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INTRODUCTION

For an integer i > 0, let C*(I, RP) denote the collection of functions with contin-
uous derivatives up to the order 7 on I = [a,b], a < b, into R? and put C(I,RP) =
CO(I,RP). We are concerned with the question of solving boundary value problems
for Volterra neutral functional differential equations of the form

(1) a'(t) = f(t,z(),2'(),N), tel,
(2) :L‘(CL) = Zp, L(.’l)(),)\) =0¢€ Rq’

where f: I x C*(I,RP) x C(I,RP) x R - RP, L: C}(I,R?) x R? = RY, z, € R?
are given. It is assumed that the mapping t — f(¢,z(-),z'(:),A) is continuous on I
for any z € C'(I,RP?) and A € R?. We seek = € C!(I,RP) and A € R? such that
(1)-(2) to be satisfied. We mean that the problem (1)—(2) is solved if such z and A
are found.

Indeed special cases of (1) are following equations:

7' (t) = f(t,z(t),2'(t), ), tel,

or

?(0) = f(ta(a®),.,o(ar®),2 (Bi(®), .2 (B:(1),N), tel,
where o; and f; are continuous functions such that a < a;(t) < t, a < §;(t) < Bit,
0<pBj<lfortelandi=1,2,...,7,5j=1,2,...,s 0r

aft)
2(t) = £(ta0,20), [

a

g(t,T,x(T),x'(T)) dr, )\), tel,
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where a < a(t) < t, or directly
#'(t) = f(t,z(:),A), tel,

if the function f is independent on the derivative =’ (for example see [6, 7, 10]).
By the substitution y(t) = z'(t), t € I, the problem (1)-(2) is equivalent to the
following

3) v0) = £(tep+ [umary.N), tel,

a

(4) L(wp + /a.y(*r) dT,/\) =4.

To show the problem (3)-(4) has a solution (y,A) € C(I, RP) x R? we introduce
two sequences {y,} and {\,} by formulas

yo(t) = xp, te€l,
5 .
) Yn+1(t) = f(t,:np + / yn(T)dT,yn(-),)\n) =F(t,yn,An), n=0,1,...,

a

and

(6)

Ao is an arbitrary vector in RY,
{ Angl = An — B‘lL(xp +/ Ynt1(T) dT,/\n>, n=0,1,...,

where a nonsingular square matrix B of order ¢ will be defined later. The general
sufficient conditions by which the sequences {y.}, {\n»} have the limits § and J,
respectively, and that (g, \) is a solution of (3)—(4), are given in the first part.

To solve the problem (1)-(2) numerically we apply the one-step methods for finding
y combined with the Newton method for finding A. Due to this fact we divide the
interval I into N subintervals all of the same length h = (b — a)/N. The points tp;
of division are defined by t; = a +ih, i = 0,1,...,N. Now we can describe our

method by

yi(thn + Th) = yi(thn) + hé(thna yi(')7zi(')7/\hjvry h))
re€ (0,1, n=0,1,...,N -1,

7 . . .

@ 2] (thn + Th) = U(thn, i (), 2L(), Anjr 1 h), re€ (0,1, n=0,1,...,N -1,
Mj+1 =g — BTUL(YA (), Ak ),

for j = 0,1,... . Here usually y{;(a) = zp + &15(h), Ao = Ao € R? is given and

zf;(a) = Zp; + &2j(h) where Z,; is a solution of the equation
Tpj = f(a,2p, Tpj, Anj)s
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and
lim &;(h) = lim &;(h) = 0.

h—0
j—oc j— oo

In the second part of this paper we study the convergence of (y,Jt, Anj) to the solution

(¢, A) of (1)-(2).
This paper is an extension of some results obtained in [6, 7, 8].

