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0. By a graph we mean a finite undirected graph with no loop or multiple edge
(i.e. a graph in the sense of [1] or [2], for example). Throughout the paper we assuine,
that a connected graph G is given. Let V and E denote its vertex set and its edge
set, respectively. Moreover, we denote by d(u,v) the distance between u and v in G,
for any u, v € V. Note that d(u,v) is equal to the length of an arbitrary shortest
u—v path in (7, for any u, v € V. Clearly, the vertex set V and the distance function
d form a finite metric space. (Kay and Chartrand [2] found a necessary and sufficient
condition for a finite metric space to be generated by the vertex set and the distance
function of a connected graph).

Similarly as in [3], by the interval function I of G we mean the mapping of V x V

into the set of all subsets of V defined as follows (for every (u,v) € V x V):
[(u,v) = {z € V; 2 belongs to a u — v path of length d(u,v) in (/}.

The interval function of a connected graph, which was defined and intensively studied
in Mulder [3], is an important tool for the study of metric properties of graphs.

The definition of the interval function I of G depends on the notion of the distance
in (7 (or on the notion of shortest paths in G). We are going to derive an essentially
different characterization of the interval function.

1. Denote by J the set of all mappings J of V x V into the set of all subsets of V
such that J fulfils the following Axioms I-VI (for arbitrary «, v, w, z € V'):

[ |J(u,v)]=2if and only if {u,v} € E;
I we J(u,v);
HI  if w € J(u,v), then |J(u,w)NJ(w,v)| = 1;
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IV ifwe J(u,v), then J(w,v) C J(u,v);
Vo ilwe J(u,v) and & € J(w,v), then w e J(u,r);
VI J(v,u) = J(u,v).

Put J = I; it is clear that J fulfils Axiom I; using 1.1.2 from [3] we casily get

el

We now make several observations concerning J.
Using Axioms IT and 1T we obtain J(u,u) = {u} for J € J and v e V.

Let J € J. For u, v € V" we define the set S, (u, v) as follows:

Yo(u,v) = {(u)} Tu=nw;
Ys(u,v) = {(.L',,...,.rk, v); k> 1ap € J(u,v),

{ep. v} € Fand (2q,...,2;) € }JJ(u,.L*k)} ifu#v.

Lemma. Let J € J and u, v € V. Assume that u # v. Then
(1) {u, v} C J(u,v);

(2) ifw € J(u,v) — {u}, then J(w,v) C J(u,v) — {u};

(3) there exists » € J(u,v) such that {x,v} € I;

@) J(u,v) ={v}= U J(u,z);

reJ(uv)
{rv}els

(B) if (wy, ..., wy,) € Ly(u,v). then wy, ..., wy, € J(u,v) and (wy,... w,,) is a
w—wv path in (7 (i.e. au— v path considered as a sequence of vertices);

(6) Ty(u,v) #0.

Proof. (1) follows from Axioms Il and VI.

Let w € J(u,v) — {u}. According to Axiom IV, J(w,v) C J(u,r). Suppose
w € J(w,v). Obviously, u # w. As follows from Axioms IV and VI, J(w,u) =
J(u, w) C J(v,w) = J(w,v) C J(u,v). Axiom HI implies that |.J(w, u)] = I, which
contradicts (1). Thus u ¢ J(w,v) and we get (2).

(3) follows from (1), (2), and Axiom 1.

First, let w € J(u,v) —{v}. Since w # v, (3) implies that there exists » € J(w, v)
such that {z,v} € [. According to Axiom V, w € J(u,x). Using (2) and Axiom VI,
we get (4).

(5) follows from the definition of ¥y (u, v), (2), and Axiom VI.

Combining (2), (3) and Axiom V1 with the definition of ¥ (1w, v), we get (6), which
completes the proof. a

174



2. Let J, J" € J, let n > 0 be an integer. We write P, (J,J") to express the fact
that

J(u,v) C J'(u,v) for cach pair of w and v in V such that d(u, v) = n.

We now give a characterization of the interval function of (7; which is the main

result of present paper.

Theorem. Let J € J. Then J = I if and only if J fulfils the following Axioms
VI and NI (for arbitrary u, v, r, y e V):

VI if{u, e} {v.yy e E, 2 € J(u,v), y€ J(u,v) and w € J(x,y), then v € J (2, y);
VI if{u e} {ve,y} € E, v € J(u,v), y¢ J(u,v) and & ¢ J(u,y), then v € J(x,y).

Proof. (A) Assume that J = I. We shall prove that J fulfils Axioms VII and
VI Consider arbitrary u, v, r, y € V' such that {u, «}, {v,y} € I2and @ € J(u, v).
Put n = d(u,v). Then d(z,v) =n—1.

(Axiomn VII) Asswine that y € J(uw,v) and v € J(r,y). We want to prove that
v € J(x,y). Since {v,y} € I and y € J(u,v), we have d(u,y) = n — 1. Certainly,
d(x,y) < n. Since w € J(r,y), we get d(x,y) = n. Thus v € J(r,y).

