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1. In this paper we are concerned with the oscillatory and nonoscillatory behavior
of functional differential systems of the form

(S,0)  [n(t) = a@®)un(h(t))) = pr(t) fi(y2(g2(t))),
vi(t) = pi) fi(yisr(gis1 (1)), i=2,...,n—1,
Yn(t) = opn(t) fn (1(91(1))),

wheren > 2, 0 =10oro = -1 and
(C1) a:[0,00) — R is a continuous function satisfying

la(t)] < B < 1, a(t)a(h(t)) > 0 on [0,00), where 3 is a constant;

(C2) pi: [0,00) — [0,00),i=1,2,...,n are continuous functions not identically zero
on any subinterval [T, 00) C [0, 00),

(o)

/pg(t)dt:oo, i=1,2,...,n-1;

(C3) h:[0,00) — R is a continuous function, h(t) < ¢t on [0,00), A is nondecreasing
on [0,00) and tlim h(t) = oo;
—00

(C4) 9i:[0,00) = R, i = 1,2,...,n are continuous functions and tl_l‘rglo g1(t) = oo,
1=1,2,...,n;

(Cs) fi: R = R, i = 1,2,...,n are continuous functions, uf;(u) > 0 for u # 0,
1=1,2,...,n;

(Cs) gi, i =1,2,...,n are increasing functions on [0, 00);

(C7) fi, i=n—1,n are nondecreasing functions on R.
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Remark 1. Let g;(t) = ¢t, i =2,...,n, pi(t) >0 on [0,00), 7= 1,2,...,n — 1,
fi(u) = u,u € R, i=12,...,n— 1. Then the system (S, o) is equivalent to the
n-th order differential equation of neutral type with quasiderivatives:

(E,0)

(p,,_ll(t) a2 (,,,f(t) (,,ll(t) w(t) = a®yh(®))) ) ..) = opal)fa(ula(v)).

Recently there has been a growing interest in the study of oscillatory solutions
of neutral differential equations of n-th order, see, for example, the papers [1, 4-6,
10] and the references cited therein. As far as is known to the author, the oscilla-
tory theory of systems of neutral differential equations is studied only in the papers
(2,3,9].

The purpose of this paper is to establish some new criteria for the oscillation of
the system (.S, 0). These criteria extend and improve those introduced in [7]. Our
results are new even when a(t) = 0.

Let to > 0. Denote

t; = min { ti;ltfn h(t),tigltfog,-(t), i=1,2,...,n}.

A function y = (y1,-..,yn) Is a solution of the system (S, ) if there exists a
to > 0 such that y is continuous on [t;,00), y1(t) — a(t)y1(h(1)), vi(t), i = 2,...,n
are continuously differentable on [tg, 00) and y satisfies (S, o) on [tg, 00).

Denote by W the set of all solutions y = (yi,...,yn) of the system (S, o) which
exist on some ray [Ty, 00) C [0, 00) and satisfy

sup{i lyi(t)]: t > T} >0 forany T > T,.
i=1

A solution y € W is nonoscillatory if there exists a Ty > 0 such that its every
component is different from zero for all ¢t > T,. Otherwise a solution y € W is said
to be oscillatory.

2. Denote

(1) Yi(t) =sup{s > 0:gi(s) <t}, t>0, i=1,2,...,m
vh(t) =sup{s > 0: h(s) <t}, t>0;
7(t) = lnax{')'h(t)»'yl(t)! s y'Yn(t)}a t 2 0.

VWV

For any y(t) we define z(t) by

(2) 2(t) = yi(t) — a(O)yi(h(t)), 2 yn(to) =t > 0.
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The inequality (2) implies that

(3) n(t) = z(t) +a()y(h(t)) >,
(4) yi(t) = 2(t) + a(t)z(h(t)) + a(t)a(h(t))y1 (h((A(1)),
t2 () =ta.

Lemma 1. Let (C;)—(Cs) hold and let y € W be a solution of the system (S, o)
with y1(t) # 0 on [to,00), to > 0. Then y is nonoscillatory and z(t), ya(t), ..., yn(t)
are monotone on some ray [T,00), T 2 t.

