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Czechoslovak Mathematical Journal, 44 (119) 1994, Praha 

ON ONE PROBLEM IN THE THEORY 

OF PARTIAL MONOUNARY ALGEBRAS 

MlRON ZELINA,* Kosice 

(Received August 3, 1992) 

Let J ^ be a weak variety (i.e. a class of all partial algebras of the same type which 
weakly satisfy a set E of equations). Further, let E' be the set of all equations 
satisfied by all total algebras belonging into the class Jff. Define another class J^* 
of all partial algebras of the same type which weakly satisfy all equations of the set 
E'. It is easy to see that Jf*C J(f'. L. Rudak [1] proposed the following problem: 

Problem. For which classes J ^ of partial algebras the relation J^*= J ^ is valid? 

In this paper the problem is investigated for partial monounary algebras. A nec­
essary and sufficient condition (concerning E) is found under which JT*= J^. 

The author wishes to express his gratitude to Danica Jakubikova-Studenovska for 
her helpful discussions and comments. 

1. BASIC DEFINITIONS AND NOTATION 

A type (or similarity type) is a set F and a mapping g of F into the set of nonneg-
ative integers. The elements of F are called operation symbols of type g. Further, 
A = (A, ( / A ) / G F ) is a (partial) algebra of type g if A is a nonempty set and fA is 
a (partial) D(f)-ary operation in A for every f G F. Thus the word "algebra" will 
always be used in the sense "total algebra". 

If p is a cr-term (for notions not defined here see [2]) and A is a (partial) algebra 
of type cr, pA will denote the (partial) function induced in A by p and dom(pA) will 
be its domain. 

An equation of type a is a word of the form p « q where p and q are cr-terms. 

' Supported by Grant GA-SAV 365/92 
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Let A be an algebra and p « q an equation (both of type o), and suppose that p 

and q are n-ary. If for any n-tuple a G An we have p A (a) = qA (a) then we say that 
p & q is satisfied in A and we write A |= p « q. 

Let A be a partial algebra and p w g a n equation (both of type o), and suppose 
that p and # are n-ary. We say that the equation p « g is weakly satisfied in A (and 
we write A 1=^ p ~ q) if for any n-tuple a G -4n we have: if a G dom(pA)fldom(gA), 
then pA(a) = qA(a). (For this definition cf. [5].) In other words, one can say that 
p « q is weakly satisfied in a partial algebra A if the following holds: if both pA and 
qA are defined on a G An, then they are equal. 

Let E he a set of equations of type o and JXf a class of algebras of type o. Denote 
by f?a the class of all algebras of type o. We define 

Eq(JT) = {p&q: A \= p & q for all A G JT}, 

Md(E) = { A G ^ : A ( - : p t t Q for all pnqeE}. 

Now let J ^ be a class of partial algebras of type o and let £" be as above. Denote 
by 2?'<- the class of all partial algebras of type o. We define 

JfcT = {A G Jfc'. A is an algebra}, 

M d u , ( E ) - - { A G ^ : A ^ p « ^ for all p « ^ E } . 

Thus Mdw(E) is a class of all partial algebras of the same type which weakly satisfy 
a set E of equations. 

Let E be a set of equations of type o. We denote by Cl(E') the smallest set 
of equations of type o containing E and closed under trivial equations, symmetry, 
transitivity, substitutions and congruences (i.e. C\(E) is the set of all equations 
which are provable from E using Birkhoff's rules). We write Cl(ei , . . . ,en) instead 
of Cl({ei , . . . ,en}); analogously we write Md(ei , . . . , e n ) , Mdu , (ei , . . . , e n ) . 

Denote N = {1,2 ,3 , . . .} , N0 = N U {0}. 

2. SOME AUXILIARY RESULTS 

2.1 . Lemma. Let E be a set of equations of the same type, J*T = Mdw(E) and 

E' = Eq(JfT). Then E' = C\(E). 

P r o o f . It is easy to see that XT = Md(£). Thus E' = Eq(JtTT) = Eq(Md(E)). 

According to the well known Birkhoff's theorem we have Eq(Md(E)) = C\(E) and 

hence E' = C\(E). • 
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Now—using the above lemma—we can reformulate our problem as follows: 

Let a be a fixed type. For which sets E of equations of type a the following 

equality holds: 

Mdw(.E) = Md„(Cl(E))? 

