c) 

eigenvalues are contained in the disks Dj, k(c) + 1 ^ j ^ n. However, since ec ^ e2, 

Dj D7Z = 0, we conclude that the 11 — k(c) eigenvalues contained in these disks are 
nonreal. Tims, k(t) = k(c), for all t G (c - Sc,c + Sc). As c ranges over the interval 

[0,1], {(c — Sc,c + Sc)}c is an open cover of the compact set [0,1], and it follows that 
there is a finite subcover {(c — Sc,c + Sc)}c with c e {c\, c2,..., Q } . Moreover, for any 
c G [0,1], k(t) is a constant function on (c-Sc, c + Sc), and it follows that k(t) = k(c) 

on [0,1]. Hence S/3. = 5#2 for any Bi and B2 in Q(A), and we conclude that A is 
consistent. • 
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Before giving a counterexample to the converse of lemma 1.5, recall that a square 
sign pattern matrix A is a tree sign pattern matrix (t.s.p.) matrix if A is combina­
torial^ symmetric, that is, aj{ ^ 0 if and only if a{j ^ 0; and its undirected graph is 
connected, but acyclic. 

1.6 Example. Let 

A = 

í° + + +\ 
+ 0 0 0 

+ 0 0 0 

V+ o o o / 
Then A is a sign symmetric t.s.p. matrix, and by the results in [EJ1], it follows that 

SA = (?i,0). However if D is the real matrix in Q{A) whose nonzero entries are one, 

thcnO-(I?) = {0,0,±>/3}. 

In our next two lemmas, we summarize some known results about sign patterns 
that require n real, respectively, n pure imaginary eigenvalues, where 0 is considered 
as both a real eigenvalue, and a pure imaginary eigenvalue. 

1.7 Lemma. If A is an n x n irreducible sign pattern matrix, then the following 
are equivalent: 

(i) Every D G Q{A) is diagonally similar to a real symmetric matrix; 

(ii) A requires n real eigenvalues; and 

(iii) A is a sign symmetric t.s.p. matrix. 

1.8 Lemma. If A is an n x n irreducible sign pattern matrix, then the following 
are equivalent: 

(i) Every D £ Q{A) is diagonally similar to a real skew-symmetric matrix; 

(ii) A requires n pure imaginary eigenvalues; and 

(iii) A is a sign skew symmetric t.s.p. matrix. 

P r o o f of 1.7 and 1.8. (ii) <£> (iii) is proved in [EJ1]. (iii) => (i) is proved in 
[M], and (i) => (ii) is immediate. • 

Using lemma 1.7, we are now prepared to state the following corollary to lemma 
1.5. 

1.9 Corollary. If A is an irreducible n x n sign symmetric matrix that docs not 
allow repeated real eigenvalues, then A is a t.s.p. matrix, and A requires n distinct 
real eigenvalues. 

P r o o f . Suppose A is an irreducible sign symmetric matrix that does not allow 
repeated real eigenvalues. Then by lemma 1.5, A is consistent. Define the real 
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matrix B = (bij) in Q(A) so that bij = bji for all i and j in {V 2 , . . . , n}. Then B is 

a real symmetrix matrix, and Su — (n,0). Since A is consistent, we conclude that 

A requires n real eigenvalues. Further, A requires n distinct real eigenvalues follows 

from the assumption that A does not allow repeated real eigenvalues. Finally, lemma 

1.7 implies that A is a t.s.p. matrix. • 

2. IRREDUCIBLE TRIDIAGONAL CONSISTENT SIGN PATTERNS 

2.1 Lemma. If A is an n x n irreducible, sign skew-symmetric, tridiagonal 

pattern; or an irreducible, sign symmetric, tridiagonal pattern, then A requires n 

distinct pure imaginary eigenvalues, respectively, n distinct real eigenvalues. 

