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Czechoslovak Mathematical Journal, 43 (118) 1993, Praha 

OSCILLATORY PROPERTIES OF FUNCTIONAL DIFFERENTIAL 
SYSTEMS OF NEUTRAL TYPE 

PAVOL MARUŠIAK, Zilina 

(Received February 26, 1992) 

1. In this paper we are concerned with the oscillatory and nonoscillatory behavior 

of functional differential systems of the form 

( S » [yi(t) - a(t)yi(h(t))Y = Pi(t)h(y2(92(t))), 

y'i(t) = Pi(t)fi(yi+i(9i+i(t))), * = 2 , . . . , n - 1, 

yn(t) = <TPn(t)fn(yi(gi(t))), 

where n ^ 2 , <r = 1 or cr = — 1 and 

(Ci ) a: [0,oo) —> R is a continuous function satisfying 

\a(t)\ ^ /3 < 1, a(t)a(h(t)) ^ 0 on [0, oo), where j3 is a constant; 

(C2) Pi: [0, 00) —* [0, 00), i = 1, 2 , . . . , n are continuous functions not identically zero 

on any subinterval [T, 00) C [0,oo), 

00 

/ 
Pi(t)át = 00, i = 1 ,2, . . . , n — 1; 

(C3) h: [0,oo) —• R is a continuous function, h(t) ^ 2 on [0,oo), h is nondecreasing 

on [0,oo) and lim h(t) = 00; 
f —<•OO 

(C4) (/,: [0,oo) —» 1?, f = l , 2 , . . . , n are continuous functions and lim #i(£) = 00, 
t — • 0 0 

z = 1,2, . . . , n ; 
(C5) / , : R —• H, 1 = l , 2 , . . . , n are continuous functions, ufi(u) > 0 for w -^ 0, 

1 = 1,2, — , n; 

(Ce) <7i, * = 1, 2 , . . . , n are increasing functions on [0, 00); 

(C7) / i , i = n — 1, n are nondecreasing functions on R. 
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Remark 1. Let gi(t) = t, i = 2 , . . . , n, p{(t) > 0 on [0,oo), i = l , 2 , . . . , n - 1, 

/i(tx) = u, u £ /?, i = 1,2,.. . ,n - 1. Then the system (S,cr) is equivalent to the 

n-th order differential equation of neutral type with quasiderivatives: 

( £ » 

Recently there has been a growing interest in the study of oscillatory solutions 

of neutral differential equations of n-th order, see, for example, the papers [1, 4-6, 

10] and the references cited therein. As far as is known to the author, the oscilla­

tory theory of systems of neutral differential equations is studied only in the papers 

[2, 3, 9]. 
The purpose of this paper is to establish some new criteria for the oscillation of 

the system (5, cr). These criteria extend and improve those introduced in [7]. Our 
results are new even when a(t) = 0. 

Let to J> 0. Denote 

t\ = min { inf h(t), inf gdt), i = 1,2,..., n} . 

A function y = (Hi , . . . , yn) is a solution of the system (5, cr) if there exists a 
to ^ 0 such that y is continuous on [£i,oo), y\(t) — a(t)yi(h(t)), yi(t), i = 2 , . . . , 7i 
are continuously differentable on [lo,oo) and y satisfies (5, cr) on [£o3oo). 

Denote by W the set of all solutions y = (r / i , . . . , yn) of the system (5, cr) which 
exist on some ray [Ty, oo) C [0, oo) and satisfy 

n 

s u p { j ] | j / i ( 0 | : ^ I 1 } > 0 for any T>Ty. 
i=l 

A solution y £ W is nonoscillatory if there exists a Ty >. 0 such that its every 
component is different from zero for all t >. Ty. Otherwise a solution y G W is said 
to be oscillatory. 

2. Denote 

(1) 7;(0 = sup{s>-0:<?,(sK<}. < ^ 0 , i = l , 2 , . . . . n ; 

lh(t) = sup{s^0:h(s)^t}, <>-0; 

7 ( 0 = max{7 A(0,7i(0, • • • ,7n(0}, < ^ 0. 

