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Czechoslovak Mathematical Journal, 43 (118) 1993, Praha 

NATURAL TRANSFORMATIONS BETWEEN TTT*M AND TT*TM 

M I R O S L A V D O U P O V E C , B r n o 

(Received January 31, 1992) 

1. INTRODUCTION 

Start ing from the canonical isomorphism s: TT* —• T*T by Modugno and Stefani 

[10], Kolaf and Radziszewski determined all natural transformations of TT* into 

T*T, [7]. Analogously, all natural transformations between T?T* and T*T± were 

classified in [2] (Tf denotes the functor of 1-dimensional velocities of order 2). 

In this paper we determine all natural transformations of TTT* into TT*T and 

interpret them geometrically. Further we show that all natural operators T ^ TTT* 

transforming vector fields on a manifold M into vector fields on TT*M can be 

constructed from the flow operator by applying all natural transformations of TTT* 

into TTT* over the identity of TT*. However this is the property of Weil functors, 

which is also satisfied for the non product-preserving functor TT*. In the last section 

we describe all natural affinors on TT* M. 

All manifolds and maps are assumed to be smooth. 

2. BUNDLES OF THE TYPE HGF 

Denote by *JZf the category of all manifolds and ail smooth maps, by ^ fi the 

category of all manifolds and their local diffeomorphisms, and by ^ / m the cate­

gory of m-dimensional manifolds and their local diffeomorphisms. We shall use the 

concept of a natural bundle on M fm (or simply natural bundle) in the sense of 

Nijenhuis, [11]. If we replace the category - # / m by the category Mf, we obtain the 

The author is indebted to Prof. I. Kolaf for suggesting the problem and for many helpful 
comments 
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concept of a bundle functor on JCf. Let T or T* denote the tangent or cotangent 

bundle, respectively. 

Consider a bundle functor F on M fj and two bundle functors G, H on *J(f. The 

bundle projection pM: FM —• M gives the induced mapping HGpM: HGFM —• 

HGM. Next, we have the bundle projections pfM : GFM —> FM, PQFM '• HGFM 

- • GFM and the induced mapping Hp%M : HGFM — HFM. Since G and H are 

bundle functors on M j ' , the following diagram commutes: 

FM 

(1) 
G F M HFM 

POFAÍ H Q F M "PFM 

\ffpM 

GM + н 
PGM 

l Я G P * 

-HGM— 
ffpì 

+ HM 

(Similar diagrams are used in [12] to describe some properties of the third tangent 

bundle TTTM.) In addition to the projections from HGFM into GFM , HGM and 

HFM we have also the natural projections from HGFM into GM , HM and FM, 

which correspond to the diagonals of the commutative squares in (1). Further, let 

us define a set 

(H, G, F)M = {(a, 6, c) G GFM x HFAJ x HGM; p%M(«) = P F A / W , 

GpF
M(a) = P%M(c),HpF

M(b) = HpG
M(c)}. 

One easily verifies that for every diffeomorphism / : M —• N the map HGFf 

is projectable over certain map ( H , G , F)f: (1Y,G,F)M —• ( 1 / , G , F ) N satisfying 

(H, G, F)(<? o / ) = (H, G, F)<; o (11, G, F)/. Moreover, if every (H, G, F)A/ — M is 

a fibered manifold, then (H, G, F) is a bundle functor on ~//fj. 

In the following example we describe TTT*M by means of a diagram of the type 

(1). We also introduce local coordinates on TTT* M. 

E x a m p l e 1. While the tangent functor T is defined on the whole category 

^ / , the cotangent functor T* is defined only on local diffeomorphisms. For every 

local diffeomorphism / : M —• N we define T* f: T* M —• T*N in such a way that 
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T*j\ T*M — T*{x)N is the inverse map of the dual map (Txf)* : T*(x)N т;м. 
Denote by qM ' T* M —• M, PM ' TM —> M the bundle projections. If w: E —+ M is 

a vector bundle, then there are two vector bundle structures on the tangent bundle 

TE, namely pE:TE -+ E and TTT: TE -> T M . So pr*M, P?M, PTT*M, TpT*M and 

TTqM are vector bundle projections. The canonical coordinates xl on Rm induce 

the additional coordinates p t on T*Rm and zx = dx*, gt = dp t on TT*R m . Hence 

on TTT*R m we have local coordinates x\ p t, z\ qiy Xx = dx', P t = dp t, Z% = dz\ 

Qi = dg t. The space TTT* M can be characterized by means of the diagram 

T*M 

Pт*м Pт*м 

(2) 

TM + 
Pтм -ттм- Tpм 

+ TM 

We have also defined the bundle (T.T.T*). 