P r o o f . Since the proofs are identical for sign symmetric and sign skew- sym­

metrix tridiagonal matrices, we may assume, without loss of generality that A is an 

irreducible, sign skew-symmetric, tridiagonal matrix. Let B be a matrix in Q(A) 

defined by 
/o ai \ 

bl 0 a2 

b2 0 a3 

B = 

v !>,,- 0 / 

Since B and S lBS have the same spectrum for any signature matrix 5, we may 

assume O; > 0, for all i = 1, 2 , . . . , n — 1. Let 

Then 

D = diag 1 

Ði D~lBD = 

( ° 
- 7 i 

O1O2 

7i 
0 

- 7 2 

72 

0 

\b\l>2 . . - b n - l l 

O!O2 . • . O , x - 1 

7з 

7 n - i 

0 

0 

V " 7 n - l 0 ) 

where 7; = \J—O^bi. Since B\ is a real skew-symmetric matrix, it is normal and 

diagonalizable. For any A in (J(B\), Hi — AI has a nonsingular submatrix of order 

71 — 1 in the upper right corner, so that rank(Hi — AI) = rank(H — AI) = n — 1. Thus 
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each eigenvalue of B is algebraically simple, and it follows that A requires distinct 
eigenvalues. Finally, we conclude from lemma 1.8 that A requires n distinct pure 
imaginary eigenvalues. D 

Let A = {(i{j) be any n x n sign pattern matrix, and let D = diag(cli,rl2,... ,dn) 

be an n x n diagonal sign pattern. Define the matrix An = {{cid)ij) by 

(ciij f o r i ^ j , 

[di iovz = j . 

Then for any n x n sign pattern matrix A, Aj is a pattern with a positive diagonal, 
where I = diag(+, + , . . . , + ) is the n x n qualitative identity matrix. We define A_/ 
similarly. 

2.2 Theorem. Let A be an n x n sign pattern matrix. Then the following are 

equivalent: 

(i) A is permutation similar to an irreducible, sign symmetric, tridiagonal pattern; 

(ii) Aj requires n distinct real eigenvalues; 

(ii)' A-i requires n distinct real eigenvalues; 

(iii) AD requires n distinct real eigenvalues for any diagonal sign pattern matrix D. 

P r o o f , (i) ==> (ii). Suppose A is permutation similar to an irreducible, sign 
symmetric, tridiagonal pattern. Then lemmas 1.1 and 2.1 imply that Aj requires n 

distinct real eigenvalues. Similarly (i) ==> (ii)'. 

(ii) =-> (iii). Suppose Aj requires n distinct real eigenvalues. Clearly each ir­
reducible component of Aj requires all real eigenvalues. By lemma 1.7, each irre­
ducible component of Aj is a sign symmetric t.s.p. matrix. Consequently, for any 
diagonal sign pattern matrix D, each irreducible component of AD is a sign sym­
metric t.s.p. matrix; and, therefore, requires all real eigenvalues. We conclude that 

AD requires all real eigenvalues, for any diagonal pattern D. 

Next we show that AD requires n distinct real eigenvalues for any diagonal sign 
pattern matrix D. To this end, suppose there is a diagonal matrix D such that 
An allows a repeated real eigenvalue. Then there is some BeQ{An) that has an 
eigenvalue A of multiplicity k, k ^ 2. Let 

r = max {\b{i\} . 
1 r^ l^T l 

Then Hi = [(1 + r)I + B] G Q{Aj), and A + (1 + r) is an eigenvalue of Hi with 
multiplicity k. However this contradicts the assumption that Aj requires distinct 
eigenvalues. Similarly, (ii)' ==> (iii). 
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(hi) => (i). From the results in [EJ1], AD requires n real eigenvalues implies that 
each irreducible component of A is a sign symmetric, t.s.p. matrix. However, if A is 
reducible, then the diagonal entries in the irreducible components can be adjusted 
so that some BD G Q(AD) has a repeated eigenvalue. Thus A is irreducible. Now 
fix a real symmetric matrix B G Q(A). Since AD requires n distinct real eigenvalues 
for any sign pattern diagonal matrix D, B + D has n distinct real eigenvalues for 
any real diagonal matrix D. By theorem 2.8 in [F], B is permutation similar to an 
irreducible, tridiagonal matrix, and it follows that A is permutation similar to an 
irreducible, tridiagonal pattern. • 

Before stating our corollary to theorem 2.2, we define the rank of a sign pattern 
matrix A to be the minimum rank over all matrices in the associated sign pattern 
class, denoted by mr(A), where 

mr(A) = min rank!?. 
BeQ(A) 

2.3 Corollary. Let A = Ai or A = A_/ be an n x n sign pattern matrix. Then 

the following are equivalent: 

(i) A requires n distinct real eigenvalues; 

(ii) A requires n distinct eigenvalues; 

(iii) A is permutation similar to a sign symmetric, irreducible, tridiagonal pattern; 

and 

(iv) A is irreducible and requires n real eigenvalues, and mr(A£>) ^ n — 1, for any 

diagonal pattern D. 

