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THE STRUCTURE OF A COMPLETE Z-GROUP 

DAO-RONG T O N , * Nanjing 

(Received May 22, 1992) 

1. PRELIMINARIES 

We will use the standard notation for Z-groups, cf. [1, 4, 7, 8]. Throughout the 
whole paper G is an Z-group, i? is the real group, Q is the rational group, Z is the 
integer group and N is the set of all natural numbers. Let {Ga \ a G ̂ 4} be a system 
of /-groups and \[ Ga their direct product. For an element g G Yl Ga, we denote 

aeA aeA 

by ga the a component of p. An /-group G is said to be a subdirect sum of /-groups 

Ga, in symbols G C' ]~] Ga, if G is an /-subgroup of f] ^ « s u c n t n a t f°T e a c n 

aeA aeA 

a G A and each g' G GQ there exists g G G with the property ga = g'. An /-group 

G is said to be an ideal subdirect sum of /-groups Ga, in symbols G C* [ ] Ga, if 
aeA 

G -=' II ^ « a n d G is a n /-ideal of f] Ga. We denote the /-subgroup of \[ Ga 
aeA aeA aeA 

consisting of the elements with only finitely many non-zero components by ]T Ga. 
aeA 

An /-group G is said to be a completely subdirect sum, if G is an /-subgroup of 
]1 Ga and ^ G a C G . 

aeA aeA 

A subset D C G with OeD is said to be disjoint, if g\ A g<i = 0 for any pair of 
distinct elements gi,g2 € D. For any I c G w e write XL = {g G G | \g\ A |x| = 0 
for each x G X}. For g € G, [g] is the convex /-subgroup of G generated by g, (g) 
is the polar subgroup of G generated by g. Clearly, [g] C (g). We denote the least 
cardinal a such that \A\ < a for each bounded disjoint subset A of G by vG, where 
\A\ denotes the cardinal of A. G is said to be v-homogeneous if vH = vG for any 
convex /-subgroup H ^ {0} of the /-group G. A v-homogeneous /-group G is said to 
be v-homogeneous of a type if vG = a. An /-group G is said to be ic-homogeneous of * The author is indebted to W. C Holland for his memerous suggestions and his patience 

through long hours of discussion on this material. The author is also grateful to the 
referee for pointing out a number of obscurities in the original manuscript of this paper. 
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/? type if any nontrivial interval in G has the same cardinality /?. Let a and (3 be two 
cardinal numbers. An /-group G is said to be of (a, /3) type if G is ^-homogeneous of 
a type and zc-homogeneous of /3 type. For example, H is an /-group of (1,2N()) type. 
The goal of this paper is to prove that any complete /-group G is /-isomorphic to an 
ideal subdirect sum of the integer groups Z and complete /-groups of (a, Nj) type. 
Consequently, we can give a structure character for a complete /-group. 

In [10] Jakubik proved that any complete /-group is a completely subdirect sum 
of ^-homogeneous /-groups. Now we can strengthen this result. 

Lemma 1.1. Any complete l-group is l-isomorphic to an ideal subdirect sum of 
complete v-homogeneous l-groups. 

P r o o f . Let G be a complete /-group. Without loss of generality, by virtue of 
Theorem 3.7 in [10] we may assume that 

(i.i) S -OCGC'HT*, 
seA seA 

where each Ts (S G A) is a v-homogeneous /-group. 

(1) First we prove that each Ts (S G A) is complete. For each S G A we put 
Ts = {g G G | S' 7-= S =i> gs> = 0 } . It is easy to verify that each Ts is a direct factor of 
G and it is a folklore that each direct factor of a complete /-group is again complete. 
Hence Ts is complete and thus Ts is complete as well. 