Proof. Lety € W and let y;(t) # 0 on [tg,00), to = 0. Then in view of (C3z)-
(Cs) the n-th equation of (S, o) implies that either y, (h(t)) > 0 or y, (h(t)) < 0 for
t > v(to) = Th, and ¥, (t), yn(t) are not identically zero on any infinite subinterval of
[Ty, 00). Thus y, is a monotone function on [T}, 00) and hence there exists a T3 > Ty
such that y,(t) # 0 on [T»,00). Analogously we can prove that y,_1(t),...,y2(t),
z(t) are nonoscillatory and monotone functions on an interval [T,00), T 2 T>. O

Lemma 2. Suppose that (C;)—(Cs) hold. Lety = (y1,-..,Yn) € W be a nonoscil-

latory solution of (S, o) and let t&r& 2(t) = Ly, imyg(t) = L, k= 2,...,n. Then
(5) ifk>2,|Lg] >0 imp]iestErg yi(t) =600, i=1,...,k — 1, where § = sign Ly;
(6) if1 <k <n,|Lg| < oo impliestl_ig})y,-(t) =0,i=k+1,...,n.

Proof. Lemma 1 implies that z(t), yk(t), ¥ = 2,...,n are monotone func-
tions for large t and therefore there exist finite or infinite limits: tl_l'n;lo 2(t)=L,
tlilg)yk(t) =Lg, k=2,...,n

(i) Let k£ > 2, Ly > 0. Similarly we proceed if Ly < 0. Then there exists a ¢, > 0

such that y(t) > Li/2 for t > ¢,. From the (k — 1)-st, ..., the first equations of
(S,0), taking into account (Cz), (Ca), (Cs), we get that ye_;(¢), ..., y2(2), z(t) are
increasing functions and tlim yi(t) =00, i=k—1,...,2, tlim z(t) = oo.

By virtue of monotonicity of 2(t) (> 0), (4) and (C;) we conclude that
y1(t) 2 2() + a(t)2(h(1) 2 2(t) - Bz(h(1)) 2 (1 - B)z(t).

If tl_lg]o 2(t) = oo, then tl_l}g y1(t) = oo.

(ii) Let 1 < k< n, 0 < Li < oo. Suppose that L; > 0 forsome i € {k+1,...,n}.
Then by (5) tl_i.nolo vi(t) = 00,7 =1,...,7— 1. This contradicts the fact that L; < co.
Therefore L; = 0,1 =k +1,...,n. O
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If a(t) = 0 on [0,0), then we denote the system (S, o) by (So,o). It is then a
system of differential equations with deviating arguments. For the system (Sp, o)
the following lemma holds:

Lemma 3 [8, Lemma 1]. Suppose that (Cz), (C4) and (Cs) hold. Let y =
(y1,---,yn) be a nonoscillatory solution of (Sp, o) on [0,00). Then there exist an
integer € {1,...,n}, o(=1)"*"*1 =1 orl=n, and a to > 0 such that fort > t,

un(t) >0, i=1,2...1,
(=) yn(t) >0, i=LI+1,...,n

We now generalize this lemma to the system (S, o).

Lemma 4. Suppose that (C1)=(Cs) hold. Let y = (yi,...,Yn) be a nonoscil-
latory solution of (S,0) on [0,00). Then there exist an integer | € {1,2,...,n},
o(=1)"** = 1 orl=n, and ato > 0 such that for t > to either

(7 vi(t)z(t) > 0,

(8) yl(t)yl(t)>0) 1= 1727111

9) (=D y®u(t) >0, i=LI+1,...,n

(10) y1(t)z(t) < 0,

(11) (—l)iyi(t)yl(t) >0, i=2,...,n, where o(-1)" =-1.

Proof. Lety=(y1,...,yn) € W be a nonoscillatory solution of (S, ). With-
out loss of generality we suppose that y;(g;(¢)) > 0 for t > To > a. Then Lemma 1
implies that z(t) (# 0) and y;(t), i = 2,...,n are monotone on [T}, ), Ty > To.
Therefore either (7) or (10) hold on [T7, o).

1) Let (7) hold on [T}, 00). In this case we can use Lemma 3 which implies that
there exist | € {1,2,...,n}, o(=1)"**! = 1 or = n and a t; > T} such that (8),
(9) hold for t > t,.