P r o o f . From theorem 2.2, we know that (i) and (iii) of the corollary are equiv­
alent, and (i) implies (ii) is immediate. Further, we know that condition (iii) implies 
that AD requires n distinct real eigenvalues for any diagonal sign pattern matrix. 
Consequently mr(A£>) ^ n - 1, for any diagonal sign pattern matrix D, that is, (iii) 
implies (iv). Now suppose condition (iv) holds. Then by lemma 1.7, A is a sign sym­
metric t.s.p. matrix, and A requires diagonalizability. Finally, since mr(jln) ^ n - 1 
for any diagonal sign pattern matrix D, it follows that A requires n distinct real 
eigenvalues, that is, condition (i) holds. 

To show that (ii) implies (iii), suppose A requires distinct eigenvalues. Then by 
lemma 1.5, A is consistent. Let B = (bij) G Q(A) be defined as follows: If ciij = 0, 
then b^ = 0, otherwise \bij\ = l/n for i ^ j , and \bn\ = 2 \ for all i = 1,2,... ,n. 

From the Gersgorin Disc Theorem, we see that each disjoint disc 

Di = {zeC\\z-bii\^l} 
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contains precisely one eigenvalue of D. Consequently D has n distinct real eigen­

values. Since D G Q(A) and A is consistent, we conclude that A requires n distinct 

real eigenvalues. Thus, by condition (ii) of the theorem, we conclude that (ii) im­

plies (hi). • 

A slight modification of the immediately proceeding proof in corollary 2.3 can be 

used to prove the following two propositions: 

2.4 Proposition. If A is an n x n sign pattern matrix that has, at most, one 

zero diagonal entry, then A requires n distinct eigenvalues only if A requires n real 

eigenvalues. 

2.5 Proposition. If A is an n x n irreducible sign pattern matrix that has, at 

most, one zero diagonal entry, then A is consistent if and only if A is a sign symmetric 

t.s.p. matrix. (See corollary 1.3). 

A natural question now arises, namely, "If A is an n x n sign pattern matrix that 

requires n distinct real eigenvalues, then is A necessarily permutation similar to an 

irreducible, sign symmetric, tridiagonal matrix?" The following example illustrates 

that the answer to this question is N O . 

2.6 Example . Let 

/ 0 
+ 

V 

+ 
o 
+ 

+ 
0 
+ 
+ 

+ 
0 

0 

+ 
0 

0 / 

where G{A): 1—2—3—5 

Then A is a sign symmetric t.s.p. matrix that is not permutation similar to a tridi­

agonal matrix. However, we show that A requires five distinct real eigenvalues. This 

follows since any D G Q{A) is diagonally similar to a matrix of the form 

/0 а \ 
1 0 b 

1 0 c d 

1 0 0 

\ 1 o o) 

with a,b,c,cl > 0. 

Hence the characteristic polynomial of D is given by 

PD (x) = x5 - (a + b + c + cl)x3 + {ac + ad)x 

= x [(x2)2 - {a + b + c + cl)x2 + {ac + ad)] 
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Since the discriminant of t2 — (a + b + c + d)t + (ac + ad) is 

A = (a + b + c + a1)2 - 4(Oc + ad) 

> (a + c + a7)2 - 4(ac + ad) = (a - c - dj2 ^ 0, 

we conclude that any D G Q(A) has distinct eigenvalues. 

For 1-consistent patterns, we use the characterization established in [E] for arbi­
trary sign patterns that require exactly one real eigenvalue. Applying the results 
in [E] to irreducible, tridiagonal patterns, we obtain the following: 

2.7 Proposition. An n x n (n odd, n ^ 3) irreducible, tridiagonal pattern A is 

1-consistent if and only if all 2-cycles in A are nonpositive, and A has a ^-diagonal. 