(2) We prove that G is an ideal subdirect sum of Ts (SeA). Let 0 < g € fl Ts, 
seA 

then gs0 > 0 for some So G A. Let gs0 be the element in Yl Ts whose Sth component 
seA 

is gs0 and all other components are zero. Then it follows from (1.1) that gs0 G G, 
and so 0 < gs0 ^ g, therefore G C' Yl Ts is a dense /-subgroup of Yl Ts. Let 

seA seA 
{xa | a G A} C fl Ts and x G Yl Ts- Suppose that xa ^ x for all a G A, then 

(5GA <SGA 

there exists x'6 = V ^ r r ^ for any S G A. Put a/ = (... x'5 . . . ) , then xa ^ n;' for 
aeA 

all a G .4. Assuming that y is any upper bound of {xa \ a G A}, we have x^ ^ ?/<$ 
(n To 

(a G A) for any (J G A. Thus x's ^ ?M and x' ^ y. Therefore x' = \J *€A x a . 
On the other hand, G is complete. So it follows from Lemma 2.3 in [3] that G is an 
/-ideal of n ^ , i.e. 

seA 
GC* l[Ts 

seA 
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The following lemma is an immediate consequence of Theorem 1 of the fourth 

chapter in [7]. 

Lemma 1.2. Any non-zero complete totally ordered group is l-isomorphic to the 

real group or the integer group. 

2 . V-HOMOGENEOUS /-GROUP OF Nj TYPE 

R and Z are complete v-homogeneous /-groups of 1 type. In this section we will 
discuss the character of a non- tot ally ordered complete v-homogeneous /-group. First 
of all we have 

Lemma 2.1. Let G be v-homogeneous and non-totally ordered. Then vG ^ K0. 

P r o o f . Since G is not totally ordered, there exist incomparable elements a, b € 
G. Put ai = a— (aAb), &i = b— (aAb) and g = ai Vbi. Then the set {ai, bi} is disjoint 
and the convex /-subgroup [g] is not totally ordered. Since G is v-homogeneous, [bi] 
is not totally ordered, either. Thus [0, bi] is not a chain by 4.3 in [10]. Hence 
there exists a disjoint subset {02,62} Q [0,61] and {ai ,a2} is clearly a disjoint set. 
Analogously we can construct disjoint sets {ai, 02 , . . . , a n } (n = 1,2,...). Then the 
set {an}n

G
=1 is disjoint as well, it is a subset of [0,g]. Hence vG ^ No- ---

Thus, if G is a v-homogeneous and non-totally ordered /-group, then there exists 
an infinite cardinal N* such that G is a v-homogeneous /-group of K̂  type. 

From Lemma 1.1, Lemma 1.2 and Lemma 2.1 we get 

Proposition 2.2. Any complete l-group G is l-isomorphic to an ideal subdirect 

sum of real groups, integer groups and complete v-homogeneous I-groups of#i type. 

Proposition 2.3. Let G be an Archimedian v-homogeneous l-group of N{ type 
and G ^ {0}. Then G has the following properties: 

(1) G has no basic element, 
(2) G has no basic, 
(3) the radical R(G) = G, 
(4) G is not completely distributive, 
(5) the distributive radical D(G) = G. 
Moreover, every non-trivial convex l-subgroup ofG enjoys the same five properties. 

P r o o f . By Theorem 5.10 in [4] we need only to prove (1). For any 0 < a G G, 
v[d] = vG > 1. So [a] is not totally ordered, and by 4.3 in [10], [0,a] is not totally 
ordered, either. D 
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An /-group G is said to be continuous, if for any 0 < x G G we have x = x\ + x? 

and xi A #2 = 0, where x\ 7-= 0, x-i 7- 0. An /-group C7 is said to be of countable type, 
if vG ^ N 0 . 

E x a m p l e . Let 5 be the set of all real, mesurable, almost everywhere finite 
functions x(t) on a closed interval [a, b] C R. The algebraic operations are introduced 
in S in the usual way. The class of positive elements is selected in S with the aid 
of the following definition: we define x > 0 (x G 5) if x(t) ^ 0 almost everywhere, 
but in this connection x(i) > 0 on a set of positive measure. Mutually equivalent 
functions are identified, i.e., they are viewed as the same element of the set S. It is 
easy to see that S is a complete vector lattice of countable type [12], and it is also 
easy to see that S is continuous. 

L e m m a 2.4. A complete l-group G is continuous if and only if G has no basic 

element. 

P r o o f . The necessity is clear. Suppose that G has no basic element and 0 < 
x G G. Then [0,x] is not totally ordered. By a standard argument there exist 
ai ,b i G [0,x] such that ai A bi = 0. Since G is complete, [x] is also complete. From 
the Riesz decomposition theorem of a complete /-group we have 

(2.1) [x] = a1-BBa1
1. 

