
Czechoslovak Mathematical Journal

Petr Habala
Stationary incompressible bipolar fluids

Czechoslovak Mathematical Journal, Vol. 44 (1994), No. 2, 347–356

Persistent URL: http://dml.cz/dmlcz/128461

Terms of use:
© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/128461
http://dml.cz


Czechoslovak Mathematical Journal, 44 (119) 1094, Praha 

STATIONARY INCOMPRESSIBLE BIPOLAR FLUIDS 

PETR HABALA, P raha 

(Received August 28, 1992) 

The work is a contribution to the theory of multipolar fluids. While the equations 
are usually solved via a priori estimates and Galerkin method within Orlicz spaces, 
in this paper the problem is approached using the notion of pseudomonotonicity. 
After introducing the physical foundation for the problem, the weak formulation is 
stated and justified in the second part. In the third chapter the main results are 
collected, namely the existence of a solution to the weak problem is proven and some 
regularity properties are shown. For sake of simplicity only the three-dimensional 
case is treated with a parameter p > | . The same results can be obtained for n 

dimensions and p > - ^ F . 

1. PHYSICAL BACKGROUND 

Let us suppose that all particles of the fluid remain in a bounded domain ft C IR3 

with a Lipschitz boundary 9fi, i.e. no partial flux through dft is allowed. Let M, K 

be natural numbers. The multipolar fluid of type (M, K) is a material described by 
a collection of (8 + M) functions of time t and Euler coordinates x = (x\, x2, £3) G ft: 

= the velocity vector field, 
= the positive absolute temperature, 
= the density, 
= the rate of external heat sources, 
= the specific external body force, 
= the specific internal energy, 
= the specific entropy, 
= the heat flux vector, 
= the spatial multipolar stress tensors, i,u, j = 1,2,3 

(we will use the notation r(m) = T«1...imj). 
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They satisfy the constitutive relations 

e = e(D ,Vi;, . . . ,VK t ; ,0,V0), 

*7 = q ( 0 , V t ; , . . . , V * M , V 0 ) , 

<? = </ (0 ,Vt ; , . . . ,V K M,V0) , 

r(m) = r ( ^ ) ( ^ V v , . . . , V K v , ^ , V i 9 ) , m = 0 , . . . , M - 1 

and the following physical laws in local form: 
1) (conservation of mass) 

r\ O r\ O r\ 

OQ v— OQ -r— OVj 

^ + E ^ + E ^ = °. 
3=1 J J = l J 

2) (balance of linear momentum) 

V, = 1,2,3: , — + , £ . , , . — - . £ _ + , / , , 
j = l J = l •' 

3) (the second law of thermodynamics, Clausius-Duhem inequality, [C-D]) 

^ + ̂ E^-^^-Ea|(|) + 4' 
.7 = 1 J 7 = 1 7 

4) (balance of angular momentum) 

д ( 3 

Vi = 1,2,3 : , - ( 
fc,p: 

) v £ikpXkVp\ + Q) ,Vj^—I > , SikpXkVp 

: , p= l ' j = l •7 xfc,p=l ^ 

3 o / 3 \ 3 

= 2 ^ TTH 2 ^ SikPXkTPJ + £ikpTpkj j + Q /Z £ikPXkfp 
3 = 1 3\,p=l ' k,p=l 

5) (conservation of energy) 

o / 1 \ .Л / 1 \ 

£тгíe + " V^г? I +«?У^UІTГ-ÍЄ+ л Г V i 
Әr\ 2f-f / ^ ðxД 2 f */ 

4 г = l ' j = l ^ x г = l 
3 ~ • Л f - 1 3 k 3 Я f c \ 3 

E Д - Í І + E E E E ^ - w ^ . ^ J + *Eм + *•• 
j = l J x fc=0 г = l т n = l г m = l x *• ' J = l 

i= i 
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We will also suppose that the principle of material frame indifference is satisfied, i.e. 
3 

if we consider a change of frame of the form Xi(t) — ]~) Qij(t)xj(t) + Ci(t), i = 1,2,3 

(where {Qtj(0}?,j-=i - s a n orthogonal matrix), the scalars 9, g, e, r, rj are invariant 

and the tensors q, T^ as well as Dv, V2v, ..., VKv, V0 change in the usual tensorial 

fashion, whereas the changes of / and v are described as follows: 

3 3 3 

Ji = / J QijJj ~ Ci — 2 J ^ QijVj — J ^ UiijXj, 

di = _ _ QiJVJ + Ci + _ Z QijQkjxk-
3 = 1 j,k=l 

Next, for m — 0,..., M — 1 let us define 

r(m,E) _ r ( m ) ( ^ o , . . . , 0,0,0) (the equilibrium part), 
T(m,V) _ r ( m ) _ r (m,E) ( t h e v i S C Q U S p a r t ) 

We will write TE, TV instead of T(
m,E\ T^m,v^ as the order is usally clear from the 

context. The indepth analysis of this general setting can be found in [N§] and [No]. 