PART 1

We introduce the following

Assumption H;. Suppose that

1° f:IxCYI,RP)xC(I,RP)x R? —» RP, L: C*(I,RP) x R? — RY, and for any
z € C(I,RP), A € R? the mapping ¢t — f(¢,z(-),2'(-), A) is continuous on 7,

2° there exist a constant 3 € [0,1] and nondecreasing functions K, Ko, K3 €
C(I,R4), Ry =[0,00) such that

Ilf(t’xl(')a$2(')vﬂl) - f(tvil(')’j2(')aou2)“
< Ka(t) sup |z (s) — Z1(s)l| + K2(t) sup [[za(s) — Z2(s)]| + Ks(t)l|pa — pll,

[a,t [a,Bt

fort €I, z,,7 € C*(I,RP), 22,72 € C(I,RP) and uy, uz € R,
3° there exist a nonsingular square matrix B of order ¢ and constants m > 0,
d > 0 such that md < 1,d > ||B~!|| and

|2 (0 + / F(t, ) dt ) = L2y + / F(t,3,2)dt, 1) = Bl — )|
<mflp = pell,

for x € C(I,RP), p1,us € R7, where the matrix norm is consistent with the vector
norm,
4° for any z1,x2 € C'(I,RP) and u € RY we have the inequality

“L(ml()v ﬂ) - L(x2()nu‘) ” $ Ll ilél}) ”1'1(3) - 172(8)”,

where L; > 0.

Assumption H,. Suppose that
1° there exists a nondecreasing solution w* € C(I, Ry) of the inequality

(8) Guw(t) + K3(t)dL; (1 — md)~! /b Gw(s)ds+vu(t) S w(t), tel,
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where

t

Guw(t) = Kl(t)/ w(s)ds +K2(t)w(Bt),

a

vi(t) = sup
sE[a,t]

v* = sslelll) HL(Z,, + /: F(t,yo, \o) dt, /\0> ”,

v(t) = v (t) + K3(t) dv* (1 — md) !,

520+ [ 0or)dr 000, 20) = ()]

2° in the class of functions w € M(I, Ry) satisfying the condition 0 < w(t) <
w*(t), t € I, the function w(t) =0, t € I is the only solution of the equation

9) Gw(t) + K3(t)dL, (1 — md)™! /b Guw(s)ds =w(t), tel,

where M (I, R;) denotes the class of measurable and bounded functions defined in I
with a range in R4.

Remark 1. Instead of (8) and (9) we can take (10) and (11), respectively,
where

(10) Guw(t) + K(t) /b w(s)ds+V(t) <w(t), tel,
b

(11) Gu(t) + K(t)/ w(s)ds = w(t), tel,

and

b
r=1—-—md+ dLl/ 1{3(8) dS,

K(t) = K3(t)dLy /r,
b
V(t) =v(t) — K(t)/ v(s)ds.
Now we are in a position to establish the existence of the solution of (3)-(4). We

have

Theorem 1. If Assumptions Hy and Hy are satisfied then there exists a solution
(\,7) € R? x C(I,RP) of the problem (3)-(4). This solution is the limit of the
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sequences {A.}, {y»} and the following estimations

(12) A= Aal
(13) sup [|7(s) — yn(s)]

[a,t]

U,, n=01,...,

wy(t), t€el, n=0,1,..

//\ //\

‘

hold with "
up = u* =d(1 —md)~! [Ll / Gw*(s)ds +v*],

b
un+1=d[mun+L1/ Gwn(s)ds], n=0,1,...,

wo(t) = w*(t), tel,
Wn41 (t) = Gwn(t) + I{a(t)un, tel, n=0,1,... .

Moreover, this solution (X, §) is unique in the class satisfying the conditions

(14) 1A= ol < u, ?ul? 15(s) — yo(s)ll < w*(t), tel
a,t

Proof. Using the following relations

Nyn+1(t) = yo (Ol < NF®t,yn, An) — F(t,y0, Mo)ll + 1 F(E, yo, Mo) — yo(B)]|
<Ky (t) / 19 (7) = vo()|| d7 +K2(t) sup lya(s) — yo(s)]
a [a,Bt]

+K3(8)|An = Aoll + va(t),

and

IAn+1 = Aoll

= “B—l [L(xp + / F(t,yn, Xo) dt,)\o) - L(xp + / F(t,Yn, An) dt,/\n)

—B(Ao — An) — L(z,, + / F(t,yn, Ao) dt,/\o>

+L<zp+‘/AF(t,y0,/\0)dt,/\o> ~L(z,,+/' F(t,yo,Ao)dt,Ao)”‘
< a{mliAn = doll + Ly / " [m) / lyn(r) = vo(ll dr

+K>(¢) [Suﬁlz] llyn(s) — yo(S)”] dt +v*},
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we can prove