For any yi(t) we define z(t) by 

(2) *(0 = iM0-«(0i/i(M0). t^7h(t0) = t1 >o. 
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The inequality (2) implies tha t 

(3) yi(t) = z(t) + a(t)yl(h(t)) t^U, 

(4) y i ( 0 = z(t) + a(t)z(h(t)) + a(t)a(h(t))yi(h((h(t))y 

t ^ Jh(ti) = t2. 

L e m m a 1. Let ( C i ) - ( C 5 ) hold and let y G W be a solution of the system (S, a) 

with yi(t) 7- 0 on [tQl oo), t0 > 0. Then y is nonoscillatory and z(t)} y2(t), . . . , yn(t) 

are monotone on some ray [T, oo), T ^ to. 

P r o o f . Let y G W and let yx(t) 7- 0 on [t0 ,oo), tQ ^ 0. Then in view of (C 3 )~ 

(C5) the 7i-th equation of (S, a) implies that either y'n(h(t)) ^ 0 or yn(h(t)) ^ 0 for 

t ^ 7(^0) = Pi, and 2/^(0) 2/n(0 a r e no t< identically zero on any infinite subinterval of 

[Ti, 00). Thus yn is a monotone function on [Ti, 00) and hence there exists a T2 J> T\ 

such tha t y n ( 0 ¥• 0 o n p2>°o)- Analogously we can prove that t / n - i (0> • • • »2/2(0> 

z(t) are nonoscillatory and monotone functions on an interval [T, 00), T J> T2. • 

L e m m a 2. Suppose that (C i ) - (Cs ) hold. Let y = (y\,..., yn) G VV be a nonoscil­

latory solution of (S, <r) and Jet lim z ( 0 = I>i, limyjb(0 = f̂c> & = 2 , . . . , n. TJien 
t—*oo 

(5) if k ^ 2, |L^ | > 0 implies lim y , (0 = <$oo, i = 1 , . . . , k — 1, wJiere <S = sign Lk; 
t—*oo 

(6) if 1 -^ k < n, ILjtI < 00 implies lim yi(t) = 0, i = k + 1 , . . . , n. 
t—»-oo 

P r o o f . Lemma 1 implies that z(t), yk(t), k = 2 , . . . , n are monotone func­

tions for large t and therefore there exist finite or infinite limits: lim z(t) = L, 
t—>oo 

lim 2/*(0 = Ljfc, k = 2 , . . . , n . 
t--> 00 

(i) Let k ^ 2, L* > 0. Similarly we proceed if Lk < 0. Then there exists a *o ^ 0 

such that yjb(0 ^ Fjk/2 for t ^ t\. From the (k - l)-st, . . . , the first equations of 

(S\a)y taking into account (C 2 ) , (C 4 ) , (C 5) , we get that yk-i(t), • • •» 2/2(0> Z ( 0 a r e 

increasing functions and lim yi(t) = 00, i = k — 1 , . . . , 2, lim 2 (0 = 00. 
t—•oo t—^00 

By virtue of monotonicity of z(t) (> 0), (4) and (Ci) we conclude tha t 

2/1 ( 0 ^ *(t) + a(t)z(h(t)) > z(t) - pz(h(t)) ^(l- P)z(t). 

If lim z(t) = 00, then lim y\(t) = 00. 
i—•oo t—•oo 

(ii) Let 1 ^ k < n, 0 ^ Lk < 00. Suppose that L,- > 0 for some i G {& + 1 , . . . , n}. 

Then by (5) lim y , (0 = 00, i = 1 , . . . , i - 1. This contradicts the fact that Lk < 00. 
t—^oo 

Therefore L, = 0, i = k + 1 , . . . , n. • 
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If a(t) = 0 on [0,oo), then we denote the system (S,cr) by (S0,cr). It is then a 
system of differential equations with deviating arguments. For the system (S0,a) 
the following lemma holds: 

Lemma 3 [8, Lemma 1]. Suppose that (C2), (C4) and (C5) hold. Let y = 

(yi>---.yn) be a nonoscillatory solution of(S0,cr) on [0,oo). Then there exist an 

integer I £ { 1 , . . . , n}, cr ( - l ) n+ / + 1 = 1 or I = n, and a t0 ^ 0 such that for t ^ t0 

y.-(Oyi(0>o, 1 = 1,2,...,/, 

(-i)l+,"y,-(0yi(0>o, i = / , /+i , . . . ,n . 