Restricting ourselves to the stationary incompressible case and a bipolar (i.e. 

2,2-polar) fluid, the flow system can be described by the velocity vector field 

v — (vi,it2,^3), the general pressure q and the constant density g, none of which 

depends on time. The fluid is governed by the equations 

(Phi) ([C-D]) 

dTiik\ dvi ^ v d*vi > Q 

1,3 = 1 х к=1 к ' 3 г,з,к=1 OXjdXk 

(Ph2) (Navier-Stokes equations) 

"-w &rtЗ-r* 
3=1 J j - = l J 

(Ph3) (continuity equation) 

ӘVІ 

tiдx< 
(Ph4) (no-slip boundary condition) 

Vx G dn : v(x) - 0. 
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Moreover, T$ = -qSij holds. 

Let numbers p > § (see further) and g > 0 be fixed throughout the rest of the 

paper. We will consider only the special class of the stress tensors. In order to 

simplify the definition, let us first introduce the notation. 

The symbol £* will denote the "triangular matrix", £* = {^ij}^'"^ € R6, and 
the following norms will be used: 

lfT = Ľ Щp 

*»j=i 
for£* Є R6, 

ыp = Ž ICoГfor 
m,n,o=l 

??€ R27 

Def ìnit ion. Assume that functions 
AІJ : R6 -> R, 
лk . 

лij- R6 x R2 7 -> R, 

Aijk: R6 x R2 7 -> R, i,j,k = 1,2,3, 

satisfy the following conditions: 

(i) (symmetry condition) 
A- — A •• 

Ak _ Ak 

Aijk - = Ajik, 

(ii) (Caratheodory conditions) 

a) Aij e C(R 6 ), 

Ak- e C(R6 x R27), 

Aijk e C(R6 x R27), 

(3) there exists c > 0 such that 

vreR6: ^^(r) !^ cirr 1 , 
w e R6 vr? G R27: i4-(r,^)i ^ c d r r 1 + M*-1). 

We define 

3 o 

TY{DV, V2V, V3V) = Aij(Dv) - £ — 4 ( I ^ , V2^), 
*=i OXk 

Tij = -<1oV; -F r^- , 
rtjib = r^/e = Aijk{Dv,V2v). 

Now the problem has turned into the classical boundary problem for PDE of the 

fourth order, which will be solved in the weak sense. There is another boundary 

condition needed, so let us state 
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(Ph5) (unstable boundary condition) 

3 

Vx e dft Vt = 1,2,3 : 5 3 A^(Dv,\/2v)vjVk = 0. 
j,k=i 

This condition does not follow from the physical laws stated above, however, it seems 
that it is not also meaningless from the physical point of view, for the left hand side 
term is related to the power of higher order gradients of velocity on the boundary. 

2. W E A K APPROACH 

We will start defining our "working space": 

-W2^(Q,R3) 

vp = Le c~(n, R3); div(<D) = 53 | ^ = o | n w^p(n, R3). 

Let || || denote the JV2'p(ft, R3)-norm. It is clear that (Vp,\\ \\) is a reflexive 
separable Banach space containing finctions satisfying (Ph3) and (Ph4) in the weak 
sense. 

Definition. Let u,v,w\ Q —> R3 be the functions for which the following inte
grals exist. We will denote 

a.(u,v)= jQ-i(J2Aij{Du)^.+ J2 A ^ D u ^ 2 ^ ^ ^ - ) ^ d ^ 
^ i,j=l J i,j,k=l J k ' 

b(u,v,w)= / 5 3 \UjVi—^\(x)dx. 

Using the Holder inequality and the imbedding theorem we obtain 

S ta t emen t 2 .1 . Ifp > 1, then a(.,.) is a mapping [W2>p(fl, R3)]2 -> R which is 

linear and continuous in the second variable. 