To establish necessary conditions for k-consistent, irreducible, tridiagonal patterns 
A, we concentrate on the number and location of the positive 2-cycles in A. To this 
end, we assume A has a 0-diagonal. Further, we note that the nonreal eigenvalues 
of any real matrix occur in complex conjugate pairs. Consequentl}!, if A is an n x n 

k-consistent matrix with n even, then k is necessarily even. Similarly, if n is odd, k 

is necessarily odd. Recall that the signed undirected graph of A is the graph G(A), 
whose edges are signed, so that any edge {i,j} is + (respectively, —) if a^-a^ = + 
(respectively, —). We define a maximal signed positive path in G(A) to be a path 
in G(A) that satisfies the following: (i) the path starts with the first positive edge, 
or with the first positive edge that follows a negative edge; (ii) contains successive 
positive edges; and (iii) ends at the last positive edge, or when a negative edge occurs. 
We define a maximal signed negative path similarly For example, in the following 
graph of irreducible, tridiagonal 9-by-9 pattern, 2—3—4—5—G and 7—8—9 are 
maximal signed positive paths, and 1—2 and 6—7 are maximal signed negative 
paths, where G(A) is given by 

1—2—3—4—5—6—7—8—9. 

2.8 Theorem. Let A be an irreducible, tridiagonal pattern with 0 diagonal. 
Then A is consistent only if the signed undirected graph of A has, at most, one 
maximal signed path with odd length. 

P roof . Suppose A is an n x n irreducible, tridiagonal, consistent pattern with 
0 diagonal. For contradiction, assume G(A) has two maximal signed paths of odd 
lengths. If the vertices of G(A) are arranged from left to right in increasing order, 
denote the leftmost maximal signed path by pi and the rightmost path by pr. 
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Case(i) . Let n be odd. Without loss of generality, let pe = {2p- 1, 2p}, {2p, 2p + 

1}, . . . , {2q-l,2q}axidpr = {25,25 + 1}, {2s + l ,2s + 2}, . . . , {2t, 2^+1} be maximal 

signed paths of odd length in G(A). Let 

S = {{2j - 1, 2j} | 1 ^ j ^ s} U {{2i, 2i + 1} | 5 <: i ^ ±(n - 1)} . 

Notice that the only two edges in S that are adjacent are {25-1,25} and {25,25 + 1}, 
which have opposite signs. In the spirit of adjacency, the positive edges in 5 are 
independent, and the negative edges in S are independent. Let k\ (respectively, 
k2) denote the number of positive (respectively, negative) edges in 5. Since every 
vertex occurs once in 5, except the vertex 25, which occurs twice, it follows that 
2ki + 2k2 = n + 1. Let 71 be the matching consisting of the positive edges in 5, and 
let 72 be the matching consisting of the negative edges in S. Then, for sufficiently 
small e > 0, -Q71(s) is a matrix in Q(A) that has at least 2k\ real eigenvalues, and 
Bl2(s) is a matrix in Q(A) that has at least 2k2 nonreal eigenvalues. Thus A allows 
2ki real eigenvalues, and 2k2 nonreal eigenvalues. Since 2k\ + 2k2 = n + 1, it follows 
that A is not consistent. 

Case (ii). Suppose 11 is even. Define pi as in case (i), and pr = {25 — 1,2s}, . . . , 
{ 2 / - 1,2*}. Let 

S = { { 2 i - l , 2 i } | l ^ i ^</}u{{2i,2i + l} | q ^ i ^ s - 1} 

u { { 2 j - l , 2 j } | 5 ^ j ^ H -

Then the vertices 2q and 25 — 1 occur twice in 5, and all other vertices occur once. 
Denning ki and k2 as in case (i), it follows that 2kT + 2k2 = n + 2. Since the 
remainder of the argument is similar to the one used in case (i), we omit the details, 
and conclude that A is not consistent. Finally cases (i) and (ii) imply that A has, at 
most, one maximal signed path with odd length. • 

In the following theorem, for a given sign pattern matrix A whose undirected graph 
is G(A), we let Ex = {{1,2}, {3,4},.. .} and E2 = {{2,3}, {4,5},.. .} be subsets of 
the edge set E. In addition, we let a be the set of indices corresponding to the 
positive edges in E\. Finally A(a) denotes the principal submatrix of A lying in the 
rows and columns indicated by the complement of the index set a. 