In the case of the diagram (1) in general it is not possible to interchange F and 

G. But if there is a natural equivalence h: FG —• GF of bundle functors defined in 

the category ^Iji such that the diagram 

FGM 

GM 

commutes then we can define an analogue of (1) also for the composition HFG. For 

example, in the case of TT*T we can take the natural equivalence s: TT* —• T*T 

by Modugno and Stefani. 
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E x a m p l e 2. If 7r: J57 —> M is a vector bundle, then on the cotangent bundle qE • 

T*E —> E there is another vector bundle structure QE* : T* E —* E* defined by the 

restriction of a linear map TyE —> R to the vertical tangent space, which is identified 

with F'ir(y). In this way qTM and QT*M are vector bundle projections on T*TM, 

so that TT*TM has three vector bundle structures PT*TM, TqTM and TQT*M- Let 

w* = dx% be the coordinates on TR m induced by the canonical coordinates xx on 

R m . Then the expression rtdx* + Sidw* determines the additional coordinates r t, s t 

on T*TRm. So x\ w\ r t, sit Yl = dx1', Wl = dw\ Ri = dr t, 5 t = ds t are local 

coordinates on TT*TRm. Finally, we can describe the space TT*TM by means of 

T*M 

Qт*м Pт*м 

(3) 

Ятм 

TM + pтм -ттм- Tpм ->~тм 

3. T H E ANALYTICAL RESULT 

In this section we determine all natural transformations TTT* —• TT*T. Accord­

ing to the general theory [9], we have to find all G^-equivariant maps (TTT*)0 —• 

(TT*T)o of the standard fibres, where Gm means the group of all invertible r-jets 

on R m with source and target zero. Denote by 

(4) (a),a)k,a)kl) 

the canonical coordinates on G^, and by a tilde the coordinates of the element inverse 
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to (4) in Gm. Using standard evaluations we find the action of Gm on (7TT*)o: 

Pi = «< Pj, 9. = "U a?z'P} + 5< <H > 

z* = a)z>, z« = a\Z> - a\al
mna?an

kX
kJ, 

(5) T=a)P, Pi=aika
kX'pj+aiPj, 

Qi = ~4km<a1Xn*lPi ~ aika
kamna™anX<z'>pi + 

+ aika
kZ'Pj + ai.afz'Pj + aika

kX>qj + o f o . 

The tangent map to the canonical isomorphism 5: TT* —• T*T by Modugno and 
Stefani is also an isomorphism. The equations of s are 

(6) wx = z% ,r, = g,,5, = p , 

so that Ts: TTT* -* TT*T has the coordinate expression 

(7) w< = * \ r , = </,,*,• = p„ Y' = K\S,- = Pi, Wx = Z\I*, = Qi. 

Then the action of G ,̂ on (TT*T)Q can be derived from (5) and (7). Let us furhter 
denote 

(8) 7, = Piz\ I2 = piX\h = PiZ{ + Piz\ h = PiZ* + qtX*. 

One verifies directly that the expressions Ii, I2, I3,I4, whose geometrical interpre­
tation will be given later, are invariants with respect to the group G^. By the 
following lemma, Ii, I2, I3 and I4 even generate all G^-invariants defined on the 
standard fibre of the bundle (T,T,T*). 

Lemma 1. Let m ^ 2 and let F be a smooth G2
m-invariant function defined on 

the standard fibre of the bundle (T,T,T*). Then there is a smooth function f: 
R4 --> R such that 

(9) F(zi,Xi,Pi,qi,Pi,Zi) = f(I1,I2,I3,I4). 

P r o o f . Suppose first m = 2 and define / by the formula 

f(y\, 2/2,2/3,2/4) = I^(l, 0; 0,1; t/i, y2; 0, t/4; 2/3,0; 0,0). 