We now generalize this lemma to the system (S, cr). 

Lemma 4. Suppose that (Ci)-(Cs) hold. Let y = ( y i , . . , y n ) be a nonoscil­
latory solution of (S,cr) on [0,oo). Then there exist an integer I £ {1, 2,. . . , 71}, 
cr( — l)n+ /+1 — 1 or / = n, and a t0 ^ 0 such that for t ^ t0 either 

(7) yi(O*(O>0, 

(8) y i (0w(0>0, 1 = 1,2,...,/, 

(9) (-i) l+l"y.-(0yi(0>o, t = / , / + i , . . . , n 

(10) yi (0*(0<o, 

(11) ( - l ) l ' y , - (0yi (0>0, t = 2 , . . . , n , where a(-l)n = - 1 . 

P r o o f . Let y = (y\,..., y„) £ W be a nonoscillatory solution of (S, cr). With­
out loss of generality we suppose that yi(yi(0) > 0 for t ^ To ^ a. Then Lemma 1 
implies that z(t) (^ 0) and y t(0, z = 2 , . . . , n are monotone on [Ti,oo), T\ ^> T0. 
Therefore either (7) or (10) hold on [Ti,oo). 

I) Let (7) hold on [Ti,oo). In this case we can use Lemma 3 which implies that 
there exist / £ { l , 2 , . . . , n } , c r ( - l ) n + / + 1 = 1 or / = n and a t0 ^ T\ such that (8), 
(9) hold for t^t0. 

Ha) Let (10) hold and let y2(t) < 0 on [Ti,oo). Then in view of (C2), (C4), (C5), 
the first equation of (S, a) implies that z(t) is decreasing on [T2, oo), T2 ^ j(Ti). We 
now show that this case cannot occur. Indeed, taking into account that yi(0 > 0, 
z(t) < 0 on [T2,oo) and (Ci), we obtain from (3) that yi(h(t)) ^ yi(0 o n [^2,00). 
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Then with regard to the monotonicity of j / i , z, there exist lim y\(t) = c ^ 0, 
t—>oo 

lim z(t) = L < 0 . Then (2) together with (Ci) implies 
t—>oo 

L = lim (Vl(t) - a(t)yi(h(t))) > c(l - /?) ^ 0. 
t—»>oo 

This contradicts the inequality L < 0. 

l ib) Let (10) hold and let y 2 ( 0 > 0 on [Ti,oo). Then in view of (C 2 ) , (C4) and 

(C5) the first equation of (5 , a) implies that z(t) is increasing on [T2l 00), T2 ^ 7(F i ) . 

If n ^ 3 we now show that y3(t) < 0 on [T3,oo), T3 ^ T2. In the opposite case by 

virtue of (C 2 ) , (C4) and (C5) the second equation of (5 ,a) gives tha t there exist 

an L2 > 0 and a T4 ^ T3 such that y 2 ( 0 ^ L2 on [74,00) . With regard to the 
t 

system (5 , a) we conclude tha t z(t) ^ z(T4) -f f\(c) J pi(/)d* —> co for * —• oo. This 
T4 

contradicts the negativeness of z(t) on [Fi,oo). If n > 3 we similarly prove that 
2/4(0 > 0, jfc(0 < 0, . . . , ( - l ) n t / n ( 0 > 0 for t ^ *0 £ T 4 | where ( r ( - l ) n = - 1 . 

The proof of Lemma 4 is complete. D 

R e m a r k 2. The case y\(t)z(t) < 0 on [*o,°o) C [0,oo) can occur only if a(t) > 0 

on [*i,co) and cr(-l)n = - 1 . 

We denote by N+ or N2"" the set of all nonoscillatory solutions of (5 , a) which 

satisfy (7)-(9) or (10), (11), respectively. Denote by N the set of all nonoscillatory 

solutions of (5 , a). Then by Lemma 4 the following classification holds. 