Ifp > | , then b(.,.,.) is a trilinear continuous mapping [W2>p(tt, R3)]3 -> R. 

In the proof of the second part of the statement we have to use the imbedding 
twice and the need of estimating the term JQ uv^ dx forces us to restrict ourselves 
to the case p > | throughout the rest of the paper. 

Now we are ready to introduce 
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Definition. Let us define the following operators Vp -» Vp: 

A: Vp -> Vp'; (A(u),u) = a(u,v), 

B: Vp -> Vp'; (B(u),u) = b(u,u,u), 

P : Vp-+Vp'; P = A - B . 

It is clear that P(u) = / is the weak form of the equation (Ph2). Let / G Vp. The 
functions u from Vp satisfying P(u) = f will be called "weak solutions". 

With help of Green's identity we get the following result justifying this definition: 

Theorem 2.2. Let A{j G CX(R6), A\. G C2(R6 x R27), f G C(Q,R3). Let 
q G Cl(Sl), u G C#(fi, R3). Ifu, q satisfy (Ph2)-(Ph5) then u is a weak solution. 

Now we will start investigating the operators defined above. 

Statement 2 .3. The operators A, B, and P are continuous Vp —> Vp. The oper

ator B is continous (Vp, weak) -> (Vp, || | | '). 

The weak continuity of B can be easily obtained from the compactness of the 
imbedding. The most difficult part of the proof is the continuity of A. The difference 
|(A(un) — A(u),i>)| is estimated by Holder's inequality. The crucial point of the 
proof is the use of Vitali's L1-convergence theorem: If {fn}n°=i Q LX(Q), f G Ll(fl), 

/ n -> / almost everywhere in ft and Ve > 0 36 > 0 V£ C Q[\(E) < 6] Vn G N : 
JfndX<e then / n -* / in Lx(ft). 
Q 

Using this statement one can easily prove 

Theorem 2.4. Let A' be an operator Vp -> Vp. Then (A' — B) is coercive, 
pseudomonotone iff A' is coercive, pseudomonotone, respectively. 

We can see that if these important solvability conditions are satisfied for our 
operator A, they are also satisfied for the operator P = A — B. Unfortunately, this 
is no longer true if we consider the strict monotonicity (i.e. the unicity condition). 
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Definition. Let us introduce the following conditions: 

(PhMl) is satisfied iff V«f* € R6 V77 € R27 V/i € R81: 

3,i 3 л 3,k 

2 £ Oмo + £ й £ д{A%:ль\c,ШP+víP) 
i,j=i P=i k,i=i Çkl 

+ £ д{AÏÇAЬ\ť^°>))-Ъ 
m,n,o=l / n o 

- £ ( ^ ( D + £ ( ì £ д{л%:Al\e,vЖ+víP) 
i=i p=i kfl=i ^kl 

3 д(Aцp Ai{) 
+ £ (lP~ u)(S*,v)»ZP))-& 

m,n,o=l / n o 

3 

+ £ Aijk(C,v)riU>0 
i,j,fc=l 

(Ml) is satisfied iff 3K e R 3co > 0 Vcf € R6 VTJ € R27: 

2 £ ^-(0$ - I > « ( m + £ A^(e,vHk) > co\v\p ~ K 
i,j=l i=l ij,k=l 

(M2) is satisfied iff V£* G R6 V7?
(1),r?

(2) 6 R27 [T?(1) ^ r/<-)]: 

£ ((4(r,̂ (1)) -4(r,^(2))))# -^f) > o. 
l , j ,fc=l ^ ' 

By the chain rule we clearly obtain 

Theorem 2.5. Let A{j G C^R6); Ak
{j, Aijk G CX(R6 x R27). If these functions 

satisfy (PhMl) then for every Q, C R3 and for every v G C3(fJ, R3) the tensors T{j, 

Tijk satisfy (Phi). 

From the very definition we have 

Lemma. Let (Ml) be satisfied. Then A is a coercive operator Vp -> Vp. 

The following lemma is the heart of this work: 

Lemma. Let (Ml) and (M2) be satisfied. Then A is a pseudomonotone operator. 
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P r o o f , (sketch): Let {un
j n°= 1 C Vp, u e Vp, 

un ^7 u in Vv and limsup((A(un),un - u)) ^ 0, 
n—>oo 

let v £ Vp be arbitrary. 