I1a) Let (10) hold and let y2(t) < 0 on [T}, 00). Then in view of (Cz), (C4), (Cs),
the first equation of (S, o) implies that z(t) is decreasing on [T, 00), T2 > v(T1). We
now show that this case cannot occur. Indeed, taking into account that y,(t) > 0,
2(t) < 0 on [T2,00) and (C,), we obtain from (3) that y;(h(t)) > yi(t) on [T3, o).
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Then with regard to the monotonicity of y;, 2, there exist tlirg vi(t) = ¢ > 0,
tlim 2(t) = L < 0. Then (2) together with (C;) implies
—00

L= lim (s(t) - a(t)yi (h(t))) > (1= B) > 0.

This contradicts the inequality L < 0.
1Ib) Let (10) hold and let y2(t) > 0 on [T7,00). Then in view of (C3), (C4) and
(Cs) the first equation of (S, o) implies that z(t) is increasing on [T3, 00), Ty > ¥(T1).
If n > 3 we now show that y3(t) < 0 on [T5,00), T3 > T3. In the opposite case by
virtue of (C5), (C4) and (Cs) the second equation of (S, ) gives that there exist
an Ly > 0 and a Ty > T3 such that y»2(t) > L2 on [T4,00). With regard to the
1

system (S, o) we conclude that z(t) > z(T4) + fi(c) [ pi(t)dt — oo for t — oo. This
Ta

contradicts the negativeness of z(t) on [T1,00). If n > 3 we similarly prove that
ya(t) >0, ys5(t) <0, ..., (=1)"ya(t) > 0 for t >ty > Ty, where o(—1)" = —1.
The proof of Lemma 4 is complete. 0

Remark 2. The case y;(t)z(t) < 0 on [tg,00) C [0, 00) can occur only if a(t) > 0
on [t;,o0) and o(-1)" = —1.

We denote by N;t or N the set of all nonoscillatory solutions of (S, ) which
satisfy (7)-(9) or (10), (11), respectively. Denote by N the set of all nonoscillatory
solutions of (S,0). Then by Lemma 4 the following classification holds.

(12) N=N}IUN ,U...UNfUN} foro=1, neven,
N:N,',"UN:_IU...UNIUN;UN{ for o = 1, n odd,
N=N}UN},Uu...UNJUN; for o= -1, n even,
N=N}UN} ,U...UNJUN} foro=—1, nodd.

Lemma 5. I) Let y € N,+, 1> 2. Then

(13) [y ()] 2 (1= B)|z(t)| for large t.

1) Let y € N;.
(1) If'lim 2(t) = L > 0, then there exists an ag: 0 < ag < | such that
—o00

(14) ly1(t)] = aolz(t)| for large t;
(i1) Iftlim 2(t) = 0 then tlim infy,(¢) =0, 1]im yi(t)=0,i=2,...,n.
— 00 — 00 — 00
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Proof. Without loss of generality we suppose that y;(t) > 0 on [tg, 00), to > 0.

I) The relation (13) is derived in the proof of Lemma 2.

II) (i) Let y € N;F, y1(t) > 0 on [ty,0) and let tl_lglo z(t) = L > 0. Then the first
equation of (S, o) together with (C3), (Cs) implies that z(t) (> 0) is a decreasing
function on [t1,0), t; = ¥(to). We choose 6: 1 < 6§ < 1/8, where B is defined by
(C1). Then there exists a t5 > t; such that L < z(t) < z(h(t)) < 6L fort > t5. The
last inequality implies

(16) z(h(t)) K OL < 6z(t) for t > t,.
Taking into account (16), (C;) we obtain from (4) that

v1(t) 2 2(t) + a(t)z(h(t)) > z(t) — Bz(h(t)) = (1 - B)z(t) = aoz(t)

for t > ty, where ag =1 — 36 > 0.
(i1) Let thm 2(t) =0 and ‘]lm inf y1(t) = L1 > 0. Then (3) yields

0<L; < tlim 2(t) + ﬂtlim infy; (h(t)) < BL;.