(Axiom VII) Assume that y € J(u,v) and @ ¢ J(u,y). We want to prove that
v € J(r,y). Since y & J(u,v), we have d(u,y) = n. Since & ¢ J(u,y), we have
d(e,y) 2 d(u,y) = n. Since d(z,v) = n—1and d(v,y) = 1, we get v € J (0. y).

(B) Conversely, let us now assume that J fulfils Axioms VII and VI We shall
prove that P, (I,.J) and P, (J,I) for each integer n such that 0 < n < D, where D
denotes the diameter of (. We proceed by induction on n. It is clear that Py (1, ./)
and P, (J, 1) for n = 0 and 1. "Therefore, let us assuine that 2 <n < D and

(7) Pu(l,J) and Py(J, 1) for cach k € {0,...,n—1}.

The rest of the proof will he divided into two steps.

Step 1. We shall prove that P, (/,.J). Consider arbitrary w, ¢ € 17 such that
d(u,v) = n. We want to prove that [(u.v) C J(u,v). Suppose, to the contrary,
I(u,v) = J(u,v) # 0. Consider w € [(u,v) — J(u,v). Since w € I(u, v), there exist a
v—u path (Yo, ..., yn) in G and an iteger ¢ such that 0 <7 < nand w = y;. Clearly,
yo = v aud y, = w. Since w ¢ J(u,v), we have 0 < i < n. Consider an arbitrary
Je{l....on—=1} It follows from (7) that (v, y;) = J(v,y;) and [(y;, u) = J(y;. u).
If y; € J(u,v), then Axioms IV and VI imply that (v, ;) C J(u, v) and I(y;.u) C
J(u,v), and thus w € J(u,v), which is a contradiction. We conclude that y,, .

Un-1 Q 'I(Hv l’)'
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As follows from (6), there exist zg, ..., £m € V (m 2> 1) such that (zq,...,2,,) €
Es(u,v). According to (5), (zo,...,Zm) is @ u — v path in (. Thus zo = u and
z,, = v. Since n = d(u,v), m > n. Since (zo,...,Zit1) € Ty(z0,Tis1), it follows
from (5) and Axioms V and VI that

(8:) zip1 € J(zi,v)

for each i € {0,...,m — 1}. Since (yo,..-,yn) is @ v — u path in G and y,, ...,
Un—1 ¢ J(u,v), we see that

(9:) (Yir--yYn = xo,...,x;) Is a path in G
for each 7 € {0,...,n}.

Put 2_; = y,_1. Certainly, the following statements (10;), (11;) and (12;) hold
for : = 0:

(10;) d(ri,y:i) = n;
(11;) v € J(zi, yi);
(12;) zio1 & J(2i, ¥i)-

Clearly, z,,1 € J(zo,zn). Since y, = zg, n—1 € J(zn,yn). Thus (12,) does not
hold. This means that there exists h € {0, ...,n—1} such that each of the statements
(105), (114) and (124) holds but at least one of the statements (10,41), (11441) and
(12441) does not.

Combining (8,) and (113) with Axioms IV-VI, we get

(13) zhyt € J(zh, yn);
(14) v € J(Thtr,Yn)-

It follows from (95) and (104) that d(xs,yn+1) = n — 1. According to (7),
J(xn,yns1) = I(xh, Yyns1). Obviously, zh—1 € I(zp, yns1). Thus xp_y € J(&h, yn41)-
If yny1 € J(zn,yn), then it follows from Axioms IV and VI that »ry_; € J(xp, yn),
which contradicts (12;). Therefore,

(15) Ynt1 € J(Zh,yn)-

We now want to show that x4y & J(xn, yns1). Suppose, to the contrary, rj4 €
J(xh, yny1). Since d(zp, ynp1) = n — 1, it follows from (7) that x4y € I(£n, yns1)-
Thus d(zh41,Yn+1) = n — 2. It follows from (104) that d(zps1,yn) = n — 1 and
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Yns1 € I(xhs1.yn). According to (7), yag1 € J(zh41,yn). Combining this fact with
(13) and Axiom 1V, we get ypyy € J(xn,yr), which contradicts (15). Thercfore,
Thir & J(Zh, Yht1)-

Since zpy1 € J(zn,yn) and ypy1 € J(zh,yn), Axioms VIIT implies that

(16) Yn € J(Thet, Ynt1)-

Combining (14) and (16) with Axioms IV and VI, we get (11541).

As follows from (9541), d(Znt1,Yn4+1) < n. Suppose d(zpy1,¥n41) < n — L.
According to (7), J(xpt1,Yn+1) = I(Zhs1.Yns1). It follows from (16) that y, €
[(xpe1 yns1). This implies that d(zpe1,yn) < n— 2. Hence, d(zp,yn) < n — 1,
which is a contradiction. Thus we have (10441).

Since (10h41) and (11,41) hold, it follows from the definition of & that (12,4))
does not hold. Thus we have z, € J(zpt1,Yn4+1). Combining this fact with (13),
(16) and Axiom VII, we get ypy1 € J(xn, yn), which contradicts (15).

Thus I(u,v) C J(u,v) and we have
(17) P,(1,7).

