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1. INTRODUCTION

Starting from the canonical isomorphism s: TT* — T*T by Modugno and Stefani
[10], Kolat and Radziszewski determined all natural transformations of TT* into
T*T, [7]. Analogously, all natural transformations between 7T27T* and T*T{ were
classified in [2] (T denotes the functor of 1-dimensional velocities of order 2).

In this paper we determine all natural transformations of TTT™* into TT*T and
interpret them geometrically. Further we show that all natural operators T ~» TTT*
transforming vector fields on a manifold M into vector fields on TT*M can be
constructed from the flow operator by applying all natural transformations of TTT™*
into TTT™ over the identity of TT*. However this is the property of Weil functors,
which is also satisfied for the non product-preserving functor TT*. In the last section
we describe all natural affinors on TT*M.

All manifolds and maps are assumed to be smooth.

2. BUNDLES OF THE TYPE HGF

Denote by .# f the category of all manifolds and all smooth maps, by .# f; the
category of all manifolds and their local diffcomorphisms, and by . f,, the cate-
gory of m-dimensional manifolds and their local diffeomorphisms. We shall use the
concept of a natural bundle on .# f,, (or simply natural bundle) in the sense of
Nijenhuis, [11]. If we replace the category .# f,, by the category .# f, we obtain the

The author is indebted to Prof. I. Kol4t for suggesting the problem and for many helpful
comments

599



concept of a bundle functor on .# f. Let T or T* denote the tangent or cotangent
bundle, respectively.

Consider a bundle functor F on .# fr and two bundle functors G, H on .# f. The
bundle projection pk;: FM — M gives the induced mapping HGpY,: HGFM —
HGM. Next, we have the bundle projections pE,,: GFM — FM, pHe,: HGFM
— GFM and the induced mapping Hp$,,: HGFM — HFM. Since G and H are
bundle functors on . f, the following diagrain commutes:

SN\

(1)
pGFM HGFA/{ HPFM
Gpiy Hpk,
lﬂcp{,
GM = H G M »HM
P& M Hp

(Similar diagrams are used in [12] to describe some properties of the third tangent
bundle TTTM.) In addition to the projections from HGFM into GFM, HGM and
HF M we have also the natural projections from HGFM into GM, HM and FM,
which correspond to the diagonals of the commutative squares in (1). Further, let
us define a set

(H,G,F)M = {(a,b,c) E GFM x HFM x HGM ; p$§p;(a) = pHps(b),
Gpp(a) = pGum(c), Hpag (b) = Hpfy(c)}.

One easily verifies that for every diffeomorphism f: M — N the map HGFf
is projectable over certain map (H,G,F)f: (H,G,F)M — (H,G, F)N satisfying
(H,G,F)(go f)=(H,G,F)go(H,G,F)f. Moreover, if every (H,G,F)M — M is
a fibered manifold, then (H,G, F) is a bundle functor on . f;.

In the following example we describe TTT*M by means of a diagram of the type
(1). We also introduce local coordinates on TTT*M.

Example 1. While the tangent functor T is defined on the whole category
A f, the cotangent functor T™ is defined only on local diffecomorphisms. For every
local diffeomorphism f: M — N we define T*f: T*M — T*N in such a way that

600



T;f: T:M — Tj )N is the inverse map of the dual map (Tef) = Tj )N - Tz M.
Denote by qpr: T*M — M, ppr: TM — M the bundle projections. If 7: E — M is
a vector bundle, then there are two vector bundle structures on the tangent bundle
TE, namelypg: TE — Eand Tn: TE — TM. So pr-m, Tqm, prrem, TPrenm and
TTqm are vector bundle projections. The canonical coordinates z' on R™ induce
the additional coordinates p; on T*R™ and z' = dz*, ¢; = dp; on TT*R™. Hence
on TTT*R™ we have local coordinates z*, p;, 2%, ¢i, X! = dz*, P; = dp;, Z* = d2*,
Q; = dg¢;. The space TTT*M can be characterized by means of the diagram

™M
Prem PTeM
(2) TT*M M

PrT* Tpre

M e M
Tqm Tqm
lTTqM
TM ~—rm—TTM————>TM

We have also defined the bundle (T,T,T*).