This contradicts the fact that 0 < 8 < 1 and proves that L} = 0. Using Lemma 2
we obtain tlim n(t)=0,i=2,...,n. O

Lemma 6. Let y € N, . Then

(17) lim z(t) = 0, tlim nt)=0, i=12,...,n

t—o0

Proof. Let y € N;. We may suppose that y;(t) > 0, z(f) < 0 on [tg, ),
o = 0. In view of the first equation of (S, 7), (C2), (Cs) we conclude that z(t) is an
increasing function on [tg, c0). From (3), taking into account the inequality z(¢) < 0
and (C;) we have y;1(t) < y1(h(t)), t > to. Then there exists 11_1{& 2(t) = L <0,
lim y1(t) = ¢ > 0. Let ¢ > 0. Then the inequality y;(t) < Byi(h(t)) implies ¢ < Se.

ThlS contradicts the fact that § < 1. Thus we conclude that ¢ = 0. From ( ) w
obtain thm 2(t) = 0. Then using Lemma 2 we have tllll’l n(t)=0,i=2,...,n. D

In the sequel we will use the following notation:
(18) Gl(t) = gl(t), Gi(t) = g,-(G,-_l(t)), 1=2,...,n
gi_l(t) denotes the inverse function to g;(t), i=1,...,n.

(19)  tg—1 = max{ts,7x(tx)}, sk = max{si_1,9x(sk-1)}, k=2,...,n
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We now put

(20) filz)=z,i=1,2,...,n=2 (ifn > 3),
(21) Pia(t) = pi1(t) fima(lys(g:())]), i=2,...,m5
gi(t) = 2(t), w:(t)=w), i=2,...,n

The system (S, o) in which the functions f;, i =1,2,...,n — 2 satisfy (20) will be
denoted by (S, 7).

Lemma 7. Let the assumptions (C;)—(C7) hold and let y = (y1,...,yn) € W be
a nonoscillatory solution of (S, ) on [tg,o0), to > 0. Then there exist a t; > to and
an integer [ € {1,2,...,n}, o(=1)"*'*! = 1 or | = n, such that

Sk Sn_2
(22) @O > [ peler) . [ paalen-a)
9x (1) gn-2(Tn-3)
Sn—1
X /Pn_l(x"_l)dxn_ldxn_g...d:ck,
gn-1(Tn-2)

fort; <t <sp, 1 <k<n—-1,

g.(t) g1-2(z1-3) gi—1(zi-2)
(231)  |Zi(gi(t))] = /Pi(xi)---/m-z(rz-z) / pi—1(zi-1)dzi_ydaey_o . . day,
t, ti—2 ti—1

fort 2 t; 2 v(to),i=1,2,..., 1= 1,1 < n.

Proof. The proof of this lemma is analogous to the proof of Lemma 3 in [8]
and therefore we omit it. a

Remark 3. Putting (22;) into (23;), where | < n — 2, we obtain

gi(t) gi-1(z1-2) 51 Sn—2

) w1 > [ pe) . [ aaee) [oe [ st
t; ti—1 gi(zi-1) gn—2(Tn-3)
X P,,_l(l‘n_l)dl'n_ldl',,_g .. .dI[(lII_l . .d:l:l,
yn-l(l‘n—2)

t>t1>t0,i:1,2,...,(,1<n—1.
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Denote

Gno1(1)
(25,) Dp_1(Gn-1(t),tn-1;p) :/pn-l(zn—l)
tno1
Gnoa(t) Gi(t)
X / Pn-2(Zn-2).. ./pl(zl)dzl co.dzpy_odz,_q;
971y (@nm) 97 ' (z2)
Ga-1(t)
(251)  Dp_1(Gnoa(t),tno1;p) = / Prn-1(Tn-1)
taoa
9721 (zn1) 957 ' (z2)
X Pn-2(Tn=2)... pi(z1)dzy ... dep_odzy_q, n >
tho2 t
Gn-1(t)
(25)  DhaGor®tain) = [ pacaan-)
tao1
9t (zn1) PRRCD) Gi-2(t)
< [ paenen)e [ peiee) [ peaeen
fn-2 - 9\ (=1-1)

G[(t)
pl(:cl)d:n .. .dI[_gdl‘I_l .o .dz',._gd:z:,,_l,

95 (z2)
2<i<n—1,ty = ge(te-1), k=1...,n—1,

Gq(t)
(251) DiGO.uip = [ mEa

t)

We will say that the system (S, o) has the property Ag if every solution
y=(y,--.,yn) EW
is either oscillatory or
(P1) 2(t), yi(t), i=2,...,n tend monotonically to zero as ¢t — oo.
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We will say that the system (S, o) has the property By if every solution
y= (!/h---,yn) ew
is either oscillatory or (Py) holds or
(P2) lim y;(t) = éoo, i=1,2,...,n,
t—o00
where é§ = sign y, (¢).