2.9 Theorem. If A is an n x n irreducible, tridiagonal pattern with 0 diagonal; 
and if \a\ = 2k, and G(A) has, at most, one maximal signed path of odd length, 
then: 

(i) the number of positive edges in E2 is k or k — 1; and 
(ii) A (a) Las no positive 2-cycles. 
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P r o o f . Assume A has, at most, one maximal signed path in G(A) of odd length. 

Case (i). Assume ?i is odd. Since A is an irreducible, tridiagonal pattern, tin} 
length of the longest path in G(A) is even and equal to n - 1. If G(A) has one 
maximal path of odd length, then all other maximal paths have even length. Since 
the length of the longest path in G(A) is the sum of its maximal paths, it follows that 
the length of this path is even, which is a contradiction. Consequently all maximal 
paths are even, and we conclude that {2p - l,2p} and {2p,2p+ 1} always have the 
same sign for any p such that 1 ^ p ^ \(n — 1). Since 

E\ = { { 2 p - l , 2 p } | l < C ^ \(n-l)} ancl.B2 = { { 2 p , 2 p + l } | l ^ p < \(n - 1)} , 

it follows that E\ and F^ have the same number of positive edges, namely, k. 

Case (ii). Assume n is even. Then the length of the longest path in G(A) is odd; 
and G(A) contains exactly one maximal path of odd length. 

Case (a). Suppose the maximal path is positive, and starts with the edge 
(2p — l,2p), for some integer p such that 1 ^ p ^ \(n — 1). Since the first edge 
is positive, and belongs to E\, we see that the maximal path of odd length con­
tributes m positive edges to E\ and m — 1 to E2, for some positive integer m ^ k. 

Since all other maximal paths are even, we conclude that they contribute the same 
number of positive edges to E\ and F25 and it follows that F2 contains k — 1 positive 
edges. 

Case (b). Suppose G(A) has a maximal negative path of odd length. Since the 
maximal positive paths have even lengths, the positive edges come in adjacent pairs, 
say, ei and Cj. If e; and Cj are to the left of the maximal odd path, then et G E\ 

and ej G F2- However, if e; and ej are to the right of the maximal odd path, then 
ei G F2 and ej G E\. It is obvious that E\ and F2 contain the same number of 
positive edges, namely, k. 

Finally we show that A (a) has no positive 2-cycles. To this end, suppose A has a 

positive 2-cycle, say, o^p^p+i^p+i^p- Then G(A) has a subgraph 

(2p - l)—(2p)—(2p + l)—(2p + 2), for some integer p. 

Since the length of the path {1,2}, {2,3}, . . . , {2p - l,2p} is odd, it contains a 
maximal signed path of odd length. Consequently G(A) contains two odd maximal 
signed paths, which contradicts the assumption that A has, at most, one maximal 
signed path of odd length. • 
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2.10 Example . Let 

A = 

í° + 
+ 0 + 

+ 0 -

+ 0 

+ 
V 

Then A is consistent, and SA = (2,4). 

0 -

+ 0 / 
P r o o f . If D e Q(A), then D is similar to 

f \ 

0 

1 

\ 

-d 

0 - e 

1 0 / 

where a, b, c, a7, e > 0, and 

Pв(x] (a + b d - e)xĄ + [~a(c + d + e) - b(d + e) + ce]x2 - ace. 

We show that PB(*) has precisely one variation of sign. This is clearly true if the 
coefficient of.?;4 is positive. If tlie coefficient of x* is negative, that is, a + b > c + d + e, 
then -a(c + d + e) -b(d + e)+ce = -a(c + d) -bd-e(a + b-c) < 0, (since a + b-c> 
(1 + c > 0). Hence PB(X) has one variation of sign. Similarly PB(—X) = PB(X) has 
precisely one variation of sign. Clearly 0 is not a root of P/j(;v). Now we see that 
Pfi(x) has exactly two real roots, that is SA — (2,4). • 