Further, ai G a^- and bi G a±, so a± 7- 0, a ^ ^ 0. From (2.1) we have 

x = x\ + £2, 0 < x\ < x, 0 < X2 < x and x\ A X2 = 0. 

Hence G is continuous. • 

L e m m a 2.5. Let G be a protectable and non-totally ordered l-group. Then G is 

directly decomposable. 

P r o o f . Since G is not totally ordered, there exist ai ,b i G G such that 0 < ai , 
0 < bi and ai A bi = 0. G is projectable, so 

G = a^ ffla^, 

where ai G a^-, b\ G aj-. • 

An /-group is said to be ideal subdirect irreducible if G cannot be expressed as an 
ideal of an ideal subdirect sum of non-zero /-groups. 
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Lemma 2.6. A complete I-group G is directly indecomposable if and only ifG is 

ideal subdirect irreducible. 

P r o o f . Necessity. Suppose that G 7- {0} is directly indecomposable. If G C* 
[J Gs, then 52 Gs CG. Put Gs = {g G G \ S' 7- S => gs, = 0} for S G A. Then 

seA seA _ 

there exists S G A with Gs 7-= {0} and 

G = GsfBGs , 

wheveGJ- = {geG\gs=0}. 

The sufficiency is obvious. D 
Lemma 2.7. An Archimedean l-group G is subdirectly irreducible if and only if 

the Dedekind completion GA of G is ideal subdirect irreducible. 

P r o o f . Necessity. Suppose that G is subdirectly irreducible. If GA C* \[ Gs 
seA 

then 

GQ'l[G's, 
seA 

where G's = GQS and QS is the projection from GA onto Gs for S G A. So GA must 
be ideal subdirect irreducible. 

Sufficiency. Suppose that GA is ideal subdirect irreducible. Since any non-zero 
complete /-group is /-isomorphic to an ideal subdirect sum of real groups, integer 
groups and complete ^-homogeneous /-groups of Ni type, by Lemma 2.5 any complete 
v-homogeneous /-group of N; type is directly decomposable. So GA = R or Z and G 

is a subgroup of reals. D 

Now from Lemma 2.4, Lemma 2.5 and Lemma 2.6 we have 

Proposition 2.8. Let G be a complete v-homogeneous l-group of Hi type. Then 

(1) G is continuous, 

(2) G is directly decomposable, 

(3) G is not ideal subdirect irreducible, 

(4) G has a closed I-ideal. 

Moreover, each nontrivial convex l-subgroup ofG enjoys the same four properties. 

From Lemma 2.7 and Proposition 2.8 we obtain 

Corollary 2.9. An Archimedean v-homogeneous l-group of Hi type is not subdi­
rectly irreducible. 
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Now let G be an Archimedean ^-homogeneous /-group of N; type. Then the divis­

ible hull Gd of G is a vector space over Q. If {xa \ a G A} is a disjoint subset in Gd, 

then {xa | a G .4} is linearly independent. In fact, suppose that there exists a finite 

subset { r r a i , . . . , xan } in {xa \ a G A} which is linearly dependent. That is, there 

exist \i G Q (i = 1 , . . . ,n) (not all 0) such that 

^l^-a i "T • • • ~r AnXan — U. 

Then we have 
x°* = 22{-J:)X«K 

for some At- ?- 0. But in this case xai A xak 7- 0 for some k 7- i, a contradiction. 
Conversely, if {xa \ a G A} is linearly independent, then {rra | a G ^4} need not be 
a disjoint subset. In particular, we have 

Proposition 2.10. Let G be an Archimedean v-homogeneous l-group of Nt- type. 

If {xa I a G A} is a maximal linearly independent subset in Gd, then {xa \ a G A} 

is not disjoint. 