”/\n - A0” g 9
sup [lyn(s) —wo(s)| S w*(t), tel, n=0,1,...,

[a,t

u*, n=0,1,...,

by induction. Similarly we obtain

(15) “’\’n-+j —’\Tl“ <'U,n, 'I’L:O,l,...,
(16) Sup ||yn+5(8) = yn(s)ll S wn(t), t€l, n=0,1,...,

[a,t]

by induction.
Indeed the sequences {u,}, {w,} are nondecreasing and bounded on I, so they
are convergent. In view of Assumption H; we have

u, = 0, wa(t) =0, tel,

where the sign = denotes the uniform convergence on I. Hence A\, = X, y.(t) = 7(t),
tel, g€ C(I,RP) and (A7) is a solution of (3)—(4). There is no problem to prove
that this solution is unique in the class satisfying the relations (14). The estimations
(12)-(13) follow from (15)-(16) if j = oo. Now the proof of Theorem 1 is completed.

O

We give the conditions by which the problem (3)-(4) has at most one solution.
They do not guarantee the existence of the solution. We have

Theorem 2. If Assumption H, is satisfied and in the class u € M(I,R}), the
function u(t) = 0, t € I is the only solution of the inequality

17 u(t) < dLy(1 — md) "' K3(t) /b Gu(s)ds +Gu(t), tel,

then the problem (3)-(4) has at most one solution.

Proof. Assuming that the problem (3)-(4) has two solutions (\;,7;) € RY x
C(I,RP) we are able to get the estimations

191(t) — 20|l = IF (£, 51, A1) — F(t, G2, X))l
<K (1) / 192(7) = G ()]l dr +Ka(t) sup 193(5) = 729 + Ko = R
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and

1% — Rall =
|- o5, 3 -2z [Fem R ann) 4L (s + [ Ao

—L(xp /F(t 71, Xg) dt, A2)+L(z,, /F(t 72, %g) dt, ,\2)]
af il = %l + Ly / [Kl(t / 19:(5) = Ga(s)ll s

+E(t) sup 15 (s) - gz<s>n] at }

[a,61]

Now combining these inequalities we have the assertion of our theorem. 0

Let fortel
K (t) = ki, Ks(t) = ko.

Now we can cite the following

Lemma 1 (see [7]). If

1° v,K3 € C(I,R4) and are nondecreasing,
22 0<B<1],

3° 0<kB<1,

4 Ty(t)= X kJu(tp™) < 0o and Ty € C(I, Ry),
n—O

50 Th(t) = z kD K3(tA™) < 0o and Ty € C(I, Ry.),

6° there exxsts a unique nondecreasing solution @ € C(I,Ry) of the equation

n

(18) u(t) = k12k2 / u(r) dr

n=0

b
+dLy(1 - md)_sz(t)/ Gu(r)dr +T1(t), tel,

where ky,m,L; > 0,d > 0 and md < 1, then

° in the class of functions u € M (I, R,) satisfying the condition 0 < u(t) < u(t),
t € I, the function @ is the unique, continuous and nondecreasing solution of the
equation (8),

° in the class of functionsu € M (I, Ry ) satisfying the condition 0 < u(t) < 4(t),
t € I, the function u(t) = 0, t € I is the unique solution of the inequality (17).

i

il
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Lemma 3 (see [7]). If the assumptions (1)—(4) of Lemma 1 are satisfied, a > 0
and the function K3 is such that for some constants Ly > 0 and ¢ > 0 satisfying the
condition

0> (1—kaB) " {ki + LadLy (1 = md) ™" [k1 (b — a) + k2] },
the inequality
K3(t) < La(exp(et) — exp(ea)) (exp(eb) — exp(oa)) ', tel,

holds then there exists a unique nondecreasing solution @ € C(I,Ry) of (18).