We need to prove that liminf((A(ixn),?in - v)) ^ (A(u),u — v). 
n—>oo 

(i) We will show (A(un) - A(u),un - u) -> 0 as n -> oo. 
Denoting 

/„<*) = £ ^(Du-.V^-^I^.VM)^-^) 
i , j , /e=l N -̂  J / 

we can write 

( A ( u n ) - A ( u ) , u n - u ) = J Q-1fndx 

+je->pAil(Du«)-Ali(Du))(^-^y 
+ / . - £ , 4 , ^ , V.) - AUDu, VS.)) ( | £ - ̂ ) 0, 

C2 t,j,*=l \ / 

Following the proof of continuity of A, we can show that the last two right hand side 
terms tend to zero, (M2) implies fn ^ 0, hence liminf ((A(un) — A(u),un — u)) ^ 0. 

n—>-oo 

From the limsup assumption it follows that limsup ((A(un) — A(u),un — u)) ^ 0 
n—>oo 

and the proof of part 1 is complete. Note that consequently fn —> 0 in LX(Q). 

(ii) Let us prove V2un -> V2u a.e. in ft. 

The imbedding implies un -> u in Lp(ft, R3) and Vun -> Vu in Lp(ft, R9). Hence 

un —> u, Vun —> Vw a.e. in ft. By part 1 also fn —> 0 a.e. in ft. We can write 

_JL r)2nn -----, <9?/n 

/„(.-)= 5; 4(^^v2"n)^)a^(:r)+E^(I)un(x))^L^) 
- 2 4.(Dunv2u„)(:t;)_^V {x) _ j ^ Aij{Du^X))d£-{x) 

i,jtk=l -1 i,j = l "* 

- t 4(o«-.v2»)(x)^|:w+ E ^ ( D . - . V . I W ^ W . 
i , j , /c=l ^ z,j,/c=l J 
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Thus (Ml) and the Caratheodory conditions yield 

fn(x) +K + c\Dun(x)\p~1(2\V2u(x)\ + \Dun(x)\) + c\V2u(x)\p~l\V2u(x)\ 

> c0 |V2un(x) |p - c\V2un(x)\(\Dun(x)\p~l + |V2w(o:)|p-1) - c\V2un(x)\p'l\V2u(x)\. 

Since all the terms except the powers of |V2wn | are bounded, the sequence 
{(V2!!7 1!}^! is bounded as well. Then the (M2) condition along with the com
pactness of a bounded interval and the continuity of A;J , A.y imply V2un -> V2u 
a.e. in Q. 

(iii) Using the above inequality and the Vitali's theorem that was mentioned above 
we can prove that V2un -> V2u in Lp, that is, un -> u in Vp. The continuity of A 
implies lim ((A(un),un — v)) = (A(u),u - v), which is even more than we wanted 

n—¥oo 

to prove. D 

As an immediate consequence of these lemmas and Theorem 2.4 we have 

Theorem 2.6. Let (Ml) and (M2) by satisfied. Then P is a coercive pseudomono-

tone operator Vp -> Vp. 

3. MAIN RESULTS 

From the theory of monotone operators and Theorem 2.6 we get the main existence 
result: 

Theorem 3.1. Let (Ml) and (M2) be satisfied. Then for every f G Vp there 

exists a weak solution. 

Now let us show several regularity properties. We will start with the theorem that 
implies the existence of a "presure in the weak sense". 

Theorem 3.2. Let Ay G C ^ R 6 ) , ^ G C2(R6 xR2 7) , / G Lp. Letu G C*(ft,R3) 
be a weak solution. Then there exists q G WliP(Q, R) such that (Ph2) holds in the 
sense of distributions. 

In other words, a weak solution u satisfies (Ph2)-(Ph4) in the weak sense provided 
the functions Ay, A^, and u axe smooth enough. We conclude this paper with the 
following theorem that is a natural conjugate to Theorem 2,2: 

Theorem 3.3. Let Ai5 G C2(R6), A% G C2(R6 x R27), Aijk G C^R 6 x R27), 
/ G C(n, R3), and let (PhMl) be satisfied. Let u G Cg(ft, R3) be a weak solution. If 
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there exists q € C1^) such that (Ph2) holds in the sense of distributions, then u,q 

satisfy (Phi)-(Ph5). 
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