Remark 4. (i) If the system (S, o) has the property Ag (the property Bg), where
(Py) holds iff ¢(—1)" = 1, then we say that the system (S, o) has the property A
(the property B).

(ii) In view of Lemma 5 and Lemma 6 the property (P;) can be replaced by

tlim infy;(¢t) = 0 and y;(t) (i = 2,...,n) tend monotonically to zero as t — co.

—00

Theorem 1. Let the assumptions (Cy)—~(Cz) hold and let there exist a continuous
nondecreasing function g: [0,00) — R such that

(26) 0a(t) < 90), 9(Gur (1) <.
Let
(27) fa(uv) 2 Kfuo(u)fu(v), u>0,v>0 (0< K = const.),
h dz T dz
28 _— —_—
(2 0/ Falloa@) < 0/ Fallaa@) <
for every constant o > 0.
If
(29) Jim [ o0y (Gama (0,T P = o0
T

forl =1,2,...,n, where o(~1)"*"*! = 1 or | = n, then the system (S, —1) has the
property Aq and the system (S, 1) has the property By.
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Proof. Lety = (y1,...,ya) € W be a nonoscillatory solution of (S, o) on
[0,00). Then by Lemma 4 there exist | € {1,...,n}, o(=1)"*"*! =lorl=nanda
to > 0 such that the classification (12) holds. Without loss of generality we suppose
that y;(t) > 0 for t > to.

Ia) Let 0 = —1, y € N;} (n+ 1 is even). We prove that Nt = 0. From (23,,) for
=1 we get

g1(t) gn-2(Tn-3)
60 0@ > [ e [ ey

t) th-2

gn—l(zn—l)

X / pn_l(ln_l)dl‘n_ldl‘n_z .. .d:!!l, t 2 tl 2 ‘7(t0).

tn—1
Interchanging the order of integration in (30) we obtain

Gn-1(t) Ga_2(t)
(31) z(g91(t)) > /pn-l(rn—1) / Pn-2(zn-2)...
tn-1 971 (zao)
Ga(t)
/pl(a:l)d:cl cordzn_odza_y, 2T =v(th-1).

95 ' (z2)
Then using the monotonicity of yn, fn-1, (26), (25,) and (13), from (31) we get
(32) v1(91(1)) 2 (1= B)fa-1(wa () Dr_ 1 (Grs(t),tn-rsp), 2T
Putting (32) into the n-th equation of (S, 1) and using (27) we have
Yn(t) < —K1pn () fr(fa-1(y(tn))) fu (DR 1 (Gn-1(t), th-1; P),

where Ky = K2f,(1-0),t > T.
Multiplying the last inequality by (fu(fn—1(yn(t))))~! and then integrating from
T tou (>T) we get

" Yn(u)
] i . dz
63 K / Pa(D)fa( D31 (Groa(8), tnor P)AE < (/ )
Yn

Then (28) together with (33) for u — oo contradicts (29). Therefore N} = 0 if
o= —-1.
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Ib) Let ¢ = 1, y € N}, n > 2. Taking into account y;(g1(t)) > 0 on [y(to), o0) we
obtain from the n-th equation of (5, 1) that y,(t) is nondecreasing. Therefore there
exist a L, > 0 and a t; > v(to) such that y,(gn(t)) = Ln on [t1,00). From (23,) for
i = 1, taking into account (C7) and the last inequality we obtain

91(t) gn-1(Tn-2)
z(gl(t))zf,.-l(Ln)/m(z,)... / Prot(zn-1)dznor .. dz1, L340
t thoa

Interchanging the order of integration in the last inequality and using (25,) and
(13) we get

yl(gl(t)) P (1 "ﬂ)fn—l(Ln)D:_l(Gn—l(t),tn—l ) P)) t2> T 2 7(tn—1)-

Putting the last inequality into the n-th equation of (S, 1) and then using (27) we
successively obtain

(34) Yn(t) 2 Kapn(t)fn(Dy_1(Gn-1(t),tn-1; p),
where K3 = K fo((1 = 8)fa=1(Ln)), t > T. Integrating (34) from T to u — oo and
using (29) we have tlim Yn(t) = co. Then by Lemma 2, tlim yit)=o00,i=1,...,n.