PART 2

Now we are concerned with the numerical solution of the problem (1)-(2). As it
was mentioned earlier we apply the method defined by (7). At first we introduce the
following

Assumption H3. Suppose that

1° ®,0: IxC(I,R?)xC(I,R?) x R¢x [0,1] x H — RP, L: C(I,R?) x R — RY,
H = [0, ho], ho > 0 and c (I, RP) denotes the space of piecewise continuous functions
from I into R?, ®(¢,y(-),2(:),A,-,h) and ¥(t,y(-),z(-),\, -, h) are continuous for
fixed t, y, 2, A, h, and ®(¢,y(-),2(:),A,0,h) =0,

2° there exist constants My, M, M3 > 0 and a function §: I x [0,1] x H — Ry
such that the conditions

|“1)(t,y1(~), zl(‘)vﬂl"ra h) - q)(tva(‘)vz2(')a K2, T, h) “
< Misup |lyi(s) — y2(s)ll + Masup [|21(s) — z2(s)|| + Msllpa — pall + 61(t, 7, ),

a,t a,t
N-1
lim h sup 0y (tpi,r,h) =0,
N—o0 ; ref0,1]
hold for t € I, h € H, yy,y2 € C(I,RP), 21,2, € C(I,RP), p1, p2 € RY,
3° there exist constants Dy, D3 > 0, 0 < Dy < 1 and a function é2: I x [0,1] x
H — R, such that fort € I, h€ H,r € (0,1], y1,y2 € C(I,RP), 21,22 € C’(I, RP),
U1, b2 € R? we have

”‘I,(t)yl(')?zl(')y/—l‘lyry h) - ‘I’(t,y2(‘),z2(’),ﬂ2»7", h)”
< Dy sup |lyi(s) —y2(s)ll + D2 sup ||z1(s) — z2(s)|| + Dsllur — pall + 62(t, 7, h),
[a,t+h] [a,t+h
N-1

lim Z sup 62(thi,r,h) =0,

N—oo i=0 TE[O»I]
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4° there exist a nonsingular matrix B,xq and constants d > 0, m; > 0 such that
> ||B7Y|, mid < 1 and

(19) L (y1(), 1) = L(y1(), pz) — B(pa — p2)|| < mallp — w2l

for y; € C(I,RP) and uy,pu2 € RY, where the matrix norm is consistent with the
vector norm, .
5° for y1,y2 € C(I,RP) and pu € R? we have

L (y1()y 1) = L(y2(), 1) || < ma sup 1 (5) = va(s)1l

where my 2 0.
We introduce the standard definitions of convergence and consistency.

Definition 1. The method (7) is said to be convergent to the solution (p, \) of
(1)-(2) if

lim suply},(8) = ()l =0, lim |An; = A =0.

j—oo j—oo

Definition 2. The method (7) is consistent with (1)~(2) on (g, A) if for (¢,7, h) €
I x [0,1] x H the following conditions

lo(t +7h) = o(t) — h@(t, o(-), & AT, h) || < e(t,r,h),

“cp'(t+rh)— (tcp()qo()/\rh” ea(t, 7, h),
N-1

lim sup &1(thi,mh) =0, €1(t,0,h) =0,
N*wgre[m] o ( )

N-1

lim sup 62(thz,T h) =0,

are satisfied.



Put

Ea(t,r, h) = ea(t,r, h) + d2(t, 1, h),
E.‘.-2(t7h) = Sup 52(t,7‘, h‘)v
r€[0,1]
gl(t,T, h) = El(t, r,h) + hdl(t,r, h),
& (t,h) = sup & (t,r,h),
TE[O,I]
Mi =M;+ MzDi(l - Dz)—l, 1=1,3,

, N=1 _
n(h) = Mz[llz,(a) = ¢' (@)l + go E2(thi, )] (1 = D2) 7,

(1) = (0= ) [iallony = Al + ()] + 5 & (tns ),

W (h) = dma ||y} (a) = p(a)ll + (b = a)n(h) + Nil E1(thi, h)] exp (b — @) My).

=0

Now we can formulate the main theorem of this part.

Theorem 3. If Assumption Hj is satisfied and if

1° there exists the solution (p,\) € C'(I,RP) x R? of (1)-(2),

2° A=d[m +maM;(b—a)exp ((b—a)M;)] <1

3°  lim i (a) — a,|| = lim ||z,jl(a) — ¢'(a)|| =0, then the method (7) is conver-

j—oo j—oo

gent to the solution (¢, A) of (1)-(2). Furthermore, the following estimations

(20) “/\hJ _/\” < u](h)) ] :Oal,-“»

(21) sup lyi(t) — eIl S wj(h), j=0,1,...,

(22) sup llzi(t) — @' Ol Svi(h), j=0,1,...,
€

hold, where

1- A
1-4°

w;(k) = [I¥(@) = zpll + (b = &) Mau; () + (b = ) ()

uj(h) = A7||Ano — || + W(h)

N=1 _ B
+ 3 él(th,-,h)] exp ((b — a) M),

=0

v (h) = (1 = D)™ [I14,(@) = ¢/ ()| + Dyw;(h) + Daus () + N}_: & (tni, )
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forj=0,1,....