In the case of the diagram (1) in general it is not possible to interchange F' and
G. But if there is a natural equivalence h: FG — GF of bundle functors defined in
the category .# f; such that the diagram

FM

IP?M

FGM GFM

\ j'cpf,
GM

commutes then we can define an analogue of (1) also for the composition H FG. For
example, in the case of TT*T we can take the natural equivalence s: TT* — T*T
by Modugno and Stefani.

hm
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Example2. Ifr: E— M isavector bundle, then on the cotangent bundle g :
T*E — E there is another vector bundle structure gg. : T*E — E* defined by the
restriction of a linear map Ty E — R to the vertical tangent space, which is identified
with E,). In this way qry and erem are vector bundle projections on T*TM,
so that TT*T M has three vector bundle structures prerar, Tqrap and Tor-pr. Let
w' = dz* be the coordinates on TR™ induced by the canonical coordinates z* on
R™. Then the expression r;dz' + s;dw’ determines the additional coordinates r;, s;
on T*TR™. So !, w', r;, s;, Y = dz!, W' = dw’, R; = dr;, S; = ds; are local
coordinates on TT*TR™. Finally, we can describe the space TT*TM by means of

eT*M Prem
3) T"TM TT‘
PT'TM TT*TM TQT.M
qT™ Tam
lT‘ITM
™M ~— TT M- Trar >TM

3. THE ANALYTICAL RESULT

In this section we determine all natural transformations TTT* — TT*T. Accord-
ing to the general theory [9], we have to find all G3,-equivariant maps (TTT*), —
(TT*T)o of the standard fibres, where G},, means the group of all invertible r-jets
on R™ with source and target zero. Denote by

(4) (“;:“;kaa;kt)

the canonical coordinates on G3, and by a tilde the coordinates of the element inverse
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to (4) in G3,. Using standard evaluations we find the action of G3, on (TTT*)o:

— & = o =J okl =i
=a;pj, € = 0302 P+ 63 4;,
=aj2, Z'=a}Z’ - a}&i,ma;"agxkz’,

=d X, Pi=adX'p+alPp,

-

P m_kyn 1l . _ ~j k=l m nyq.p,.
i =@y ana; X"z pj a;a;a,,a; aqX 2Ppi+

~j kol ~j kI ~i kyl.. 4 =ipn).
+ aja; Z'p; + G307 2 Py + aja) X' g5 + 6, Q;.

G
Ql >S_) N

The tangent map to the canonical isomorphism s: TT* — T*T by Modugno and
Stefani is also an isomorphism. The equations of s are

(6) w' =2 =g, s =pi
so that T's: TTT* — TT*T has the coordinate expression
(7 w=zn=q,s=p,Y =X, S =P,W =Z R = Q.

Then the action of G2, on (T'T*T), can be derived from (5) and (7). Let us furhter
denote

(8) Lh=pz L=p;X Ia=p;Z' + Pz Is = p; Z° + ; X°.

One verifies directly that the expressions I, I, I3,14, whose geometrical interpre-
tation will be given later, are invariants with respect to the group G2,. By the
following lemma, I, I3, I3 and I4 even generate all G2 -invariants defined on the
standard fibre of the bundle (T, T, T™).

Lemma 1. Let m > 2 and let F be a smooth G2 -invariant function defined on
the standard fibre of the bundle (T,T,T*). Then there is a smooth function f:
R* — R such that

9 F(2, X' pi, i, Py Z°) = f(Ih, Iy, Ta, Iy).

Proof. Suppose first m = 2 and define f by the formula
f(y1,92,¥3,94) = F(1,0;0, 1591, ¥2; 0, y4; 43, 0; 0, 0).