Note that this equality does not hold in general, as the following example shows. 

2.2. Example . Consider partial algebras with one unary operation / (i.e. partial 
monounary algebras) and let E = {f2(x) « f(x),f3(x) « x} be a set of equations. 
It is easy to see that in total algebras one can deduce an equation f(x) « x from the 
set E. Indeed, the equations 

fix) « f(x), f(x) « f(x), f(x) « X 

follow from E by symmetry and substitution. Using transitivity we get the desired 
equation. Thus we have f(x) & x £ C\(E). 

On the other hand, a partial algebra A with a two-element carrier set {a, 6} and 

a partial operation fA defined only on a with fA(a) = 6 is in the class Mdw(E), but 

is not in Mdw(C\(E)) (because A does not weakly satisfy f(x) « x). 

2.3. Lemma. Let e be an equation and E a set of equations of the same type 
as e. Then the following conditions are equivalent: 

(i) e e C\(E); 

(ii) Cl(e) C C\(E); 

(hi) Eq(Md(e)) C Eq(Md(£)); 
(iv) Md(E) C Md(e). 

P r o o f . Easy. We recall that by Birkhoff's theorem Cl(e) = Eq(Md(e)) and 
Cl(JS) = Eq(Md(E)). D 

From now on we will consider only a monounary type. We suppose throughout 
that / is a unary operation symbol and x, y are different variables. There are two 
types of equations: 

(1) f(x)*f(x), 

(2) f(x)^P(y), 

where i, j G No- (For a positive integer m and any variable z the symbol fm(z) has 
a natural meaning; f°(z) means z). The equations of type (1) are called regular 
equations, those of type (2) are nonregular. 

The following lemmas 2.4-2.6 can be deduced from [3] and [4]. 
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2 .4 . Lemma . Let i,j € N0, i ^ j . Then Md( / i ( i ) « / j(y)) = Md( / i ( i ) as 

2.5. Lemma. Let r,s,i,j 6 N0, l,m G ft.. 

(i) If Md(/ r(x) « / r (u ) ) = Md(/S(x) « /*(*/)), then r = s. 

(ii) If Md(/{(x) « fi+l(x)) = Md(f'(x) « fj+Tn(x)), then i = j and I = m. 

2.6. Lemma. Let r,s,i,j G ftJ0, l , m E N . Then 
(i) Md(/r(x) « r(y))f)Md(fs(x) « /*(</)) = Md(/min(r's)(x) « /min(r's) (</)); 
(ii) Md(/ r(rr) « fr(y))r\Md(f{(x) « fl+l(x)) = Md(/min(r ' l ')(x) « /min( r ' l ' )(y)); 
(hi) Md(f{(x) « fi+l(x)) n Md(/^'(a;) « fj+m(x)) = 

Md(fminV>fl(x) « /mintMj+y.m)^^ w h e r e ^ m j i s t h e greatest common 

divisor of I and m. 

2.7. Corollary. Let r,s,i,j G N0, l,m e N . Then 

(i) Md(/ r(rr) « /r(</)) C Md(/*(:r) « /*(</)) if and oniy ifr ^ s; 

(ii) Md(/ r(x) « fr(y)) C Md(/ i(x) « / i + / (x) ) if and oniy ifr ^ i; 

(hi) Md(/{(x) « / i + / (x) ) C Md(f'(x) « / j + m ( x ) ) if and oniy if t ^ j and l/m. 

P r o o f . The assertion follows from 2.5 and 2.6. D 

2.8. Proposition. Let r,i,j G N0, i < j , s G N. Then fl(x) « fj(x) G 
Cl(/ r(:r) « fr+s(x)) if and only ifi > r and s/j - i. 

P r o o f . According to 2.3, f(x) « fj(x) G Cl(/r(:r) « / r + s(rr)) if and only if 
Md(fr(x) « fr+s(x)) C Md(/ i(x) « fj(x)). Since t < j , we have j - i G N and 
Md(/£(x) « fj(x)) = Md(f*(x) « fl+u-{)(x)). We can use 2.7(iii). D 

2.9. Proposition. Lee r, i,j G fti0, i -̂  j . Then 

(i) /*(*) « fj(x) e C\(fr(x) « /r(</)) if and only ifi > r or i = j ; 

(ii) r(x) « / % ) G Cl(fr(x) « /r(</)) if and oniy ifi > r. 