Remark. Similar proofs work for 

/° 
+ A = 

+ 
0 

+ 
+ 
0 

+ 0 

+ 

\ 

0 / 

and for 

A = 

/° 
+ 

V 

+ 
0 
+ 0 -

+ ü -

+ 0 

+ oУ 
Each of the matrices in example 2.10 clearly satisfies the condition stated in theo­

rem 2.8. In these examples, the necessary condition is also sufficient for consistency 

An interesting open question is to determine, in general, if the condition stated in 

theorem 2.8 is sufficient. 
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3. FURTHER RESULTS AND REMARKS 

An n x 7i matrix A (real or sign pattern) is said to be an n-cycle matrix if it lias a 
simple ?i-cyclc, and all entries of A not on this cycle are zero. Equivalently, A is an 
71-cycle matrix if A has exactly one principal matching of length ?i, and no principal 
matchings of length ^ n — 1. 

3.1 Proposi t ion . If A is an irreducible n x n (with n ^ 2) sign pattern matrix, 

then the following are equivalent: 

(i) A requires n distinct eigenvalues of equal modulus; 

(ii) For any B G Q(A), A G cr(B) implies that |A| is the spectral radius of B; 

(iii) any (nonzero) principal matching of A is of length n; and 

(iv) A is an n-cycle matrix. 

P r o o f . Recall that if B G Q(A), then the characteristic polynomial of B is 

given by 

PB(x) = x
n - El(B)xn~1 + E2(B)xn~2 - ... ± En(B), 

where Ek(B) is the sum of all properly signed principal matchings of length k in B. 

Now, (i) ==> (ii) and (iv) => (i) are clear. We complete the proof by showing (ii) 
-=-=-> (iii) and (iii) ==-> (iv). First assume that (ii) holds, and 7 is a principal matching 
of A. If 7 is not a simple cycle, then 7 = 71 . . . 7m , where each 7; is a simple cycle 
for i = 1 , . . . , m. For sufficiently small e, -97(e), as defined in (0.3) does not have 
eigenvalues of equal modulus, contradicting (ii). Thus 7 is a simple cycle. If 7 is 
not an ?i-cycle, "emphasize" 7 by defining B1(e) as in (0.2). Then B1(e) is a matrix 
in Q(A) without all eigenvalues having equal modulus, contradicting (ii). Hence (ii) 

=-> (in). 
Finally, suppose (iii) holds. Since A is irreducible, A has a cycle 7, and (iii) implies 

7 is a simple n-cycle. Without loss of generality (perform a permutation similarity if 

necessary), we may assume 7 = O12O23 • • • fln-i,nflni- Suppose A has a nonzero entry 

dij not on 7. We consider three cases, each of which yields a cycle of length < n - 1; 

and, hence, a contradiction: 

(1) i = j . Here an is a 1-cycle; 
(2) i < j . In this case, j ^ i -h 2 and O12 • • • O;_i,7;a;jOjj+i ...ani has length 

^ n — 1; and 
(3) i > j . Here, (HjCijj+i ... Oz-i,; has length ^ n - 1. 

Thus there are no nonzero entries of A not on 7, and it follows that (iii) => (iv). 

• 
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The ?i-cycle sign pattern matrices A provide another class of sign patterns that 

are consistent and require distinct eigenvalues. Since En(B) = detI?, for B e Q(A) 

the roots of Pu(z) are the n distinct nth complex roots of ±det(H). We also note 

that if A is an n x n sign pattern matrix whose only principal matchings have length 

7i — l, then A requires distinct eigenvalues. Obviously, in general, A is consistent 

does not imply A requires distinct eigenvalues. In fact, A consistent does not imply 

that A requires diagonalizability (see example 3.2). 

It is shown in [EJ1] that an n x ?i (n even) sign pattern matrix A requires n nonreal 

eigenvalues if and only if each irreducible component of A satisfies the following: (i) 

is bipartite; (ii) has all negative simple cycles; and (iii) is sign nonsingular. These 

patterns clearly are consistent with SA — (0,n). However, the following example 

shows that they do not require diagonalizability. 