There is a linear transformation transforming independent vectors z and X into (1, 0)
and (0, 1), respectively. Further, (5) with a} = 6} gives

ii=95+ﬁflpj, P;=Pi+ip;, Z'=2 -a,.
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By the choice of @, we obtain Z' = 0. Analogously, for p; # 0 the choice of al,
yields §; = 0 and for p; # 0 the choice of a2, gives P = 0. Then ¢ = I4 and
P, = I3. Hence (9) holds on open dense subset, so that it holds everywhere.

Now let m > 2. By the tensor evaluation theorem from [9] there is a smooth
function f: R® — R such that

F(Z, X', pi, i, P, Z°) = f(pi2',pi X'\ i 2, qi2*, 0 X', 0:2°, Pi2*, P, X*, P, ZY).
Put
F(Z")Xiypi»qu I)t') Z‘) = f(11)12a13y14vqi2i)ql'ziy Pixiy PiZiypiZi - ini - Pizi)~

We prove that the function f depends only on the first four variables. The invariance
on the kernel of the jet projection G2, — G}, reads

fUh, I, I3, 14, ¢i2* ;i 2}, BXY P28\ pi 2 — ¢; X* — Pi2t)
= f(h, I, I3, 1, §i2* , G Z* , P; X' P, 28 i Z° — ;X' — P;2').

Setting 2z = (1,0,...,0), X = (0,1,0,...,0), Z = (0,0,1,...,0) we obtain

f(p1,p2,p3+ P1,p3+92,q91,93, P2, P3,p3 — g2 — Py)
= f(p1,pP2,P3+ P1,p3+ q2,8,p; + @, (@,p; + ¢3)(—a3; + 1), @,p; + Pa,
(@3,p5 + P3)(—a3, + 1), pa(—a3, + 1) = (@),p; + q2) — (@,05 + P1)).

If all &j. ¢ €xcept @}, are zero then

f(p1,p2,p3+ P1,p3+q2,q1,93, P2, P3,p3 — g2 — Py)
= f(p1,p2,P3+ P1,P3+ g2, 91 + @},p1, 43, P2, P3,p3 — g2 — Py).

This implies that the function f is independent of the fifth variable. Analogously,
by means of @j};, al,, @i, and @, we prove that f does not depend on the sixth,
seventh, eigth and nineth variable, respectively. (]

Now we shall look for the coordinate form of all G3 -equivariant maps
(TTT*R™)o — (TT*TR™)o. Consider first w' = w'(p;, 2*, ¢i, X*, P, 2%, Q;). Tak-
ing into account the equivariance with respect to the kernel of the jet projection
G3, — G2, we obtain

wi(Pi,Zi,‘li,Xi, Pi)Z‘.in) = wi(Pi,Zi,‘Ii,Xini,Zi,Qi +&{klxlzkpj)
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so that w' does not depend on Q;. Quite analogously one can prove that r;, s;, Y?,
S; and W' are also independent of Q;. Assume now m > 2. The equivariance of w
with respect to the linear group G2, C G3, implies that w' is a G},-equivariant map
R3™ x R®™* — R™. By the tensor evaluation theorem [9] w' has the form

wi = a(Pizi,PiXi,PiZi, ‘1:’2"» QixiniZi, F)l'ziy PiX'.) })i'Zi)zi

+ ,B(p;z‘, ceey PiZi)Xi + 7(p,-z", ceey P,'Z‘)Zi

where a, B, ¥ are smooth functions of nine variables. In the sanie way as in the
proof of Lemma 1 we deduce that a = a(h, I3, 13,1s), B = B(h, Iz, I3, 1,) and
7 = 0. Hence

(10) wi =A(11)12113)I4)zi+B(Il)12)13)14)xi
with arbitrary smooth functions A, B of four variables. For m = 2 let us introduce
an additional variable (u1,u;) € R?*, @; = & u;. Then w'(pi, 2, qi, X*, P, Z%)u; is

a GZinvariant function and the expressions Is = u;2%, Is = u; X* are GZ-invariants.
Similarly to the proof of Lemma 1 one can deduce