P r o o f , (i) If i = j , then fl(x) « fj(x) is a trivial equation and hence fx(x) « 
r(x) G Cl(/ r(x) « / r (u ) ) . Now let t < j . By 2.3, /'(a;) « f*(x) G Cl(/ r(x) « 
/ r (y)) if and only if Md(fr(x) « fr(y)) C Md(/ i(x) « / j(rr)). But Md(/ i(x) « 
/ j(:r)) = Md(/{(a;) « fi+u~{)(x)), where j - i G N, and using 2.7(h) we get the 
desired assertion. 

(ii) Again, by applying 2.3 we have fl(x) « fj(y) G Cl(/ r(:r) « fr(y)) if and 
only if Md(/ r(x) « fr(y)) Q Md(f(x) « fj(y)). Prom 2.4 it follows that the last 
inclusion is true if and only if Md(/ r(x) « fr(y)) C Md(fl(x) « fl(y)). Then 2.7(i) 
completes the proof. D 
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3 . T H E MAIN THEOREM 

3.1. Lemma. HE is empty or consists of trivial equations only, then Mdw(E) = 

Mdw(C\(E)). 

P r o o f . Every partial monounary algebra weakly satisfies any trivial equation, 
so Mdw(E) is the class of all partial monounary algebras, whenever the assumptions 
of the lemma are fulfilled. Then C\(E) is the set of all trivial equations and hence 
Mdw(C\(E)) is the class of all partial monounary algebras, too. • 

From now on let E be an arbitrary fixed set of equations. 

3.2. Assumption. Suppose (from now up to 3.10) that E satisfies the following 
three conditions: 

(i) E is nonempty; 
(ii) E does not contain any trivial equation; 
(hi) if fx(x) « fj(z) G E, where i, j G f̂ 0, z G {x,y}, then i -̂  j . 

Denote X = Mdw(E) and X*= Mdw(C\(E)). It is easy to see that X*C X. 

The question is: under which conditions the relation X*= X is valid? 

3.3. Definition. Put 

k = min{i G N0: there are j £M0,z G {x, y} such that fl(x) « fj(z) G E}. 

The set E is nonempty, therefore such a k (G f̂ o) exists. 

We distinguish two cases: 
(1) E contains only regular equations. 
We put 

n = g.c.d.{j - i: i,j G N0 are such that f%(x) « fj(x) G E}. 

Such an n (G N) exists because in this case all equations in E are nontrivial and 
regular. We define e(E) as the equation fk(x) « fk+n(x). 

(2) E contains a nonregular equation. 
In this case we define e(E) as the equation fk(x) « fk(y). 

The equation e(E) will be called the basic equation to the set E. 

Notice that the basic equation to the set E need not belong to E. Let E = {x « 
f3(x),f(x) « f2(x)}. Then k = 0, n = 1 and so e(E) is the equation of the form 
x « f(x). We see that e(E) £ E. 
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3.4. Proposi t ion . C\(e(E)) = C\(E). 

P r o o f . We distinguish two cases: 
(1) E is the set of regular equations. 

Then e(E) is the equation fk(x) « / f c + n (x) , where k G N0, n G N. Let f{(x) « 
P(x) (i G N0, j G N) be any equation of E. By the definition of e(E), k ^ i and 
n / i - i. Then 2.8 implies fl(x) « p(x) E Cl(/*(s) « /*+n(a;)) = C\(e(E)). We 
have proved E C C\(e(E)) and thus Cl(£7) C C\(e(E)). 

Conversely, it suffices to show that Md(E) C Md(e(E)) (see 2.3). According to 3.3 
there exist i\,j\ G N0 such that fn (x) « fjl (x) G E and ii = k. Further, there exist 
me N, «2,i2,i3,j3,...,*m,jm € N0 such that fi2 (x) «/-? '2(x), /*3(:r) «/^'3( .r), . . . , 
fu,l(x) « / j m (x ) G E and n = g.c.d.{j2 - 12J3 -h,---,jm- im} (it is true even in 
the case when E is infinite). 