P r o o f . Assume that {xa \ a G A} is a maximal linearly independent subset in 
Gd. If {xa I a G A} is disjoint, take some :rao (c*o G .4). Then xQo = x'QQ/n with 
rrao G C and n € N. Since G is v-homogeneous /-group of Nt- type, v[x'ao] = vG > 1. 
So there exist 0 < yp1, y^2 ^ :rao such that ypx A y^2 = 0. Since {xa \ a e A} 
is maximal linearly independent, there exists a finite subset {xai \ i = l , . . . , n } 
of {xa I a G A} such that {i//^,xai \ i = l , . . . , n } is linearly dependent. Hence 

n 
ypx = Y2 XiXai. It is easy to see that yp1 > 0 implies A, ^ 0 (i = 0 , 1 , . . . ,n) by 

t=0 

the Bernau representation of an Archimedean /-group (see Theorem 3.3 in [5]). It is 

also easy to see that x\ A x2 = 0 if and only if \\X\ A A2X2 = 0 for x\, x<i G Gd and 

Ai, A2 G Q. Hence, if ai 7- a0 , then 

0 = yp1 A x a i = f ] T A^a;̂ . J A :ra. = f \ / A^x^. J A xai 

\j=o ' ^j=o ' 

So Ai = 0 (i = 1 , . . . ,n) if a* / «o- Thus there exists j G {1,2 , . . . ,n} such that 
a j == ao- Then 

and by an analogous method as above we get 

ypi A xa. = XjXa. A xaj =-- (Aj 4- 1 )#«., 5 
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hence \j + 1 > 0. Put = \j - 1 = A0. Thus ypx = \oxao. Similarly, yp2 = fioxaQ. 

But in this case 

ypi A 2/t32 = A0a;ao A u.oxao ^ 0, 

a contradiction. D 

3 . COMPLETE ie-HOMOGENEOUS /-GROUP OF N, TYPE 

In this section we will discuss properties of a complete ic-homogeneous Z-group of 

Nj type. 

Proposition 3.1. Let G be a complete ic-homogeneous l-group of a type and 
vG = Kf. Then a = aHj for any Nj < Nj if i is a limit ordinal, and a = aHi if i is 
not a limit ordinal or N* = N0. 

P r o o f . Suppose i is a limit ordinal and Nj < N{. Then there exists a bounded 

disjoint subset {xa \ a G A} in G with |A| = Hj. Put 

a; — W Xa. 

aGA 

Consider the mapping <D: y -» {?/ A .ra} of the lattice [0,x] onto Yl [Qixa\- By t n e 

aeA 
infinite distributivity of [0,x] it is easy to show that (D is an isomorphism. Hence 
a = aHj. If i is not a limit ordinal or N; = K0, then there exists a bounded disjoint 

subset {xa | a G A} in G such that |A| = N{. So we have a = a^i similarly as before. 

• 
Proposition 3.2. Let G be an ic-homogeneous l-group of Nj type. Then the 

divisible hull Gd ofG is also an ic-homogeneous l-group ofttj type. 

P r o o f . Suppose 0 < g G G. Then card[0,y]G = N,. If g' G [0,g]G\ then 
g' = g/m with g G G and g = mg' G [0, mg]G. Hence 

Hj = card[0,y]G ^ card[0,g]G<i ^ card ( ( J [0,mg]G J 

So 
card[0,p]G<£ = fy. 

Now assume 0 < g G Gd. Then # = g'/n with p' G G, and so 

]Gd _ ^arrJfn ,n„lGd _ n»rA\(\ nW* -card[0,#]G = card[0,n#]G = card[0,#']G = N,. 

D 
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Lemma 3.3. Let {Gs \ S G A} be a collection of ic-homogeneous l-groups of 

Nj type. If |A| < max{vGs | S G A}, then any subdirect sum G C' Y\ G5 of 
5£A 

{Gs I 5 £ A} is also ic-homogeneous ofttj type. 

P r o o f . For any 0 < x G G C' Yi Gs, let x = (...£«,•...). Consider some 
seA 

60 G A. For any u<,-0 G G.50 with 0 ^ ys0 ^ a;^ there exists z € G such that z«50 = ?L50. 
Then 

(zVO)AxE [0,x]G. 

So there exists a one-to-one mapping from [0,.r.50]
G*o into [0,.r]G. Hence 

card[0, xSo]
Gs« ^ card[0, x]G ^ card J J [0, i r ^ . 

By Proposition 3.1 we have 

fy ^card[0,a:]G ^ K^A| = ^-. 

That is, 

card[0,x]G = ^-. 

For any nontrivial interval [a, b] in G we have 

card[a, b]G = card[0, b - o]G = fy. 