There is a linear transformation transforming independent vectors z and X into (1,0) 
and (0,1), respectively. Further, (5) with aj = Sj gives 

qi = qi + cfixPj, Pi = Pi + a{2Pj, Z* = Zx - ai2 . 
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By the choice of 5'12 we obtain Zx = 0. Analogously, for p\ 9- 0 the choice of 5 n 

yields q\ = 0 and for p2 -̂  0 the choice of a22 gives P2 = 0. Then q2 = I4 and 

Pi = I3. Hence (9) holds on open dense subset, so that it holds everywhere. 

Now let m > 2 . By the tensor evaluation theorem from [9] there is a smooth 

function / : R9 —• R such that 

F(zi,Xi,pi,qi,Pi,Zi) = f(piZi,piXi,piZi,qiz
i,qiXi,qiZi,PiZi,PiXi,PiZi). 

Put 

F(zi,Xi,pi,qi,Pi,Zi) = f{h,h,h,h,qiz\qiZ', P,**, P,z ' ,p .z ' - qiX
i - P,z'). 

We prove that the function / depends only on the first four variables. The invariance 

on the kernel of the jet projection G m —• Gm reads 

f(hj2j3jA,qiZiAiZ\PiX\PiZ\piZi-qiX
i-PiZi) 

= / ( I i , I2, I3, I4, qiz\ qiZ\ PiX\ PiZ*\piZ{ - q{X
{ - PiZ{). 

Setting 2 = (1 ,0 , ...,0), K = ( 0 , 1 , 0 , . . .,0), Z = ( 0 , 0 , 1 , . . .,0) we obtain 

/ (Pi ,P2,P3 + ^ 1 ^ 3 + 9 2 , 9 1 , 9 3 , ^ 2 , ^ 3 ^ 3 - 9 2 - ^ 1 ) 

= / (Pi ,P2,P3 + -Di,P3 + 92,5i
npJ- + g i , ( 5 ^ 1 p i + g 3 ) ( - a 2 i + l ) ,a 2 2 Pj +I*2, 

(«32Pi + K)(-ali + l ) ,P3( -22i + 1) - («2lPi + 92) - (3i2Pi + pi))-

If all 5*.̂  except 5 n are zero then 

/ (Pl ,P2,P3 + A , P 3 + 92, 91, 93,-°2, ^3^3 - 92 ~ A ) 

= / (P l iP2 ,P3+- D l ,P3 + g2,9l +«}iPl ,93, -°2 , I3,P3-92- I^l)-

This implies that the function / is independent of the fifth variable. Analogously, 

by means of a\ly 5 2 2 , 5 3 2 and 5f2 we prove that / does not depend on the sixth, 

seventh, eigth and nineth variable, respectively. D 

Now we shall look for the coordinate form of all Gm-equivariant maps 

(TTT*R m ) 0 — (TT*TR m ) 0 . Consider first w* = wi(pi,zi
1qilX

i.Pi, Z{,Q{). Tak­

ing into account the equivariance with respect to the kernel of the jet projection 

G m —* G m we obtain 

604 



so that w% does not depend on Q t. Quite analogously one can prove that rt, st, Y%, 
Si and W% are also independent of Qt. Assume now m > 2. The equivariance of w% 

with respect to the linear group G^ C Gm implies that w% is a G^-equivariant map 

R3m x R3m* —• Rm. By the tensor evaluation theorem [9] w% has the form 

wi = a(piZi,piXi,PiZi,qiZi,qiXi,qiZi,PiZi,PiXi,PiZi)zi 

+ &(piz{,..., P{Z
X)XX + 7{Piz\ ..., PiZx)Z% 

where a, /3, j are smooth functions of nine variables. In the same way as in the 
proof of Lemma 1 we deduce that a = a(Ii, I2,13, I4), /? = /?(Ii, I2,13, I4) and 

7 = 0. Hence 

(10) w* = A(h, h, h, h)z' + B(h, h, h, h)X% 

with arbitrary smooth functions A, B of four variables. For m = 2 let us introduce 
an additional variable (111,1/2) € R2*, fit = <*Jiuj- Then w%(pi, z%, gt,X

%, Pi, Zl)ui is 
a G^-invariant function and the expressions I5 = UiZ%, I6 = UiX% are G^-invariants. 
Similarly to the proof of Lemma 1 one can deduce 

Lemma 2. For every G\-invariant smooth function F(z%,X%,pi,qi,Pi,Z%,«,-) 

there is a smooth function f: R6 —• R such that 

F(z\ X',Pi, gi, Pi, Zl,m) = f(h, h, h, U, h, h). 