Lemma 2. For every G3-invariant smooth function F(z‘,X‘,p;,q;,Pg,Z‘,u;)
there is a smooth function f: R® — R such that

F(Zi) X'.:Pi; qi, ]’;,Zi,u;) = f(Il’]2) 13) 14) I5) 16)-

Thus, w'u; = f(I1, Iz, I3, 14, Is, Is). Differentiating this with respect to u; we get

o = of(Ly,-...,Is) J4 af(hL,...,Is) ¥
Ozs Oz

where z5 or z¢ denote the fifth or sixth component of f, respectively. Setting u; = 0,

uz = 0 on the right hand side of the equation we obtain w' = ¢(I),..., I4)z* +
¥(I1,...,14)X*, where

3f(z1,...,%e) 0f(z1, - .., 6)
<p(x1,...,z4)=———— ,1/)(31,...,34):——-,——
615 Ts=z¢=0 8:6 T5=z¢=0
Therefore (10) holds also in the case m = 2. Analogously,
(11) Yi=C(Il,...,Iq)Zi+D(I],...,I4)Xi
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and also

(12) S; = E(Il,...,lq)p,‘

with arbitrary smooth functions C, D, E: R* = R.
Assume a map ri(p;, 2*, ¢i, X*, P;, Z*) is in the form
ri = ag; + BP; + #i(pi, 7', i, X', P, ZY).

Using equivariance on the kernel of the jet projection G2, — G, we obtain a = AE,
B = BE. Then the full equivariance reads a#(pi, ..., 2*) = #(pi, ..., 2'), so that
7; has the same transformation law as s;. Hence #; = F([1,..., I4)p; and

(13) ri = AEq; + BEP; + Fp;
where F' is another smooth function of four variables. Quite analogously,
(14) Si = CEqi + DEP; + Gp;

where G = G(I1,...,14) is a smooth function. Applying a procedure similar to that
used in the case of r; we prove

(15) W' =(AD+ BC)Z' + H2' + KX*,

(16) Ri = E(AD + BC)Q; + (AG + EH + CF)q; + (BG + EK + DF)P; + Lp;

and the additional conditions AC = 0, BD = 0. Thus, we have deduced

Proposition 1. Let m > 2. Then all natural transformations TTT* — TT*T
are of the form
w' = AZ' + BX?,
Yi=C:+ DX,
s; = Ep;,
17) ri = AEq; + BEP; + Fp;,
S; = CEq; + DEP; + Gp;,
W' =(AD+ BC)Z' + HZ + KX°,
Ri = E(AD + BC)Q;i + (AG + EH + CF)qi + (BG + EK + DF)P; + Lp;
606



where A, B,C, D, E,F,G, H, K, L are arbitrary smooth functions of four variables
viewed as functions of the invariants Iy, I, I3, Iy. Moreover, the functions A, B,
C,D satisfy the conditions

(18) AC =0, BD=0.

4. GEOMETRICAL INTERPRETATION

We first describe a simple geometric construction of the invariants I, I, I3, I4
given by (8). Every A € TTT*M is a vector tangent to a curve ¥(t): R — TT*M
at t = 0. Then a(t) := premoy(t): R — T*M and B(t) := Tqoy(t): R > TM, so
that we can evaluate (a(t), 3(t)). The invariants (8) can be constructed as follows:

I = (a(t), B(t),=0 = (pr*M © prT-M(A), Tq o prT+M(A)),
Iy = (pr+m o prT-M(A), Tq 0 Tpr-m(A)),

13 = -:—t (a(t),ﬂ(t)), 14 = 13 [¢] iT‘M
0

where i7ep: TTT*M — TTT* M is the canonical involution.