(12) N = N+ U N+_j U . . . U N3
+ U N+ for a- = 1, n even, 

N = N+ U N+_x U . . . U N+ U N+ U Nf for (T = 1, n odd, 

N = N+ U N+_2 U . . . U N2
+ U N2" for a = - 1 , n even, 

N = N+ U N+_2 U . . . U N3
+ U N+ for a = - 1 , n odd. 

L e m m a 5. I) Let y £ N+, / ^ 2. Then 

(13) \yi(t)\>(l-p)\z(t)\ for large t. 

II) Let y G N ! + . 

(i) If lim z(t) = L > 0, t^eu t/jere exists an ao-' 0 < ao < 1 such that 
<—>oo 

(14) | y i ( 0 | ^ a 0 | z ( 0 l for large t; 

(ii) If lim z( . ) = 0 then lim inf yM) = 0, lim y,(<) = 0, i = 2 , . . . , n. 
t—>oo t—•oo t —•oo 
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P r o o f . Without loss of generality we suppose that y i ( 0 > 0 on [£0,oo), /0 ^ 0. 

I) The relation (13) is derived in the proof of Lemma 2. 

II) (i) Let y G Ni+, y i ( 0 > 0 on [*0,oo) and let lim z(t) = L > 0. Then the first 
t—»oo 

equation of (5 , a) together with (C2), (C5) implies that z(i) (> 0) is a decreasing 

function on [*i,oo), t\ ^ T(^O)- We choose 6: 1 < 6 < 1//?, where f3 is defined by 

(C i ) . Then there exists a t2 ^ t\ such that L ^ z(t) ^ z(h(t)) <J 6L for t^>t2. The 

last inequality implies 

(16) z(h(t)) ^6L^ 6z(t) for t ^ t0. 

Taking into account (16), (Ci) we obtain from (4) that 

y i ( 0 ^ * ( 0 + « ( 0 * ( M 0 ) ^ * (0 " /?s(M0) 2 (1 " 06)z(t) = a0z(t) 

for t ^ t2, where a0 = 1 — f36 > 0. 

(ii) Let lim z(t) = 0 and lim inf y i ( 0 = Fi > 0. Then (3) yields 
t—>oo t—>oo 

0 < Li ^ lim z(t) + p lim infyi( / i (0) ^ @L\. 
t—>oo t—>oo 

This contradicts the fact that 0 < (3 < 1 and proves that L\ = 0. Using Lemma 2 

we obtain lim yi ( 0 = 0, i = 2 , . . . , n. • 
t—»oo 

L e m m a 6. Let y G N2~. Tnen 

(17) lim 2 (0 = 0, lim y i ( 0 = 0, i = l , 2 , . . . , n . 
t—>oo t—»oo 

P r o o f . Let y G N2~. We may suppose that y i ( 0 > 0, z(t) < 0 on [ l0 ,oo), 

l0 ^ 0. In view of the first equation of (5 , cr), (C 2) , (C5) we conclude that z(t) is an 

increasing function on [ l0 ,oo). From (3), taking into account the inequality z(t) < 0 

and (Ci ) we have y i ( 0 ^ t/i(/i(<)), t ^ to. Then there exists lim z(t) = L ^ 0, 
t—+00 

lim y i ( 0 = c ^ 0. Let c > 0. Then the inequality y i ( 0 ^ Pyi(h(t)) implies c ^ (3c. 
t—>oo 

This contradicts the fact that j3 < 1. Thus we conclude that c = 0. From (2) we 

obtain lim z(t) = 0. Then using Lemma 2 we have lim y i ( 0 = 0, i = 2, . . ., n. • 
t—+oo t-*oo 

In the sequel we will use the following notation: 

(18) G i ( 0 = <li(0> Gi(t) = y i (Gi_ i (0 ) , i = 2 , . . . , n; 

(7 _ 1 (0 denotes the inverse function to y,( l), i = 1 , . . . , n . 