Thus, w%Ui = f(h,h,h,h,h,h). Differentiating this with respect to «< we get 

wizzdf(h,...,I6)zi j df(h,...,I6)xi 

9x5 dxe 

where x- or x6 denote the fifth or sixth component of/, respectively. Setting u\ = 0, 
«2 = 0 on the right hand side of the equation we obtain w% = cp(I\,..., I4)z

% + 
il>(h,...,h)X%, where 

/ ч дf(xг,...,x6) 
if(X\,...,X4)= -

,ф(Xl,...,X4)=дf(*L-,**) 

a r 5 = x в = 0 ^ X 6 dx-

Therefore (10) holds also in the case m = 2. Analogously, 

(11) Yi = C(Il,...,I4)zi + D(Il,...,I4)Xi 

x 5 = j t 6 = 0 
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and also 

(12) s, = E(h,...,I4)pi 

with arbitrary smooth functions C, L), E: R4 —• R. 

Assume a map n(Pi, zx, gt, X*, Pt, Z%) is in the form 

n = aq{ + /?P, + nfa, z\ qi, X\ Pi, Zx). 

Using equivariance on the kernel of the jet projection G^ —• Gj„ we obtain a = AE, 

(3 = BE. Then the full equivariance reads a\rj(pi,..., Zx) = f j (p t , . . . , Z*), so that 
ft- has the same transformation law as 5,. Hence f, = F(Ii,..., h)pi and 

(13) n =AEqi + BEPi + Fpi 

where F is another smooth function of four variables. Quite analogously, 

(14) Sii= CEqi + DEPi + Gp, 

where G = G( I i , . . . , I4) is a smooth function. Applying a procedure similar to that 
used in the case of n we prove 

(15) W{ = (AD + BC)Zi + Hz{ + KX\ 

(16) Ri = E(AD + BC)Qi + (AG + EH + CF)qt + (BG + EK + DF)P{ + LPi 

and the additional conditions AC = 0, BD = 0. Thus, we have deduced 

Proposition 1. tet m ^ 2. Then all natural transformations TTT' — TT'T 
are of the form 

w* = Azi + BXi, 

Yi = Czi + DXi, 

Si = Epi, 

(17) n = AEqi + BEPt + Fpt, 

St = CEqi + DEPi+ GPi, 

W* = {AD + BC)Z{ + Hz* + KX\ 

Ri = E(AD + BC)Qi + (AG + EH + CF)qt + (BG + EK + DF)P{ + LPi 

606 



where A, B,C, D, E, F,G, II, K, L are arbitrary smooth functions of four variables 

viewed as functions of the invariants I\, 72, I3, I4- Moreover, the functions A, B, 

C,D satisfy the conditions 

(18) AC = 0, BD = 0. 

4. GEOMETRICAL INTERPRETATION 

We first describe a simple geometric construction of the invariants Ii, I2, I3, I4 
given by (8). Every A G TTT*M is a vector tangent to a curve j(t): R -> TT*M 

at t = 0. Then a(t) := pr*M o l(t): R -+ T*M and /?(*) := Tq o 7(f): R — TM, so 
that we can evaluate (a(t), (3(t)). The invariants (8) can be constructed as follows: 