3.2 Examp le. Let 

A = 

/O + 0 0 \ 

- 0 + 0 

0 0 0 + 

V- o - o/ 

Then A is irreducible, satisfies (i—iii) above, and, hence, is consistent. However, 

в = 

/ 0 1 0 0^ 

- 2 0 1 0 

0 0 0 1 

\ - 4 0 - 6 0/ 

is in Q(A), and <J(B) = {2i, 2i, —2i, —2i}. Further, the dimension of the eigenspace 

for A = 2i is 1. Thus B is not diagonalizable, and A does not require diagonalizability 

On the other hand, it is an open question as to whether A requires diagonalizability 

implies A is consistent. In this regard, wTe point out that A requires diagonalizability 

does not imply that A requires distinct eigenvalues. 

3.3 Examp le. Let n ^ 4, and consider the n x n sign pattern matrix 

A = 

( + + • 

+ + 

V+ 

.. +\ 

+; 
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Then A requires diagonalizability, since A is a sign symmetric t.s.p. matrix. Let 

I7 = 

/ 3 1 1 
1 1 
1 1 

Vi i 

Then B e Q(A), and since PB-i(x) = xn~2(x'2 - 2x - (n - 1)) = xn-'2((x - l ) 2 - nj - - n ~ 2 ( x 2 - 2x - (n - 1)) = xn-'2((x - l ) 2 

we have a(B) = cr(I -f (I? - I)) = {V 1,. . ., 1,2 -f yfii, 2 - v/n}. Since 1 is repeated 
?/, - 2 times, A does not require distinct eigenvalues. 

There is an interesting class of n x n sign pattern matrices C for which C requires 
diagonalizability implies C requires distinct eigenvalues, therefore, C is consistent in 
this case. 

First consider a qualitative polynomial p(x) = xn + an-\x 7 1 - 1 
, . "f Ol.ľ "f ŕ/fj, 

where a; G {0, -f, —}, i = 0, . . . , n — 1. Let Q(p(x)) denote the set of real polynomials 
q(x) = x11 + c n _i.x n _ 1 + . . . -f ci.x -f Co, where sgnc; - cii, i — 0,. . . ,n - 1. We 
say ;>(;r) requires distinct roots if q(x) has n distinct roots for every q(x) G Q(p{x)). 
Associated with p(x) is the companion sign pattern matrix given by 

C = 

(0 -CІQ \ 

+ 0 - O i 

+ 0 

0 

— 0.-2 

— «?г-2 

V + - ^ 7 1 - 1 / 

(Note that C is irreducible if and only if Oo ̂  0.) For B £ Q(C), there exists a 

diagonal matrix S such that 

s~lвs = 
1 0 

V 

-b0 \ 

-bn-i ì 

B\, with sgnb{ = a,i, i = 0 , . . . , n — 1. 

Consequently, the characteristic polynomial PEi(x) £ Q(P(;r)). Further, each q(x) € 

Q(p(x)) is the characteristic polynomial of some companion matrix Hi G Q(C). 

Hence, Q(p(x)) is the set of characteristic polynomials for real matrices in Q(C). 

Now, C requires diagonalizability 
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every D £ Q{C) is diagonalizable; 
for every B € Q(C), the companion matrix B\ is diagonalizable; 
for every B e_ Q{C), the companion matrix I3i has distinct eigenvalues; 
every B £ Q{C) has distinct eigenvalues; 
C requires distinct eigenvalues; also, every B £ Q{C) has distinct eigenvalues; 
PB{Z) has n distinct roots for every B E Q{C); 

q{x) has u distinct roots for every q{x) E Q{p{x))', or 
p{x) requires distinct roots. 

We thus have the following equivalent statements. 

3.4 Proposition. Let C be the companion sign pattern matrix of the qualitative 
polynomial p{x) = a:n + an_i.Tn_1 + .. .-f-Oi.T + arj. Then, the following are equivalent: 

(i) C requires diagonalizability; 

(ii) C re([uircs distinct eigenvalues; and 

(iii) p{x) requires distinct roots. 

In this case, p{x) requires consistent roots and j){x) has at most one variation in 

sign. 

More generally, if A is in the class of irreducible n x n upper-Hessenberg sign pat­
terns, then A requires diagonalizability if and only if A requires distinct eigenvalues. 
In this case, A is consistent. We note that this class includes the n x n irreducible, 
tridiagonal matrices. 
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