Now we present a geometric interpretation of Proposition 1. Let us notice that the
isomorphism T'syy: TTT*M — TT*TM given by (7) corresponds to the constant
valuess A=D=FE=1,B=C=F=G=H=K=L=0in(17). We have
the following injection j: T*M — T*TM. Take any vector B € To.TM, where O,
is a zero vector over £ € M. Then B’ = Tpy(B) € T M, so that we can define
j(A)(B) := (A, B') for arbitrary A € T*M. Next, the composition syt © ] gives
an injection j;: T*M — TT*M, (z,p;) — (2*,0,0,p;). Moreover, denote by js:
TT*M — TTT*M the kernel injection, (z¢, p;, 2%, ¢;) — (=%, p;,0,0,0,0, 2%, ¢;).

Starting from an arbitrary element

(19) (ziypl')zi)qivxi)Pl'yzi1Qi)ETTT‘M
we construct the corresponding element (17) in TT*T M. We proceed in three steps.

1. First we recall the equations of all natural transformations tps: TTTM —
TTTM, see e.g. [5]. Let z',a' = dz*, b* = dz*, ¢! = da’ be the canonical coordinates
on TTR™. Then the coordinate form of ¢, is
= Ad' + BV,

Ca' + DV,
= Ha' + Kb + (AD + BC)¢!

at
b
c
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where A, B, C, D, H, K are arbitrary real numbers satisfying AC = 0, BD = 0.
Transforming (19) into TTT*M by means of trep : TTT*M — TTT*M we have

(20) (z',pi,Az* + BX' Aq; + BP:;,C2* + DX* Cq; + DP;,
(AD + BC)Z' + Hz* + KX*,(AD + BC)Q; + Hq; + KP;) € TTT" M.

Furthermore, multiplying this by E on the vector bundle TTq: TTT*M — TTM
we obtain

(21) (2%, Epi,A2' + BX' AEq; + BEP;,Cz' + DX',CEq; + DEP;,
(AD + BC)Z' + H2* + KX*,E(AD + BC)Q; + HEq; + KEP;).

2. Now we construct the term with L. Multiplying (z*,p;) € T*M by L on the
vector bundle T*M — M we have (z*, Lp;) € T* M. Further, applying the injection
J1:T*M — TT*M we get

(22) («*,0,0,Lp;) € TT" M.

On the other hand, the injection of (z*, Ep;) € T*M into TT*M by means of the
zero section gives

(23) (<, Epi,0,0) € TT*M.

Evaluating the sum of (22) and (23) with respect to the vector bundle structure
TT*M — TM we obtain (z*, Ep;,0, Lp;). Next, the kernel injection j, yields

(24) («*, Ep;,0,0,0,0,0,Lp;) € TTT* M.

Moreover, using the bundle projection prrepr applied on (21) and then the zero
section TT*M — TTT*M we obtain

(25) (z!, Ep;, A2* + Bz’ AEq; + BEP;,0,0,0,0) € TTT* M.
The sum of (24) and (25) on the vector bundle Tpre. s is

(z', Epi, Az* + BX', AEq; + BEP;,0,0,0, Lp;).
Finally, we add this to (21) on the vector bundle structure pprr.nm,

(26) (', Epi, A2 + BX', AEq; + BEP;,Cz' + DX*,CEq; + DEP,,
(AD + BC)Z' + H2' + KX',E(AD + BC)Q; + HEq; + KEP; + Lp;).
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3. It remains to discuss the terms with F' and G. Denote by spp: TT*TM —
T*TTM the isomorphism s by Modugno and Stefani, which is applied to TM. Then
the composition (Tsp)~! o (sum)~!: T*TTM — TTT*M is also an isomorphism,
which we will denote by lp. If @' = dz?, b = dz', ¢! = da' are the induced
coordinates on TTR™, then the expressions a;dz! + Bida* + v;db* + 6;dc' determine
the additional coordinates a;, 8;, vi, 6; on T*TTR™. We have the following inclusion
kp: TTM xppg T*TM — T*TTM,