I! = («(*),/?(0)lt=o = (PT*M opTT.M(A),TqopTT.M(A)), 

I2 = (PT*A/oprT*M(-4),TgoTpr*Af(-4)), 
d 

'»=<!< 
(«(<),/?(<)), h = h°ÏT'M 

where i T . M : TTT* M -> TTT* M is the canonical involution. 
Now we present a geometric interpretation of Proposition 1. Let us notice that the 

isomorphism TsM : TTT* M —> TT*TM given by (7) corresponds to the constant 
values A = D = E = I, B = C=F = G = H = K = L = 0'm (17). We have 
the following injection j : F*M —> T*TM. Take any vector £ G T0xTM, where O r 

is a zero vector over x £ M. Then I?' = TpM(B) G F.rM, so that we can define 
j(A)(B) := (-4,H') for arbitrary A G T*M. Next, the composition s~j^ o j gives 
an injection j i : T*M —+ TT*M, (x' ,p t) 1—• (x' ,0,0,p t) . Moreover, denote by J2: 
TT*M -+TTT*M the kernel injection, (x l ,p t , z ' , ^ ) i-> C^PnO-O^O,*1 ' , gt). 

Starting from an arbitrary element 

(19) (*Sp.,-',«,-, X<, P., Z'',Q.) € TTT*M 

we construct the corresponding element (17) in TT*TM. We proceed in three steps. 

1. First we recall the equations of all natural transformations tM'- TTTM —* 

TTTM, see e.g. [5]. Let x',a' = da;', 6' = da;', c' = da* be the canonical coordinates 
on TTRm . Then the coordinate form of tM is 

a{ = Aai + Bbi, 

V = Cai + Dbi, 

c* = Ha* + Kb1 + {AD + BC)c{ 
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where A> H, C, D, H, K are arbitrary real numbers satisfying AC = 0, BD = 0. 
Transforming (19) into TTT* M by means of tT*M : TTT* M — TTT* M we have 

(20) (x ' ,p t , ,4z' + flX1", Aft- + 5P t , Cir' + DX ' , C<z, + DP t, 

(i4D + BC)Zl + Hz' + KX', {AD + HC)Qt + H?t + KPi) G TTT*M. 

Furthermore, multiplying this by E on the vector bundle TTq: TTT*M — TTM 
we obtain 

(21) (x\ EPi, Az{ + HX', AEqi + BEPi,Czi + DX\CEqi + DKP t, 

(J4£> + HC)Z' + Hz' + KX\E{AD + SC)Q t + HE?. + KEP{). 

2. Now we construct the term with L. Multiplying (x',p t) G T*M by L on the 
vector bundle T*M —• M we have (x*, LPi) G T*M. Further, applying the injection 
ji: T*M -+ TT*M we get 

(22) (x ' ,0 ,0 ,Lp t )GTT*M. 

On the other hand, the injection of (x', EPi) G T*M into TT*M by means of the 

zero section gives 

(23) (z ' , £p t , 0 ,0 )GTT*M. 

Evaluating the sum of (22) and (23) with respect to the vector bundle structure 
TT*M —+ TM we obtain (x*, Kpt, 0, LPi). Next, the kernel injection 21 yields 

(24) (x ' ,£p t ,0 ,0 ,0 ,0 ,0 ,Lp t )GTTT*M . 

Moreover, using the bundle projection PTT*M applied on (21) and then the zero 

section TT* M -> TTT* M we obtain 

(25) (x', EPiiAz{ + Bx\AEqi + HKPt,0,0,0,0) G TTT*M. 

The sum of (24) and (25) on the vector bundle TPT*M is 

(x', Epi,Az* + BX\AEqi + BEPXu 0,0,0, LPi). 

Finally, we add this to (21) on the vector bundle structure PTT*My 

(26) (x\ EPuAz{ + BX\AEqi + BEPi.Cz1 + DX\CEqi + DKP t, 

(-4D + BC)Zi + Hz'' + KK', E(AD + HC)Qt + HK?t + KKPt + LPi). 
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3 . It remains to discuss the terms with F and G. Denote by STM • TT*TM —• 
T*TTM the isomorphism s by Modugno and Stefani, which is applied to TM. Then 
the composition (TsM)~x o (STM)~X • T*TTM -> TTT*M is also an isomorphism, 
which we will denote by IM> If a1 = uV, 6* = dx', c* = da1 are the induced 
coordinates on TTRm , then the expressions otidx1 + fada1 + jidb1 + c\dc* determine 
the additional coordinates CVJ, /?,, 7J, 8, on T*TTRm. We have the following inclusion 
kM: TTM x T M T T M -> T*TTM, 

(x\z\X\Z\ridxi + sidzt) 

- (a1" = z V = X V = Z ' ,a i = r n ft = *i,7i = «i = 0). 