Proof. Put
elt) =llvi(t) —e®l, Ej, = [Suplei(t),
a,thn
a®) =lza®-¢®l, G, = Sup]gi(t),
a,tpn

znj = | An; = All,
forn=0,1,...,N, j=0,1,.... Using the assumptions we get

Gh(thn +7h) = |2 (thn, Y20, 20.(), Mg s B) = E(thns (), ' (), A, )
+ U (thn, 0(-), ' (), A7, B) — @ (thn + TH)||
< DyEj 1+ DaGl oy + Dsznj + €a(thn, 7, h),
n=01,...,N -1

and hence by induction we see that
. . . . n=l_
Gim < Gio + DlE{m’ + D2G',’1n + D3Zhj + Z:O Ez(thi,h), n= 1,2, e ,N - 1,

or

3 . . n—1 _
(23) G;m <(1- 1)2)_l [Gio + DlEin + D3zp; + > E2(thi, h)], n=0,1,...,N.

=0
Similarly, for the error ef; we get
€5, (thn +1h) = ||y (thn) + h® (thn, YL (), 2L (), Anjs 7y h) — @(thn)
- h® (thny ‘P(), SOI(.)v /\7 T, h') + So(th")
+ ho (thny 90()’ ‘p’(‘)y /\a T, h) - So(thn + Th)”

< €} (thn) + RMLE],, + hM2GY,, + hMszn; + & (thn, T, h),
n=01,...,N -1

and hence and (23)

€} (thn +h) < €l (thn) + RMLEL + hMszn; + hn(h) + & (thn, 7, h),
r € (0,1), n=0,1,...,N — 1.
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Now by induction we see
. . . n—1 . - n—1 _
E] < Ej,+ hM, ;} Bl + 7lh[M3Zhj + n(h)] + ;} éi(tni,h), n=0,1,...,N

or
. . . n—1 .
(24) E], <d,=E],+hM; Y Ej.+p(h), n=0,1,...,N.
=0

Indeed, we have
‘n+1 (1+hM1)dn, n=0,1,...,N — 1,
SO
El < [El,+B(h)]exp ((b— a)]\;fl), n=0,1,...,N.

We next note that

2,41 = | BTHL(w1(), /\) L(y3(-), Anj) = BA = Mnj)
+ L(p(),A) = L{yh (), A ]H
Il <

< d[myzp; + maE Azp; +W(h), j=0,1,....

From this we obtain the estimation (20) and then (21)-(22). According to our
assumptions we see that

}1_1}10 uj(h) = h_r'r(l) w;(h) = /h_n.rly v;j(h) = 0.

It means that our method (y';;,)\hj) is convergent to the solution (¢, ) of (1)-(2)
and the proof of this theorem is completed. O

Remark 2 (see [9]). The condition (19) is satisfied provided that

(25) |DuL(y(:),n) = B|| <my forally e C(I,R?), v € R,
o L) = | ZHY0).
Ou;
Now if
(26) L(y(),n) = My(b) + Nu + K,
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then the condition (25) takes the form
(27) IN = Bl < ma,

where M,xp, Nyxq, Kqx1. And if p = ¢ we may choose B = M + N and (25) leads
us to || M| < my, and

(28) (M + N)Hmy < 1,

provided that M + N is nonsingular.

Remark 3 (see [9]). Assume that there exist matrices Qgxq, Zgxq such that
for all y € C(I,RP), u € RI the matrix

P(y(),u) = DuL(y(), 1) + Q(y(-), 1),

has a representation of the form

P(y(-),pm) = Po(I+ Z(y(), 1))

with a constant nonsingular matrix P,. Moreover, we assume that
1PoZ(y() )| <vis ||Q(),m)|| < v,  forally e C(I,RP), pe€ R

Now taking B = P,, the condition (19) is satisfied with m; = v; + v» and
||P0"1||(1/1 + 1) < 1.