(19) fjt-i =max{*jk, 7* (**)}, sk = m<ix{sk-\Jgk(sk-i)}, k = 2 , . . . , n . 
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We now put 

(20) fi(x) = x, i= 1,2,..., n - 2 ( i f n ^ 3 ) , 

(21) Pi_i(0 = Pi_i(0/i- i( |yiUi(0)l) , i = 2, • . . , n; 

y\(t) = z(t), y{(t) = y((t), i = 2,...,n. 

The system (S, a) in which the functions fi, i = 1, 2 , . . . , n — 2 satisfy (20) will be 

denoted by (5, <r). 

Lemma 7. Let the assumptions ( C I ) - ( C T ) hold and let y = (y\,..., yn) G W be 
a nonoscillatory solution of(S,a) on [Zo,oo); t0 ^> 0. Then there exist a t\ J> t0 and 
an integer I G {1,2, . . . , n } , c r ( - l ) n + / + 1 = 1 or / = n, such that 

Sk * n - 2 

(220 \Vk(9k(t))\> J Pk(Xk)... J Pn-2(xn-2) 

gk(t) gn-2(Xn-3) 

Sn-l 

x / P n_i(_ n_i)d_ n_idx n_ 2 . . .d_i t , 

gn-l(xn-2) 

for t\ ^t^Sk, 1 $C k <̂  7i — 1, 

gt(t) gi-2(xi-3) gi-i(xi-2) 

(23/) \yi(gi(t))\ ^ / Pi(x{) . . . / p/_2(x/-2) / p/_i(_/_i)d_/_id_/_2 . . .d_,-, 

t , t / _ 2 t / - l 

for/ 5> U ^ 7(/0), i = 1 , 2 , . . . , / - 1, / <C n. 

P r o o f . The proof of this lemma is analogous to the proof of Lemma 3 in [8] 
and therefore we omit it. • 

Remark 3. Putting (22/) into (23/), where / <̂  n — 2, we obtain 

gi(t) gi-l(*l-2) Si »n-2 

(24t) \yi(gi(t))\^ I Pi(xi)... / pi-\(xi-\) / p / ( _ , ) . . . / pn_2(_n_2) 

*• * . - - gi(xi-i) gn-2(*n-3) 

Sn-l 

x / P n_i(_ n_i)dx n_id_ n_ 2 . . .d„/d_/_i . . ,d_i, 

gn-i(xn-2) 

t^t\> t0, i= 1,2,.. . ,/ , /<C n - 1. 
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Denote 

Gn-l(t) 

(25n) D^.^Gn-^O^n-lJP) = J Pn-l(xn-l) 
tn-l 

Gn-2(ť) Gi(ť) 

X / Pn-2(*n-2) • • • Pi(xi)dxi . . . d я n - г d x n - i ; 

9ñ-Лxn-i) 2"Ҷ X -) 

Gn-l(ť) 

(250 Ö П - I ( G П - I ( 0 ^ П - I ; P ) = J Pn-i(xn-i) 

tn-l 

9ñ-i(xn-i) 92l(*г) 

X / p n - 2 ( * n - 2 ) . . . / P i ( x i ) d x x . . . d x n - 2 d x n - i , n ^ 3; 

Gn-i(t) 

(25/) D „ _ i ( G n - l ( 0 ^ n - i ; p ) = / Pn- l (Xn- l ) 

t n - l 

.?n-l(*«-l) 97\Xi) Gl-2(t) 

X / P n - 2 ( x n - 2 ) . . . / P/-l(x/_i) / p/_ 2 (x/_ 2 ) 

t n ~ 2 t ' " 1 ^ ( ^ i - i ) 

Gl(t) 

/ Pi(-Pi)dxi . . .dx/_ 2dx/_i . . . d x n - 2 d x n - i , 

y j 1 ^-) 

2 ^ / ^ n - l , l A = gk(tk-i), k = / , . . . , n - 1; 

Gi(0 

(251) -9l(Gi(0,«i;p)= J Pi(t)dt. 

ti 

We will say that the system (S, cr) has the property Ao if every solution 

y = ( y i , . . . , y n ) e w 

is either oscillatory or 

(P i) -K0> yi(0» i = 2 , . . ., n tend monotonically to zero as t —• oo. 
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We will say that the system (5 , a) has the property BQ if every solution 

y = ( y i , . . . , y n ) e W 

is either oscillatory or ( P i ) holds or 

(P 2 ) lim y t(t) = 8oo, t = l , 2 , . . . , n , 
t—+00 

where 8 = s igny i ( t ) . 