The TTa-project ion of (26) is 

(27) (x\Az* + BX\Czl + DX\(AD + BC)Zl + Hz1' + KXl) G TTM 

and the PTT* M-projection of (20) is 

(x\pi3Azi + BX\Aqi + BPi) e TT*M. 

Multiplying by G on the vector bundle structure TT*M —> TM we get 

(x\Gpi, Az1' + BXl, AGqi + BGpi) E TT*M, 

which we map into T*TM by means of SM • Hence we can apply inclusion kM to 
this element and to (27). Finally, transforming the result into TTT* M by means of 
IM we obtain 

(28) (x\0,Az* + BX\0yCzl + DX\Gpi} 

(AD + BC)Zl + Hz1' + KX\AGqi + BGP{). 

Quite analogously, using the canonical involution %T*M w e have 

(28') Or', 0, Az% + BX\Fpi,Czi + DX\0, 
(AD + BC)Zl + Hz1 + KX\CFqi + DFPi). 

Then the sum of (28), (28') and (26) with respect to the vector bundle structure 
TTq:TTT*M ^ TTM is 

(x\ Epiy Az1' + BX\AEqi + BE Pi + FPi, Czl + DX\ 

CEq{ + DEPi + Gpi, (AD + BC)Zl + Hz1' + KX\ 

E(AD + BC)Qi + (HE + AG + CF)qi + (KE + BG + DF)P{ + LPi). 
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Transforming this into TT*TM by means of the isomorphism Ts\f we obtain (17) 

with constants A,..., L. Finally, replacing the numbers A,..., L by arbitrary smooth 

functions of the invariants Ii, I2, I3, I4 we complete the geometrical construction of 

(17). 

R e m a r k . In addition to the natural equivalence s: TT* —• T*T we also have 

a classical natural equivalence between TT* and T*T*, see e.g. [7]. So we can 

construct natural equivalences on all arrows of the diagram 

rp* rp* rp 

\ 
rprprp* rprp* rp rprp* rp* rp* rp* rp* 

i i 
rp* rprp T** T"T* 

Hence the problem of finding all natural transformations between any two of the 

functors TTT*, TT*T, TT*T*, T*T*T*, T*T*T, T*TT, T*TT* reduces to Propo­

sition 1. In particular, all natural transformations of this type depend on eight 

arbitrary smooth functions of four variables. This is not true for the functor TTT, 

which is defined on the whole category ^/t(f and preserves products. According to 

the general theory [3], every product-preserving functor on ^/l f is a Weil functor 

determined by a local algebra in the sense of A. Weil, and the natural transforma­

tions between two such functors are in bijection with the homomorphisms of the local 

algebras in question. Hence the natural transformations of TTT into itself depend 

on a finite number of real parameters. 

5 . NATURAL OPERATORS T -> TTT* 

Let F be a natural bundle . Denote by & \ T -^ TF the flow operator transforming 

every vector field X on M into its flow prolongation &X = -^-| (F (exp lA')) , where 

exptX means the flow of X. If F is a Weil functor, then all natural operators 

T ~* TF can be constructed from the flow operator & by applying all natural 

transformations TF —• TF over the identity of F, [6]. But this does not necessarily 

hold for non product-preserving functors in general, the functor T2 of the second 

order tangent vectors being the simplest counterexample, [1]. The functor TT* is 

another example of a non product-preserving functor. We prove 

610 



Propos i t ion 2. Let m ^ 2. Then all natural operators T ~> TTT* are of the 

form Uo*r&*, where W*: T ~> TTT* is the flow operator and U : TTT* -> TTT* 

is an arbitrary natural transformation over the identity ofTT*. 

P r o o f . If J: TTT* —• TT*T are all natural transformations from Proposition 
1, then the composition (Ts)~~l o J expresses all natural transformations TTT* —• 
TTT*. Putting A = E = 1, B = F = C = 0 in (17) we have the following equations 
of all natural transformations U: TTT* -* TTT* over the identity of TT*: 

Xi = DXi, 

Pi = DPi + GPi} 

Z{ = DZ{ +Hzi + KXi
) 

Qi = DQi + Gqi + Hqi + KPi + LPi. 