(=%, 2, X', Z¢ rde’ + 5;d2Y)

— (ai =2 b =X =2 ai=ri,Bi=si,7i =6 = 0).
The TTq-projection of (26) is
(27)  (¢',Az' + BX',C2' + DX',(AD+ BC)Z' + H2' + KX') €e TTM
and the prr.p-projection of (20) is
(xi,pg, Azt + BX' Aqi + Bp;) e TT* M.
Multiplying by G on the vector bundle structure TT*M — T M we get
(z!,Gpi, A2* + BX', AGq; + BGp;) € TT* M,

which we map into T*TM by means of sys. Hence we can apply inclusion kps to
this element and to (27). Finally, transforming the result into TTT* M by means of
Ipr we obtain

(28) (z',0,A2' + BX',0,C2* + DX, Gp;,
(AD + BC)Z' + HZ' + KX*, AGq; + BGP)).
Quite analogously, using the canonical involution ip. s we have

(28") (2%,0,Az' + BX*, Fp;, C2* + DX*)0,
(AD + BC)Z' + Hz' + KX*,CFgi + DFP)).

Then the sum of (28), (28’) and (26) with respect to the vector bundle structure
TTq: TTT*M — TTM is

(z*, Ep;, Az* + BX' , AEq; + BEP; + Fp;,C2' + DX*,
CEq; + DEP; + Gp;,(AD + BC)Z' + H2' + KX?,
E(AD+ BC)Qi+ (HE + AG + CF)q; + (KE + BG + DF)P; + Lp;).
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Transforming this into TT*TM by means of the isomorphism T'sp we obtain (17)
with constants A, ..., L. Finally, replacing the numbers A, ..., L by arbitrary smooth
functions of the invariants I, I, I3, I4 we complete the geometrical construction of

(17).

Remark. In addition to the natural equivalence s: TT* — T*T we also have
a classical natural equivalence between TT* and T*T*, see e.g. [7]. So we can
construct natural equivalences on all arrows of the diagram

™7*'T

T

71717 — o TT"T ——— TT*T* —— T*T*T*

l !

T™TT ™TT*

Hence the problem of finding all natural transformations between any two of the
functors TTT*, TT*T, TT*T*, T*T*T*, T*T*T, T*TT, T*TT* reduces to Propo-
sition 1. In particular, all natural transformations of this type depend on eight
arbitrary smooth functions of four variables. This is not true for the functor TTT,
which is defined on the whole category .# f and preserves products. According to
the general theory [3], every product-preserving functor on .# f is a Weil functor
determined by a local algebra in the sense of A. Weil, and the natural transforma-
tions between two such functors are in bijection with the homomorphisms of the local
algebras in question. Hence the natural transformations of 77T into itself depend
on a finite number of real parameters.

5. NATURAL OPERATORS T ~ TTT™

Let F be a natural bundle. Denote by #: T ~ TF the flow operator transforming
every vector field X on M into its flow prolongation X = H('jflo (F(exptX)), where
exptX means the flow of X. If F' is a Weil functor, then all natural operators
T ~ TF can be constructed from the flow operator &# by applying all natural
transformations TF — T'F over the identity of F', [6]. But this does not necessarily
hold for non product-preserving functors in general, the functor T? of the second
order tangent vectors being the simplest counterexample, [1]. The functor TT* is
another example of a non product-preserving functor. We prove
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Proposition 2. Let m > 2. Then all natural operators T ~» TTT* are of the
formUoZJ T*, where 7 T*: T ~ TTT* is the flow operator and U : TTT* — TTT*
is an arbitrary natural transformation over the identity of TT™*.

Proof. If J: TTT* — TT*T are all natural transformations from Proposition
1, then the composition (T's)~! o J expresses all natural transformations T7T7T* —
TTT*. Putting A= E =1, B=F = C =0 in (17) we have the following equations
of all natural transformations U : TTT* — TTT* over the identity of TT*:

X' = DX},
P; = DP; + Gp;,

(29) _. TP . .
7i = D7 +HA+ KX,

Qi=DQ; +Ggi+ Hqi + KP; + Lp;.