R e m a r k 4 . (i) If the system (5 , <r) has the property AQ (the property H0), where 

( P i ) holds iff cr(—l)n = 1, then we say that the system (5 , <r) has the property A 

(the property B). 

(ii) In view of Lemma 5 and Lemma 6 the property (P i ) can be replaced by 

lim inf yi(t) = 0 and tji(t) (i = 2 , . . . , n) tend monotonically to zero as t —• 00. 
t—>oo 

T h e o r e m 1. Let the assumptions (Ci) - (C7) hold and let there exist a continuous 

nondecreasing function g: [0, 00) -—> R such that 

(26) gn(t)**g(t), g(Gn-i(t))^t. 

Let 

(27) fn(uv) ^ Kfn(u)fn(v), u > 0, v > 0 (0 < K = const.), 

a —a 

/
dx I d*c 

7 7 7 7-TT < OO, / — — < CO 
fn(fn-l(x)) J fn(fn-l(x)) 

0 0 

for every constant a > 0. 

If 

u 

(29) Jun J Pn(t)fn(&n-l(Gn-l(t),T\ P))dt = OO 
T 

for I = 1, 2 , . . . , n, where c r ( - l ) n + / + 1 = 1 or I = n, tiien t7ie system ( 5 , - 1 ) has the 

property AQ and the system ( 5 , 1 ) has the property BQ. 
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P r o o f . Let y = (t/i , . . .,t/n) € W be a nonoscillatory solution of (5\<r) on 
[0, oo). Then by Lemma 4 there exist / G { 1 , . . -, n}, <r(—l)n+,+ l = 1 or / = n and a 
^o^O such that the classification (12) holds. Without loss of generality we suppose 
that yx(t) > Ofor t^ t0. 

la) Let a = -1, y E N+ (n + 1 is even). We prove that N+ = 0. From (23,-.) for 
i = 1 we get 

9l(t) 9n-2(Xn-3) 

(30) *(0l(O)£ J P1(*l)..- / Pn-2(*n-2) 
*i t n _ 2 

y n _ i ( . c n _ 2 ) 

x / p n _ i ( a r n _ i ) d x n _ i d x n _ 2 . ..dxi, t^ti^j(t0). 

Interchanging the order of integration in (30) we obtain 

Gn_l(t) Gn-2(t) 

(31) Z(9l(t)) ^ Pn-l(Xn-l) / P n - 2 ( * n - 2 ) . . . 

t » " 1 ^ ^ - i ^ n - l ) 

Gi(0 

. . . pi(xx)dxi - .da?n_2dxn_i, t^T = 7(*n-i). 

Then using the monotonicity of un, / n _ i , (26), (25n) and (13), from (31) we get 

(32) yi(9i(t)) 2(1- P)fn-i(Vn(t))D^1(Gn-i(t), tn-x; p), t> T. 

Putting (32) into the n-th equation of (5, —1) and using (27) we have 

y'n(t) <: - K i p n ( 0 / n ( / n - l ( ^ n ) ) ) / n ( ^ - i ( G n - l ( 0 ^ n - l 5 p), 

where Ki = K2fn(l - p), t > T. 