II) Let y € N,+, 2 < I € n— 1. Interchanging the order of integration in (24,),
then using the monotonicity of y,, fn—1, (26), (25:), (13) we get

(35) v1(91(1)) = (1 = B faz1(lya())) Dh_ 1 (Ga=1(t), tn-1; P).

Putting (35) into the n-th equation of (S, o) and then proceeding in the same way as
in the case la), we arrive at a contradiction with (29). We have proved that N;t =0
ifagig<n—1,0(-1)"* = —1.

HI) Let y € N, (¢(=1)" = 1). Then in view of y;(t) > 0, the first equation
of (S,0) implies that z(t) (> 0) is a decreasing function for large t. Therefore
t]-LTo z(t) = L > 0 exists. We suppose that L > 0. Then there exists a t; > o such
that

(36) L<2(t)<2L on [t,o0).

(i) Let n > 3. Then (22;) together with (9) gives

s3 Sn~2
@) > [ p).. [ pnoa(en-a)
92(1) gn-2(Tn-3)
Sn—1
X /P,,_‘(a:,,_l)dz,,_ldz:,,_g...da:l, t2>v(t) =ts.
gn—1(Tn-3)
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Putting the last inequality into the first equation of (S, ), then integrating from ¢,
to ¢1(t) and using (36) we have

g1(t) s2 Spn-2
6D @) 21> - 00> [ ne) [ pE) [ pacsen-a)
12 92(z1) gn-2(Tn-1)
Sn—-1
X /P,,_l(z,,_l)dx,,_ldz,,_g...dxgdxl.
gn-1(Tn-2)

Interchanging the order of integration in (37), then using the monotonicity of y,,
fn-1, (26), (25;) and (14) we obtain

(38) v1(91(1)) 2 a0 fa1(lya () Dno1(Gn-1(t), ta; p),

where ag is the constant from (14).
(i) Let n = 2 (¢ = 1). Integrating the first equation of (5,1) from t; to g,(t),
then using the monotonicity of y2, fi, (26), (36) and (14) we get

g91(1)
(39) u(01(0) > a0l > ao fi(ly=(0)]) / pr(z)dz

1,

= a0 filly2()) D1 (G1 (1), ta; p)-

If we put (38) or (39) into the last equation of (S,0) and then we proceed in the
same way as in the case la) we get a contradiction with (29). Therefore L = 0,
ie. t1_1_’11.10 2(t) = 0. Then by Lemma 5 we have tl_l‘rglo infy(t) = 0, ‘l_lglo yi(t) = 0,
1i=2,...,n.

IV) Let y € N; (o(—1)" = —1). Then by Lemma 6 ‘1_13{.10 z(t) =0, tl_i{gn(t) =0,
1=1,2,...,n.

The proof of Theorem 1 is complete. @]

Theorem 2. Let the assumptions (C1)-(C7), (27), (28) hold and let

(40) gn(t) <t, Gna-1(t) 2t on [0.00).

If

(41) ulirr;o/pn(t)fn(DL_x(t,T; p)dt = oo
T
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forl =1,2,...,n, where o'(—l)"‘”"'1 =1 orl = n, then the conclusion of Theorem 1

holds.

Proof. The proof is similar to that of Theorem 1, only we replace (26) and
D!, _1(Gn-1¢t), T; p) by (40) and D} _,(t,T; p), respectively. O

Theorem 1 (Theorem 2) improves and generalizes Theorem 1 (Theorem 2) in the
paper [7].
Let the function

(Ch) a(t) satisfy (C1), where a(t) is not positive on [0, 00).

Remark 5. Let (C;) be fulfilled. Then N; = 0 in view of Remark 2, and it
is easy to see that the property (P;) holds only if ¢(—1)" = 1. Then Theorem 1
(Theorem 2) with regard to Remark 4 implies the following theorems:

Theorem 3. Let the assumptions (C1), (C2)~(Cz), (26)~(29) hold. Then the
system (S, —1) has the property A and the system (S, 1) has the property B.

Theorem 4. Let the assumptions (C1), (C2)-(C7), (27), (28), (40), (41) hold.
Then the conclusion of Theorem 3 holds.
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