• 

4 . THE STRUCTURE CHARACTER OF A COMPLETE /-GROUP 

In this section we first give some properties of an /-group of (N;, Kj) type. 

Lemma 4 .1. Let G be a complete l-group of (Nt-, Nj) type. Then 

(1) K '̂ = #j for any K/ < N; ifi is a limit ordinal and N^1 = Kj ifi is not a limit 

ordinal or Nt- = No-
(2) Kf -̂  Kj. I f i is not a limit ordinal or Nt = N0, then 2Hi ^ Kj. 

P r o o f . (1) It follows from Proposition 3.1. 
(2) Let G be a complete /-group of (Nz-, Nj) type and [0, #] a nontrivial interval in 

G. Assume that neither i is a limit ordinal nor Nt = No- Since v[g] = vG = Nt, there 
exists a disjoint subset {xa | a G .4} in [g] such that \A\ = Nz-. Then {xa Ag \ a e A} 
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is also a disjoint subset in [0, g]. For a subset Ap of A, put zp = V (xa A a). Then 
aeAf1 

ZP £ [0?g]- Using the Bernau representation of a complete Z-group, it is easy to see 
that Ap ^ Apt implies zp 7-- zp>. (In fact, [g] is a complete Z-group. There exists a 
maximal disjoint subset M in [g] such that M D {xa A g \ a G A}. By Theorem 
3.3 in [5], we can choose an Z-isomorphism n such that M7T is a set of characteristic 
functions of a family of pair wise disjoint clopen subsets of the Stone space X whose 
union is dense in X.) Let B be the set of all subsets of A. Then 

R,- = card[0,o] > \B\ = 2*{ > N*. 

If i is a limit ordinal, for any N/ < Hi there exists a disjoint subset {xa | a £ A} in 
[a] such that |A| = N/. Similarly we have N, ^ 2N| > N/. So ^ ^ K{. D 

Lemma 4.2. An ideal subdirect sum of finitely many complete l-groups of (Hi, ttj) 
type is also a complete l-group of (N;, Nj) type. 

P r o o f . Suppose 
n 

GC*Y[GU 
1 = 1 

n 
where G-; (i = 1 , . . . , n) is a complete Z-group of (N;, Kj) type. Then G = f] G;. Let 

t = i 
G' be a convex Z-subgroup of G. Then 

n 

(4.1) vG' ^vG = v(]\ Gi) ^ Hn = Hi. 
i= l 

On the other hand, let Qi be the projection to Gi. Then G'n{ is a convex Z-subgroup 
in G{. Put 

Gi = {9 e G I j ? i =• ^ = 0, # E G'Df}. 

Then G; is a convex Z-subgroup in G' and so 

(4.2) vG' ^ vGi = vG'Qi = N*. 

Combining (4.1) and (4.2) we get vG' = N; for any convex Z-subgroup of G. Hence 
G is a ^-homogeneous Z-group of K* type. Now let [a, b] be any nontrivial interval in 
G. Then 

Nj ^card[a,6] ^ N? = N,-. 

So card[a, b] = Kj, and G is also an ic-homogeneous Z-group of Kj type. D 
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Proceeding similarly as in the proof of Lemma 1.1, from Theorem 3.7 in [11] we 
obtain 

Proposition 4.3. Any complete l-group G is l-isomorphic to an ideal subdirect 

sum of integer groups and complete ic-homogeneous l-groups. 

Let G be a complete ^-homogeneous /-group of N; type. Then no direct summand 
of G is Z or R. Further, every direct summand of a complete v-homogeneous /-group 
of Kz- type is also a complete ^-homogeneous /-group of Nt- type. So Proposition 4.3 
yields 

Lemma 4.4. A complete v-homogeneous l-group G of N; type is l-isomorphic to 

an ideal subdirect sum of complete l-groups of (Hi, Kj) type. 

Theorem 4.5. Any complete l-group G is l-isomorphic to an ideal subdirect sum 

of integer groups and complete l-groups of (a, Hj) type. 

P r o o f . By Proposition 2.2, without loss of generality, we have 

(4.3) GC* JjG,, 
seA 

where each Gs = Z or R or a complete v-homogeneous /-group of Nt- type for 8 E A. 