Multiplying the last inequality by (fn(fn-i(yn(t))))~1 and then integrating from 
T to u (> T) we get 

w yn (« ) 

(33) NiyPn(0/n(^n-l(Gn-l(0^n-i;p)d^ | /w ( / ^ (g))' 
T yn(T) 

Then (28) together with (33) for u —• oo contradicts (29). Therefore N+ = 0 if 

(7 = - 1 . 
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lb) Let <r = 1, y G N+, n ^ 2 . Taking into account yi(gi(t)) > 0 on [7(^0), OO) we 

obtain from the n-th equation of ( 5 , 1 ) that yn(t) is nondecreasing. Therefore there 

exist a Ln > 0 and a <i ^ 7(^0) such that t /n(pn(0) ^ ^n on [*i,oo). From (23n) for 

i = l , taking into account (C7) and the last inequality we obtain 

9l(t) 0n-l(*n-2) 

z(9\(t)) ^ fn-i(Ln) / P i ( x i ) . . . / p n _ i ( . r n _ i ) d a : n _ i . . . d x i , t^tx. 

t\ tn-l 

Interchanging the order of integration in the last inequality and using (25n) and 

(13) we get 

Vi(9i(t)) > (1 - P)fn-i(Ln)Dn_x(Gn.i(t),tn-i \p\t>T> y(tn-i). 

Putting the last inequality into the n-th equation of ( 5 , 1 ) and then using (27) we 

successively obtain 

(34) y'n(t) > K2Pn(t)fn(DZ-i(Gn-l(t),tn-l',p), 

where K2 = Kfn((l - / ? ) / n _ i (L n ) ) , t ̂  T. Integrating (34) from T to u -> 00 and 

using (29) we have lim yn(t) = 00 . Then by Lemma 2, lim yi(t) = 00, i = 1 , . . . , n . 
t—*oo t—*oo 

II) Let y € N*, 2 -̂  / -$ n — 1. Interchanging the order of integration in (24 i) , 

then using the monotonicity of yn , / n _ i , (26), (25/), (13) we get 

(35) »l(tJl(0)^(-~/ ' ) /n-l( l l* .(0l)-5'n-l(Gn-l(0.-n-i;p) . 

Putting (35) into the n-th equation of ( 5 , <r) and then proceeding in the same way as 

in the case la), we arrive at a contradiction with (29). We have proved that N+ = 0 

if 2 ^ / ^ n - l , <r(-l)n+l = -1. 

III) Let y e Ni+, (<7(- l )n = 1). Then in view of yi(t) > 0, the first equation 

of ( 5 , <T) implies that z(t) (> 0) is a decreasing function for large t. Therefore 

lim z(t) = L ^ 0 exists. We suppose that L > 0 . Then there exists a ti ^ *0 such 
t—+OQ 

that 

(36) L^z(t)^2L on [*i,oo). 

(i) Let n ^ 3 . Then (222) together with (9) gives 

SQ 3n-2 

-2/2(02(0) > / P2(*2) • • / Pn-2(* n _ 2 ) 

^2(0 ;?n-.»(*n-3) 

* n - l 

/ P n _ i ( x n _ i ) d x n _ i d x n _ 2 .. .dxi, t ̂  7(^1) = t2. X 

9n-\{^n-2) 
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Putting the last inequality into the first equation of (5,cr), then integrating from t2 

to g\(t) and using (36) we have 

(37) z(g\(t))>L>z(t2)-z(g\(t))> J P\(x\) J p2(x2)... J pn_2(*n_2) 

<2 9l(xi) 9n-2(Xn-l) 

* n - l 

x / Pn_1(xn_1)dxn_1dxn_2...dx2dx1. 

< 7 n - l ( ^ n - 2 ) 

Interchanging the order of integration in (37), then using the monotonicity of yn, 
/ n _ l 5 (26), (25/) and (14) we obtain 

(38) y i (£7 l (0 )^ao /n - l ( | yn (OI)^ - l (Gn- l (0 ,«n ;p ) , 

where ao is the constant from (14). 

(ii) Let n = 2 (a = 1). Integrating the first equation of (5,1) from t\ to g\(t), 

then using the monotonicity of y2, f\, (26), (36) and (14) we get 

(39) î/iЫO) ^ «oL > a0 /i(ЫOI) У Pi(«)d 
ťi 

= ao/i(Ы0l)-5І(Gi(0.íi;P)-

If we put (38) or (39) into the last equation of (5, cr) and then we proceed in the 
same way as in the case la) we get a contradiction with (29). Therefore L = 0, 
i.e. lim z(t) = 0. Then by Lemma 5 we have lim inf y\(t) = 0, lim ydt) = 0, 

t—*oo t-*oo t—>oo 

i = 2 , . . . , n . 
IV) Let y 6 N? (<r(-l)n = - 1 ) . Then by Lemma 6 lim z(t) = 0, lim yi(t) = 0, 

t—>CO t—*oo 

t = 1,2, . . . t n . 
The proof of Theorem 1 is complete. • 

Theorem 2 . Let the assumptions (Ci)-(C7), (27), (28) hold and let 

(40) g„(t) ^ t, G„_i(0 ^ t on [O.oo). 