On the other hand, Kobak determined all natural operators T ~» TTT™, provided
m > 2, [4]. It is easy to verify that the composition Uo7 Z* coincides with Kobak’s
result. a

6. NATURAL AFFINORS ON TT*M

We first recall the concept of a natural affinor on a natural bundle, [8]. In general,
an affinor Q on a manifold M means a tensor field of type (1,1), i.e. a linear morphism
Q: TM — TM over the identity of M. A natural affinor on a natural bundle F is a
system of affinors Qpr: TFM — TFM for every m-manifold M satisfying

TFfoQmM=QnoTFf

for every local diffeomorphism f: M — N.

By [8] natural affinors can be used in the theory of torsions of generalized connec-
tions on natural bundles. In this context it is useful to determine all natural affinors
on some natural bundles. For example, if F' is a Weil bundle, then all natural affi-
nors on F'M are parametrized by FR. In particular, all natural affinors on TM form
a 2-parameter family linearly generated by the identity affinor I7ps and by aras:
TTM — TTM, (', y,dz', dy') = (=, %', 0, dz). In [8] the authors also determined
all natural affinors on T M, which is not a Weil bundle.

The aim of this section is to classify all natural affinors on TT* M. Two simplest
examples are the identity affinor Ir7.p and apr.p. Next, we have the following

611



injections TT*M — T(TT*M):

B:(x',pi, 2" qi) — (', pi, 2, 4:,0,0, 2%, qi),
Y- (Ii)piv zi) qi) — (xivpiv Zi, q, 01 Oy O;Pi);
6 : (xi,Pi, Zi"li) — (xi»Pi,Zi»Qi,O,Pi;O»‘Ii)~
Obviously, B is the well-known injection TQ — TTQ, (u®,v*) — (u®,v*,0,v%),
where we identify the vertical tangent bundle VT'Q with TQ & T'Q. In other words,
section [ is the Liouville vector field of the bundle TT*M — T*M. Quite analo-
gously, é corresponds to the Liouville vector field of the bundle T*T'M — T'M, pro-
vided we identify TT* M with T*T' M by means of sps. Finally, VT*M = T*M&T*M
so that we have a subbundle TT*"M ¢T*M @T*M n V(TT*M) =TT*M&TT*M.
In this way ¥ maps B € TT*M into (B,0,pr-m(B)) e TTT*M.
Multiplying 3, v and é by the invariants I, I3, I4 we obtain the natural affinors

B =128, PBo=1I3B, PB3=I4pB,
1=y, v=Iy y=I,
b6y = Ip6, b9 =138, b3 = 146.

We will prove that these affinors together with I'rr-ar and apy« pr generate all natural
affinors on TT*M.

Proposition 3. Let m > 2. Then all natural affinors on TT*M are of the form

(30) filrrem + foarrem + faBr + falPo+ fsf3
+ fer1 + frv2 + feva + fobi + fiod2 + f1163

where f; = fi(I;) are arbitrary smooth functions of one variable viewed as functions
of the invariant I;, 1 =1,...,11.

Proof. All natural transformations U: TTT* — TTT* over the identity of
TT* are of the form (29). The linearity condition for U implies that the functions
D and K depend only on I; and that the functions G, H and L are linear in X*, Z%,
P;. Hence G, H, L must be linear in the last three variables Iy, I3, I4. Therefore
the equations of all natural affinors on TT*M are

= [ X,
fiPi+ (fol2 + frolz + fu1la)pi,
= HZ' + (fal2 + fals + fs1a)2' + fo X',
= fHQi+ (folz + frolz + fi1la)q
+ (falz + fals + fsla)gi + f2Pi + (fo Iz + f1ls + fsla)pi.

X:
P;
Zi
Qi
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However, this is the coordinate form of (30). O
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