Moreover if p = ¢ and the function L is linear of the form (26) than we may put
Q(y():m) = DyL(y(), ) = M.
Choosing B = M + N we have
P(y(-),u) =M+ N, v =0, M| < va =my,

which lead to the condition (28).

Now we are interested in the construction of the method (7). The increment
functions ® and ¥ can be created in the analogous way as for ordinary differential
equations. To adopt these methods we need a interpolation scheme to compute the
numerical solution y,; (and z,;) on the interval I. It requires storing all previous
values yh(thl) as well as zh(th,) for i = 0,1,...,n becase they may be needed to
compute y; and zh on the interval (t4n,tn 'n.+1]
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i® The Euler method is defined by

Y (tan +1h) = Y (tan) + TR (tan, Ui (), 20(), Ans), 7 €[0,1],
2] (thn +Th) = (f—Ty};(t,m +rh), re€(0,1),
2L (thons1) = f(thnt1s Ui (), 20 (s Anj),s
forn=0,1,...,N—-1,5=0,1,....

ii® The improved Euler method is

yi(thn + Th) = yi(thn) + h((7~ - %TZ)f(thn’yi('))zi(')v /\hJ)
+ 37 f (thnt1, B1 (), 20(0))),
r€ 0,1}, n=0,1,...,N—-1, §=0,1,..

Y

where zf;(t;m +rh), r € (0,1) is defined as in (i) and

_'()_ yf;(s) a<s<t,
e yh(t)+(3_t>f(t>y(),Zi('),/\hj), t<s<t+h,

4 (s) Z(s), a<s<t,
z1(s) = . )
" Fv ()20 (), Anj), t<s<t+h

iii® The one-step method defined by

Vi (thn +Th) =y (thn) + B((r — 3 + 2r%) £ (tan, ¥5(), 21 (-), Anj)
+ (2% — &%) f (thn + 5B, FL(), =J’(-) Anj)
+ (=3 + 2 f(thonat, TR EL(), Mng)), T €(0,1],

where

yi(s), a<s<t,
Fi(s) = S i)+ (s =) f(t,y0(), 20() Ang) + (s = )2/ (2R) (f (¢ + B, FL(),
gx() ’\hJ) (t»yi(')vzi(')a/\hj)), t<s<t+h,

S
S
—_

V)
~

Il
~
—
:‘0-
@
>
/—\
v
N
>a.
»
\—/
)/
=
[
N—

+ ((s = 6)/R) (£ (t + A, G102 (), Ans)
—f(t,yi(~),zi('),/\hj)), t<s<t+h,
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where g{; and 2{ are given in (ii) while zi(thn + rh), r € (0,1) is determined in (i).
Such methods were described in [1, 4, 12].

Usually in the above mentioned methods y,’;(a) = x,, whereas zf;(a) is determined
from the equation ’

zl(a) = f(a,:cp,z,’;(a),/\hj), j=0,1,... .
Indeed Apo = Ao € RY is given and
A1 = A = BTL(A(), Mng)s G=0,1,... .

This procedure works as follows: for y)(a) and ) find z(a) and determine y?(¢),
20(t) for t € I, then find the new value for Ax; and y}(a), z}(a) to determine y} (t),
z1(t) for t € I and so on.

We may also consider approximations yf; and z,’; of ¢ and g{)’ only on the grid
points tn,. Indeed, we have then the sets of discrete values for y} and zi. We define
them by

Yl (thont1) = Vi (thn) + B0 (tan, Y2 ()s 21(), Anjs h)y n=0,1,...,N =1,

where
Y () = yl(ths) if the < < thot
z() = zi(ths) = (Yh(ths) — YL(th,s=1))/h if ths < <tnsy1 and s > 1.

For example, for the problem

Y'(t) = f(t,y(ar(®),. .., y(ar(®), ' (Bi(8)),. .., ¥ (Bs(1), A),

we have now

Yh (thnt1) = Yo (thn) + h®1 (thns Ui (e (n))s - - Vi (o (n))s
(et my)r e 20y () Ansp B), n=0,1,...,N 1,

where

cf(n)=FE (g—iith;:ig), E denotes integer part,

23 (tha) = (y](thg) — ¥} (thq=1))/h.

Here &9 and ®; are increment functions. Such schemes were discussed in [2, 8]
for special cases of our problems. Indeed, we may also consider more complicated
algorithms to approximate y(ci(t)) and y'(5,(t)).
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