If 

U 

(41) lim ípn(t)fn(&n-Лt,T;p)dt = 
u~ooJ 

OO 
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for I = 1 ,2 , . . . , n, where <r(— l ) n + / + 1 = 1 or I = n, then the conclusion of Theorem 1 

holds. 

P r o o f . The proof is similar to that of Theorem 1, only we replace (26) and 

O i - i ( G n . i ( t ) , r ; P) by (40) and Dl
n_x(t,T- p), respectively. D 

Theorem 1 (Theorem 2) improves and generalizes Theorem 1 (Theorem 2) in the 

paper [7]. 

Let the function 

(C\) a(t) satisfy (Ci) , where a(t) is not positive on [0 ,oo) . 

R e m a r k 5. Let (C\) be fulfilled. Then Nf = 0 in view of Remark 2, and it 

is easy to see that the property (P i ) holds only if <r(—l)n = 1. Then Theorem 1 

(Theorem 2) with regard to Remark 4 implies the following theorems: 

T h e o r e m 3 . Let the assumptions (C\), (C 2 ) - (C 7 ) , (26)-(29) hold. Then the 

system (S, —1) iias the property A and the system ( 5 , 1 ) has the property B. 

T h e o r e m 4 . Let the assumptions (C\), (C 2 ) - (C 7 ) , (27), (28), (40), (41) hold. 

Then the conclusion of Theorem 3 holds. 

References 

[1] S. R. Grace, B. S. Lalli: Oscillation theorems for certain neutral differential equations, 
Czech. Math. J. 38(113) (1988), 745-753. 

[2] I. Gyori, G. Ladas: Oscillation of systems of neutral differential equations, Diff. and 
Integral Equat. 1 (1988), 281-286. 

[3] A. N. Ivanov, P. Marusiak: Oscillatory and asymptotic properties of solutions of systems 
of functional-differential equations of neutral type, Ukrain. Mat. Journal 44 (1992), 
1044-1049. (In Russian.) 

[4] J. Jaros, T. Kusano: Oscillation theory of higher order linear functional differential 
equations of neutral type, Hirosh. Math. J. 18(1989), 509-531. 

[5] J. Jaros, T. Kusano: Sufficient conditions for oscillations in higher order linear func­
tional differential equations of neutral type, Japan J. Math. 15, N2 (1989), 415-432. 

[6] C7. Ladas, Y. Sficas: Oscillations of higher order neutral equations, J. Austr. Math. Soc. 
(Ser B) 57(1986), 502-511. 

[7] P. Marusiak: Oscillatory properties of solutions of nonlinear differential systems with 
deviating arguments, Czech. Math. J. 36(111) (1986), 223-231. 

[8] P. Marusiak: Oscillation criteria for nonlinear differential systems with general deviating 
arguments of mixed type, Hirosh. Math. J. 20, Nl (1990), 197-208. 

[9] V. N. Shevelo, N. V. Varech, A. G. Gritsai: Oscillations of components of solutions of 
systems of functional differential equations of neutral type, Inst. Mat. Preprint, Acad. 
Nauk Ukr. SSR., 1984, pp. 116-126. (In Russian.) 

661 



[10] A. I. Zachariev, D. D. Bainov: On some oscillation criteria for a class of neutral type 
of functional differential equations, J. Austr. Math. Soc. (Ser. B) 28(1986), 229-239. 

Author's address: Katedra matematiky SEF VSDS, J. M. Hurbana 15, 010 26 Zilina, 
Slovakia. 

662 


		webmaster@dml.cz
	2020-07-03T09:34:34+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