Let A G Md(E). Then A G Md(/''(:r) « /J''(:r)) for / = 1 , . . . ,m. So we have 

m m 

A G f| Md(f'(x) « /* (a;)) = f| Md(r (*) « filHJl~il)(x)), 
1=1 /=i 

where i\ G N0 and j / - i\ G N for all / G { 1 , . . . ,m}. Using 2.6(iii) (repeatedly) we 
get 

A G Md(fmin^1 ' ,"' im^(n:) « /min{*-'--,'i"»H8.c.d.{ii-*i»i2-*2...-,jm-.m}/rr\\ 

Obviously min{n , . . . , im} = k and g.c.d.{ji — 2*1,̂ 2 - 2*2, • • • ,3m — im} = n (see the 
definition of k and n). Hence A G Md(/fc(:r) « /fc+n(:r)) = Md(e(E)) and therefore 
Md(£) C Md(e(E)). 

(2) .E contains a nonregular equation. 
In this case e(E) is the equation fk(x) « fk(y). Let / l(:r) « /J '(x) G £ , where 

i G N0, j G N. According to 3.3 we have k ^ i. Then 2.9(i) implies that f{(x) « 
p(x) e C\(fk(x) « /*(»)) = C\(e(E)). Similarly, if f (:r) « fs(y) e E (r,s e N0) 
then by 3.3 we get k ^ r and using 2.9(ii) we obtain fr(x) « fs(y) G Cl(/fc(:r) « 
f*(y)) = Cl(e(£)). Thus £ C Cl(e(£)) and this yields C\(E) C Cl(e(£)). 

It remains to prove the opposite inclusion. By the definition of k there exist i,je 
No, z G {x,y} such that fl(x) « fj(z) G i? and i = k. If z = y, then we have fk(x) « 
/J'(y) G E and thus Cl(/fc(a?) « fj(y)) C C\(E). Then by 2.4 Md(fk(x) « /*(y)) = 
Md(fk(x) « /*(</)) and hence Eq(Md(/fc(x) « p(y))) = Eq(Md(/*(:r) « fk(y))), 
which means Cl(/*(x) « / % ) ) = Cl(/*(x) « fk(y)). We obtain Cl(/*(:r) « 
fk(y)) C Cl(£) and thus Cl(e(£)) C Cl(JE). If z = rr, then we have fk(x) « 
/J(:r) G i£. Note that j > k. Since F7 contains a nonregular equation, there exist 
r , s G N0 such that fr(x) « / s (y) G E. Clearly k ^ r. Let A G Md(JE). Then 
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A e Md(fk(x) « P(x)) and A G Md(fr(x) « /s(</)). Therefore A G Md(/fc(x) « 
/ ' (* ) ) H Md(/ r ( s ) » / % ) ) • But Md(/*(s) « /'"(a)) H M d ( f (z) « /s(t/)) = 
Md(/<a;) « /*+0-*)(a,)) 0 Md(/ r(x) w / r (u ) ) = Md(/min<*'r>0r) « /min(fc'r)(2/)) = 
Md(/fc(x) « /fc(y)) = Md(e(£)) by virtue of 2.4 and 2.6(h). We have proved that 
Md(.E) C Md(e(.E)), and 2.3 yields C\(e(E)) C C\(E). D 

3.5. Corollary. Let A be a partial monounary algebra. If A does not weakly 

satisfy e(E), then A £ X*. 

P r o o f . If A does not weakly satisfy e(E), then A £ Mdw(e(E)). Since obvi­

ously Mdw(C\(e(E))) C Mdw(e(E)), we have A $ Mdw(Cl(e(.B))) as well. By 3.4, 

Cl(e(.E)) = C1(E), thus we get A g Mdw(Cl(.E)) = X*. • 

For i,j G N0 we denote [i, j] = { I e N 0 : K K j } . 

3.6. Lemma. If E is a set of regular equations and e(E) £ E, then X*^ X. 

P r o o f . Suppose that E is a set of regular equations. Then e(E) is the equation 
fk(x) « fk+n(x), where fc G No, n G N. Consider a partial monounary algebra 
A = (A, f) (if no misunderstanding can occur, we write / instead of / A ) such that 

A = [0,fc-f n], 
f(i) = i + 1 for i G [0, fc + n — 1], /(fc -f n) is not defined. 