On the other hand, Kobak determined all natural operators T ~* TTT*, provided 
m ^ 2, [4]. It is easy to verify that the composition Uo 2?&* coincides with Kobak's 
result. • 

6. NATURAL AFFINORS ON TT*M 

We first recall the concept of a natural affinor on a natural bundle, [8]. In general, 

an affinor Q on a manifold M means a tensor field of type (1,1), i.e. a linear morphism 

Q: TM —• TM over the identity of M. A natural affinor on a natural bundle F is a 

system of affinors QM • TFM —> TFM for every m-manifold M satisfying 

TFfoQM = QNoTFf 

for every local diffeomorphism / : M —• N. 

By [8] natural affinors can be used in the theory of torsions of generalized connec­
tions on natural bundles. In this context it is useful to determine all natural affinors 
on some natural bundles. For example, if F is a Weil bundle, then all natural affi­
nors on FM are parametrized by FR. In particular, all natural affinors on TM form 
a 2-parameter family linearly generated by the identity affinor ITM and by CITM •' 
TTM — TTMy (x1', J/*', dx», dt/) •-> (x1, y1, 0, dx1'). In [8] the authors also determined 
all natural affinors on T*M, which is not a Weil bundle. 

The aim of this section is to classify all natural affinors on TT*M. Two simplest 
examples are the identity affinor ITT*M and <*TT*M- Next, we have the following 

611 



injections TT*M -> T{TT*M): 

(x\Pi,z\qi) н-> (x\pi,z 

(x\Pi,z\qi) i-> (x\pi,z 

,g.-,o,o,z\a t ), 

,g,-,0,0,0,pt-), 

(x\pi,z\qi) •-> (x\pi,z\qi}0,pi,Q)qi) 

Obviously, /? is the well-known injection TQ -> T T Q , ( u a , v a ) •-> ( u a , va, 0, va), 

where we identify the vertical tangent bundle VTQ with TQt&TQ. In other words, 

section (3 is the Liouville vector field of the bundle TT* M —• T*M . Quite analo­

gously, 8 corresponds to the Liouville vector field of the bundle T*TM —• T M , pro­

vided we identify T T * M with T * T M by m e a n s o f s A f . Finally, VT*M = T*M®T*M 

so t h a t we have a subbundle TT*M0T*M 0 T * M in lf(TT*Af) = TT*M®TT*M. 

1n this way 7 maps 13 G T T * M into (5,0,pr*Af (-S)) £ TTT*M. 

Multiplying ft 7 and 6 by the invariants I2, I3, I4 we obtain the natural affinors 

ft = /2j», ft = I3ft ft = I4ft 

71 = ^27, 72 = I37> 73 = I47> 

8\ = I26, 62 = I3<$, <$3 = I4<$-

We will prove that these affinors together with ITT*M and CXTT*M generate all natural 

affinors on TT* M. 

P r o p o s i t i o n 3 . Let m ^ 2. Then all natural affinors on TT*M are of the form 

(30) /iITT*M + h&TT*M + /3 f t + / 4 f t + / 5 f t 

+ /e7i + /?72 + /s73 + hh + /io*2 + / n * 3 

where / , = /»(I i) are arbitrary smooth functions of one variable viewed as functions 

of the invariant I\, i — 1 , . . . , 11. 

P r o o f . All natural transformations U: TTT* —• TTT* over the identity of 

TT* are of the form (29). The linearity condition for U implies that the functions 

D and K depend only on 1\ and that the functions G, H and L are linear in X \ Zx, 

Pi. Hence G, H, L must be linear in the last three variables I2, I3, I4. Therefore 

the equations of all natural affinors on TT* M are 

x»' = / ,x \ 
Pi = flpi + (/9I2 + /10I3 + / 1 1 I 4 K 

z< = hz* + {hh + hh + uuy + hx\ 
Qi = fxQi + (hh + /10/3 + hih)q> 

+ (hh + /4/3 + hh)qi + hPi + (hh + hh + hh)pi-
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However, th is is t h e coord ina te form o f ( 3 0 ) . • 
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