Step 2. We shall prove that P, (.J, ). Cousider arbitrary u, v € V such that
d(u,v) = n. We want to prove that J(w,v) C I(u,v). Suppose, to the contrary,
J(u,v) — [(u,v) # 0. It follows form (4) that there exists w € J(u,v) such that
{w,v} € E and J(u,w) — I(u,v) # 0. Assume that there exists w' € J(u, w) — {u}
such that w’ € I(u,v). Since d(w',v) < n, J(w',v) = I(w',v). According to
Axioms V and VI, w € J(w',v). Thus w € [(w',v). Since v’ € [(u,v), w €
I(u,v). This means that d(u, w) = n— 1. As follows from (7), J(u, w) = I(u, w).
We get J(u,w) C I(u,v), which is a contradiction. Thus we have obtained that
(J(u, w) = {u}) N I(u,v) = 0. According to (6), £, (u,w) # 0. There exist zq, ...,
rm—1 € V (m 2> 2)such that (xq,...,zm—1) € Ey(u,w). Clearly, 2g = u, 2,,; = w,
and xy, ..., T, ¢ [(uw,v). Put x, = v. Certainly, (xo,..., ) € Sy(u,v).
According to (5), (wg,...,rm) is a u— v path in ;. Since z,,_y ¢ I(u,v), we sce
that m > n. Morcover, we have (8;) for each 7 € {0,...,m— 1}.

Since d(u,v) = n, there exist yo, ..., yn € V such that yo = v, v, = u, and
(Yo, ---yyn) 1s a u— v path of length n in (/. Clearly, yo, ..., yn € I(u,v). We get
(9;) for cach 7 € {0,...,n}.

Obviously, both (10y) and (1lp) hold. Since m > n, &, # v. Since y, = u,
(2) implies that v € J(x,, yn). Thus (11,) does not hold. This means there exists
h € {0,...,n — 1} such that both (104) and (11) hold but at least one of the
statements (10p41) and (11,41) does not.



Similarly as in Step 1, we have (13) and (14).

We want to show that d(ry41.yn) = n. Suppose to the contrary d(rp, 4y, y) <
n— 1. Since d(xn,yn) = n, d(ryer,yn) = n— 1. According to (7), J(rnpr. ) =
I(rpgr, yn). Since v € J(&pgr yn), we have v € H(wpgr. yn). Obviously. d(v. yy) = I
Thus d(rpgr.v) =n—=h = 1. According to (7), J(apgr, 1) = 1(rpgr.v). Combining
(8k=1) and (7), we sec that d(ug.v) = n =k and J (g, v) = (o v) for cach integer
A such that h+1 < k < n. This means that d(x,,, v) = 0 and therefore i = n, which
is a contradiction. Thus we have d(ep4y, yn) = n.

As follows from (9541), d(@ps1, yn41) < no We want to show that (10,4,). To
the contrary, let d(wrjq1, yn41) < n. Since d(wppy yn) = nowe have d(ep e yn) =n
and d(rppr,yn41) = n— 1o Then yupr € H(epgeroyn). Tt follows from (17) that
Yt € J(pgr,yn). Combining this fact and (13) with Axioms V and VI, we get
Thgpr € J(rn,yngr). Since d(ap,yn) = n, we see that d(ap.yps) = n— 1. It
follows from (7) that w1y € I(wn, yngr). Henee d(appr ynger) = n =2, which is a
contradiction. Thus we have (10,4,).

Combining (95) and (105). we see that yuypr € I, yn). As follows from (17),
Yngr € J(xn,yn). According to (10p41), d(rpgr,ynsr) = 1. Therelore, r, €
I(rhgv,yng1). As follows from (17), rp € J(whgr, yngr). According to (13). 4,
J(en,yn). Since xy € J(epgr,yngr) and ynpr € S, yn), Axiom VI implies that
Y € J(ng1, Yn41). Combining this fact and (14) with Axioms IV and VI we have

M

(11p41), which contradicts the definition of h.
Thus J(u,v) C I{u,v), hence P, (J, 1), which completes the prool of the theoren.
O

Remark. There is a connection between the interval function of ¢ and the set
of all shortest paths in (;. A characterization of the set of all shortest paths in (¢

was given by the present author in Theorem 1 of [4].

References

(1] M. Behzad, G. Chartrand and L. Lesniak-Forster: Graphs & Digraphs. Prindle, Weber
& Schmidt, Boston, 1979.

[2] D. C. Kay and . Chartrand: A characterization of certain ptolemaic graphs. Canad.
J. Math. 17 (1965), 342-346.

[3] H. M. Mulder: The Interval Function of a Graph. Mathematisch Centram, Amsterdam,
1980.

[4] L. Nebesky: A characterization of the set of all shortest path in a connected graph.
Math. Boh. 119 (1991), 15 -20.
Author’s address: Filozofickd fakulta Univerzity Karlovy, nam. J. Palacha 2. Praha 1,

116 38, Czech Republic.

178



		webmaster@dml.cz
	2020-07-03T09:44:07+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