The equation fk(x) « fk+n(x) is not weakly satisfied in A, because fk(0) = 

k ^ fc-fn = / / c + n (0 ) . Thus A does not weakly satisfy e(E), and 3.5 implies that 
A$X*. We will show that AeX. 

Let fx(x) « / J ( z ) G E, where i, j G No- Then i < j and according to the definition 
of fc we have fc ̂  i. Similarly n ^ j —i. Thus fc + n ^ i + (j - i) = j and the equality 
k + n = j holds if and only if i = fc, j — i = n. The assumption fh(x) « fk'rn(x) 

(= e(E)) £ E implies that fc + n < j . This yields that fj is not defined on any 
element of A. Then obviously fl(x) « f^(x) is weakly satisfied in A. So A weakly 
satisfies each equation of E and hence A G Mdw(E) = X. D 

3.7. Lemma. If e(E) £ E, then X*^ X. 

P r o o f . According to the previous lemma it suffices to consider the case when E 
contains a nonregular equation. In such a case e(E) is the equation fk(x) « fk(y)-
Let A = (A, f) be a partial monounary algebra such that 

_4 = [0,l]x[0,fc], 

/((*, J)) = (M + 1) for i G [0,1], j G [0, fc - 1], 

/((0, fc)), / ( ( l , fc)) are not defined. 
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(Notice that if k = 0, then / is not defined anywhere in A.) A does not weakly 
satisfy the equation fk(x) « fk(y), because /*((0,0)) = (0,k) ?- (1, jfc) = /*((1,0)). 
Thus A £ X* in view of 3.5. We will show that AeX. 

Let fl(x) « P(y) G E. Then k ^i ^ j , and k = j only in the case when k = i = j . 

But then we have fk(x) « fk(y) G £ , i.e. e(£) G £ , which is a contradiction with 
the assumption. Therefore k < j and we can see that fj is not defined in A and 
hence fl(x) « fj(y) is clearly weakly satisfied in A . 

Let fr(x) « fs(x) G E. Then r < s and k ^r. Thus k < s, which means that fs 

is not defined in A. Then fr(x) « / s ( z ) is weakly satisfied in A. 
We have shown that each equation of E is weakly satisfied in A, hence AeX. 

• 

3.8. Lemma. If E is a set of regular equations and e(E) G E, then X*= X. 

P r o o f . Let A = (-4,/) G X. We will show that A G X* (the relation 
X*C X is always true). We need to prove that A weakly satisfies all equations of 
Cl(E). 

Let i,j G N0 be such that fl(x) « fj(x) G C\(E). Without loss of generality we 
may suppose that i < j because A weakly satisfies the equation fl(x) « / J ' (x) --" 
and only if it weakly satisfies the equation fj(x) « / l (x ) . Since £ is a set of regular 
equations, e(E) is the equation fk(x) « / f c + n(x) . By 3.4 Cl(£) = C\(fk(x) « 
/ f c + n (x)) , thus /*(») « / j (x ) G Cl(/fc(x) « /*+n(a0). From 2.8 it follows that k ^ i 

and n/j — i. Then there exist d G N, / G N0 with j — i = dn and i = k + l. 

Let a G A be such that fl(a) and / J (a ) are defined. It suffices to show that 
p(a) = fj(a). We have 

(1) f(a) = fk+l(a),fj(a) = /'+«-"> (a) = fk+'+dn(a). 

Since fj(a) = fk+l+dn(a) is defined, we conclude that /*+<+(<--!)" (a) is defined. By 

virtue of the relation k + / + dn = k + n + / + (a?— l)n we get 

(2) /*+'+d n(a) = fk+n+l+(d-l)n^ = /fc+n^/+(d-l)n(aj^ 

(3) /A : + / + ( d" 1 ) n (a) = / fc(/'+ ( t*~1)n(a)). 

Thus we have / / + ( d ~ 1 ) n (a ) G .4 and fk(fl+{d~1)n(a)), fk+n(fl+(d~Vn(a)) are de­
fined. By the assumption of the lemma e(E) G E, so A (G J.T) weakly satisfies 
fk(x) « /*+ n(x) . Then / f c ( / / + ( d - 1 ) n (a ) ) = / f c + n ( / / + ( d " 1 ) n ( a ) ) . According to (2) 
and (3) we have proved that fk+i+(d~i)n(a) =- fk+l+dn(a). Repeating this process 
we get fk+l(a) = fk+l+dn(a) and hence fl(a) = fj(a), using (1), • 
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3.9. Lemma. Ife(E) G E, then X*= X. 