If Gs is a complete v-homogeneous /-group of Nt- type, then, by Lemma 4.4, we have 

(4.4) Gs C* J ] G\6, 

where each G\s is a complete /-group of (N;,Nj) type. Because an ideal subdirect 

sum of ideal subdirect sums of complete /-groups is still an ideal subdirect sum of 

complete /-groups, so substituting (4.4) into (4.3) we get 

(4.5) GC* J]GA, 
AGA 

where each G\ is either Z or a complete /-group of (a, Nj) type. 
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5. T H E ESSENTIAL CLOSURE OF A COMPLETE /-GROUP 

In this section we deal with the essential closure of a complete /-group. Let G be 
a complete /-group and 0 < x G G. Put 

P(x) = {x\ G [x] | x = X\ + x[, X\ A x\ = 0}. 

For example, if G = It and 0 < x G G, then P(x) = {0, x}. If G is a complete v-

homogeneous /-group of N; type and 0 < x G G, then G is continuous by Proposition 

2.8 and it is easy to verify that P(x) is infinite. 

Lemma 5.1. Let G be a complete l-group and 0 < x G G. Then P(x) is a 
complete Boolean algebra. 

P r o o f . For any x\ G P(x) we have x = x\ +x[ with x\Ax[ = 0 . So x = x\ Vx[. 
Hence P(x) is a Boolean algebra. Let xa G P(x) (a G A). Then 

X — Xa "T~ xa, X Q A XQ — u 

for a G A. Since G is complete and 0 ^ xa ^ x (a G -4), there exist y = \J xa and 

z = /\ xQ. By elementary calculations we obtain 

y A z = 0, y\J z = x. 

Hence P(:r) is a complete Boolean algebra. • 

Let G be an /-group, let P(G) denote the Boolean algebra of all polars in G. Let 
PP(G) = {g11 | g G G} be the set of all principal polars of G, and let CoPP(G) = 

{g-1 I 9 £ G}. The map a11 —> a-1 is a lattice anti-isomorphism between PP(G) and 
CoPP(G). From Theorem 5.2.9 in [8] we obtain 

L e m m a 5.2. Let G be an l-group. Then for any 0 < x\, x2 G G, 

x^ A X2 = (x\ V X2)A~, xj- W X2 = (x\ A x2)
L, 

where W is the polar join. 

From Lemma 5.2 we have 

L e m m a 5.3. Let G be an l-group and 0 < x G G. Then for any 0 < £1, x2 G P(^), 

* I M A x2[*)= ( x i v X2)w' xm w x2~w = (X i A X 2 ) w 
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and 

X±XJL A x£xJL = (xx V X2)^JL , XJ^JL W X^JL = (xi A X2)^JL , 

where xhx] and x^xAL denote the principal polars in [x] and x11, respectively, and 

similarly for x2. 

L e m m a 5.4. Let G be a complete l-group and 0 < x G G. Then P([x]) (P(xAL)) 
and P(x) are anti-isomorphic, and P([x]) and P(xAL) are isomorphic as Boolean 
algebras. 

P r o o f . First we show that there exist 1-1 correspondences between P(x1L), 

P([x]) and P(x). Consider the Bernau representation of G 

TT: G - ) G C D ( I G ) , 

x -> x e G. 

By Theorem 3.3 in [2] the /-isomorphism TT can be chosen such that x is the charac­
teristic function of a clopen subset S of the Stone space XG- Suppose M\ G P(x i L ) . 
Since G and G are complete, x11 is also complete. So 

x11 = MxmM2. 

Then 
[x\ = M[mM'2, 

where M[ = [x] DMi, M2 = [x] n M2. Hence 

(5.1) x = x\ -f- x2, x\ A x2 = 0, 

where x\ G M[, x2 G M'2, M[ = xh$\ and M2 = xhxy On the other hand, if we have 
(5.1) and put Si = {6 G XG \ Xx(0) # 0}, S2 = {6 G XG \ X2(0) ? 0}, then the 
support of x satisfies 

S(x) = S = Sx U S2 and Si n S2 = 0 

since 
xAL = {geG\S(g)CS(x)} 

(see [2], p. 609). Put 

Mi ={g G x^ | 6 € S2 => g{0) = 0}, 

M2 ={<? € i-"- | 0 € 5i -=> <?(0) = 0}. 
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Then 
i^ = MxmM2, [x] = M[mM'2, 

where M = Z ^ J L , M2 = ^ J L = ^J^JL and M[ = [x] n Mi, M2 = [x] C\ M2. Hence 
the map </?: Mi -> M{ is 1-1 from P ^ - ^ ) onto P([£]) and the map ip': M[ -> xi 
is 1-1 from P([£]) onto P(x). By Lemma 5.3, (D'(<D'<D) *s a n anti-isomorphism from 
P([x]) (P(x i L)) onto P(x), and <p is an isomorphism from P(x^ onto P([£]). • 

Let P be a Boolean algebra and 0 < x G P. Put 

Pi(x) = {a£P\0^a^x}. 

Then Pi (x) is a subalgebra of P . We call Pi (x) a section in P . 

Proposition 5.5. Let P and P' be two complete Boolean algebras and {xa \ 
a G A}, {x'a | a 6 A} maximal disjoint subsets in P and P', respectively. If 
Pi(xa) ~ Pi(x'a) as Boolean algebras for a € A, then P is isomorphic to P'. 

P r o o f . Since {xa \ a € A} is a maximal disjoint subset, we have V xa = 1. 
a€A 

Indeed, if V xa < 1, then {xa, 1 — V xa | a G A} is also disjoint. For any y G P 
aGA a£A 

let 
ya=y r\xae P\(xa) 

for a G .4. Then 

V y<*= \/ (yAx<*) = y^{ V Xa J = y-
a€A a€A ^ a g A ' 

We denote y by y = (ya) and call ya the coordinate of u in the section {Pi(.ra) | a G 
A}. Let <£a be isomorphism between P\(xa) and Pi(rr^). Let y'a = (pa(ya) G Pi (24). 
Then 

V =y'£P'-
a£A 

So we get a map </?: y -* y' from P to P ' . We proceed in the following three steps. 
(1) <p is 1-1. If y, z G P and y / 2 , then y = \] ya, z = \J za and there exists 

aGA a£A 
the least a0 £ A such that yaQ ^ zao. Consequently, y'aQ 7-= z'aQ in Pi(a40). Hence 

y'= \/ y'a* \l z'a = z'. 
a£A a£A 

Otherwise, y' = z' implies y'a = y' A x'a = z' A x'a = z'a for all a G A. 
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(2) (p is from P onto P'. For any y' G P ' , we have u' = V ua with ua = y' Ax'a G 
a € A 

Pi(x a ) . Now each ya corresponds to ya = ^(Va) € Pi(^a). So y' is the image of 
V = V Voc under <p. 

aGA 
(3) <p preserves V and A. Let i/' = <p(y), z' = <p(z). Then 

<Pa [(?/ V z) a] = <Da [(u V z) A x a] = </>a [(y A x a ) V (z A x a)] 

= ¥>a(2/a V 2 a ) = <pa(?/a) V (Pa(Za) = Va^ z'a 

= (?/' A x'a) V (z' A x'a) = (!/' V 2') A x'a 

= ( y ' v 4 . 

So 

<p(y Vz) = <D(y) V<D(z). 

Similarly, we have <p(y A z) = ip(y) A <p(z). D 

Theorem 5.6. Let G and G' be two complete l-groups. If there exist maximal 

disjoint subsets {xa \ a € A} and {x'a \ a G A} in G and G', respectively, such that 

[xQ] ~ [x'a] for a G A, then the essential closures G€ and G'€ are l-isomorphic. 

P r o o f . We need only to show that P(G) ~ P(G') as Boolean algebras. By the 
Bernau representation it is clear that i j A ^ = 0 if and only if xf~ A x^~ = 0 in 
P(G). Hence {x^ \ a G A} and {x'^ \ a G A} are maximal disjoint subsets in P(G) 
and P(G'), respectively. Now [xa] — [x'a] as /-groups implies P([xa]) -̂  P([#a]) &s 
Boolean algebras for a G A. By Lemma 5.4 we have 

Ptlx?) = P{z£) c- P ( 0 = fifO 

for a G A. Similarly to the proof of Theorem 1 in [2] we can show that P(G) 
and P(G') are complete Boolean algebras. The theorem follows immediately from 
Proposition 5.5. D 
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