P r o o f . It suffices to consider the case when E contains a nonregular equation 
(see the previous lemma). In this case e(E) is the equation fk(x) « fk(y)- Let 
A = (A, f) G X. We will show that A G X*. 

Let P(x) « fj(y), where i,j G N0. be an arbitrary but fixed nonregular equation 
of C1(E). We may suppose i ^ j . By 3.4 we have C1(E) = C\(fk(x) « fk(y)) and 
hence p(x) « p(y) G C\(fk(x) « fk(y)). Prom 2.9(h) it follows that k ^ i. 

Let a, b G A be such that / { (a) , /•?(&) are defined. We will prove that fx(a) = fj(b). 

Since i ^ k and j ^ i, there exist /,ra G N0 such that i = k + I, j = k + m. 

Then / ' (o) = fk+l(a) = fk(f'(a)), P(b) = fk+m(b) = fk(fm(b)), where fk(f'(a)), 

fk(fm(b)) are defined and thus fl(a), /m (6) are defined. Partial algebra A belongs 
to X, so A weakly satisfies each equation of E, especially e(E) G E, and hence A 
weakly satisfies fk(x) « fk(y). Since fl(a), fm(b) G A and fk(fl(a)), / f c(/m(6)) are 
defined, we obtain fk(fl(a)) = fk(fm(b)). Therefore p(a) = p(b). We have proved 
that A weakly satisfies each nonregular equation of C1(E). 

Now consider a regular equation fT(x) « fs(x) G C1(E) (r, s G N0). We may sup­
pose r <s. Since C1(E) = C\(fk(x) « /*(y)), we have / r (x ) « /s(a;) G Cl(/fc(x) » 
/*(y)). By 2.9(i) r ^ k and then it follows from 2.9(h) that fr(x) « /S(H) G 
Cl(/*(:r) « fk(y))- According to the first part of the proof fr(x) « / s (y) is weakly 
satisfied in A. Clearly also fr(x) « / s ( z ) is weakly satisfied in A. D 

3.10. Lemma. Let E contain a nontrivial equation. Then there exists a set of 
equations E such that Mdw(E) = Md™(Cl(E)) if and onlyifMdw(E) = Mdw(C\(E)) 
and E satisfies 3.2. 

P r o o f . Obviously Md^(E) = Mdw(£b) and C1(E) = Cl(Eb), where E0 is 

the set of all nontrivial equations of E; thus Mdw(E) = Mdw(C\(E)) if and only if 

Mdw(E0) = Mdw(Cl(Eb)) and E0 satisfies 3.2(i) and 3.2(h). We put 

E = {P(x) « fj(z): P(x) » fj(z) G E0,i,j G N0,» ^j,ze {x,y}} 

U{fj(x) « P(z): f\x) « P(z) G E0,i,j eM0,i> j,z G {x,y}}. 

Then Mdw(E0) = Mdw(E) and C1(E0) = C1(E), and therefore Md„(E0) = 
Mdw(C\(E0)) if and only if Mdw(E) = Md^(Cl(E)). It is not difficult to see 
that E satisfies 3.2. • 

3.11. Theorem. Let E be a set of equations ofmonounary type, X = M d ^ E ) , 
J*T*=Md„(Cl(E)). 

(i) IfE is empty or consists of trivial equations only7 then X*= X. 
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(ii) If E contains a nontrivial equation and satisfies 3.2 (according to 3.10 we 
may assume this without loss of generality), then X*= X if and only if the basic 
equation to the set E belongs to E. 

P r o o f . The assertion (i) follows immediately from 3.1 and the assertion (ii) 

from 3.7 and 3.9. D 

3.12. Example. Let E = {f3(x) « fb(x),f2(x) « f2(y),f3(x) « f(x)}. 
By Definition 3.3, e(E) is the equation f2(x) « f2(y) and thus e(E) e E. Then 
X*= X by 3.10. 

Now let E = {x « f2(x),f(x) « f3(x)}- In this case e(E) is the equation 
x « / (x) , e(_E) £ E, and thus JT*?- JT. 
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