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Czechoslovak Mathematical Journal, 43 (118) 1993, Praha 

ON DIRECTED CONVEX SUBSETS 

OF PARTIAL MONOUNARY ALGEBRAS 

DANICA JAKUBIKOVA-STUDENOVSKA, Kosice 

(Received March 6, 1992) 

In the present paper the notions of a directed convex subset and an up-directed 
convex subset of a partial monounary algebra will be introduced; they are in a certain 
sense analogous to the same notions in a partially ordered set. 

Let (A, / ) be a partial monounary algebra. We denote by DC(A, f) and DuC(A, / ) 
the system of all directed and of all up-directed convex subsets of (A, / ) , respectively. 

The aim of the present paper is to investigate the following problems: 

1. To what extent the partial operation / on A is determined by the sys­
tem D U C ( J 4 , / ) (i.e., we are to describe all partial operations g on A such that 
DuC(v4,/) = DuC(Ayg)y where (-4,/) is a given partial monounary algebra). 

2. The same for the system DC(_4, / ) . 

The answer to the question 1 is given in Theorem 5.6. Theorem 1.8 and the remark 
after 1.8 answer the Question 2. 

This paper can be considered to be a continuation of [2], [3] and [4]; in these papers 
analogous problems concerning the system of all convex subsets and the system of 
all intervals of a partial monounary algebra have been studied. 

Similar problems were investigated by G. Birkhoff and M. K. Bennett [1] (for the 
case of convex subsets of a partially ordered set) and by M. Kolibiar [5] (for the case 
of directed convex subsets of a down-directed set). 

0 . PRELIMINARIES 

Let <$/ be the class of all partial monounary algebras. To each s/ = ( A / ) £ ^ 
there corresponds a directed graph G(s/) = (A,E) without loops and multiple edges 
which is defined as follows: an ordered pair (a, b) of distinct elements of A belongs 
to E iff f(a) = b. 
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0 .1 . Def in i t ion . A subset B of A will be called convex (in szf), if, whenever 

a, 61, 62 are distinct elements of A having the property that 61, b2 G B and there 

is a pa th (in G(s/)) going from 61 to 62, not containing the element 62 twice and 

containing the element a, then a belongs to B as well. 

0.2 . De f in i t ion . A subset B of A is said to be directed if, whenever 61, 62 G B, 

then there are paths X\, X2, Y\,Y2 in G(s/) and u,v G B such that K, goes from 

6,- to u and Y, goes from v to 6, for i = 1, 2. 

0 .3 . Def in i t ion . A subset B of A will be called up-directed if, whenever 61, 

62 G B, then there are paths X\, X2 in G(^4) and u £ B such that Xt goes from 6, 

to u for i = 1, 2. 

0.4 . R e m a r k . The author wishes to correct an inaccuracy in the definition 

of convexity in [2]; namely, the assumption "not containing the element 62 twice" 

(cf. Definition 0.1 above), was not expressed in [2]. In the whole paper [2] the 

convexity is to be understood in the sense of the above Definition O.L 

For (A,f) G <?/ let D C ( ^ , / ) and D u C ( A / ) be as in the introduction. Both the 

systems DC(^4, / ) and DuC(,4, / ) are considered to be partially ordered by inclusion; 

the empty set is the least element in both DC(v4,/) and X)\\C(A,f). 

Let (^4,/) and (A!, / ' ) belong to ^ . Instead of the condition 

( i ) i4 = i4; and D U C ( J 4 , / ' ) 

we can consider a more general condition 

(ii) D u C ( A , / ) ^ D u C ( ^ , , / / ) . 

Let us remark that the assumption dealt with in [1] and [5] are analogous to (ii) and 

not to (i). The following result shows that the distinction between (i) and (ii) is not 

essential. 

0.5 . P r o p o s i t i o n . Let (A J) y( A', f) £& and DuC( A J) ?± D\iC( A'J'). Then 

there is a bijection h: A —> A' such that the mapping H defined by the formula 

if B G DuC(-4, / ) , then H(B) = {li(6): 6 G B} 

is an isomorphism from DuC(A, f) onto DuC(A', f). 

P r o o f . Let the assumption be valid. There is an isomorphism e : DuC(A , / ) —• 

D u C ( A / , / / ) . If a G -4, then {a} is a minimal element of D u C ( A , / ) , thus e({a}) is 

a minimal element of D u C ( A / , / / ) , and therefore there is a' G A' with e({a}) = 

{a'}. Pu t h(a) = a'. It is obvious that h is a bijection. Now let B G DuC(^4 , / ) , 

H(B) = {h(b): 6 G B}. We will show that H(B) = e(B). Let x G H(B), i.e., 

x = h(b) for some 6 G B. Since {6}, B G D u C ( A , / ) , {6} C H, we obtain tha t 

e({&}) C e(B) (e is an isomorphism). Then {x} = {h(b)} = e({6}) C e(H), thus 
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x € e(B) and H(B) C e(B). Conversely, let y G e(B). Then y G A! and there is 

z G A with /i(z) = y. We have e({z}) = {y} C e (S ) . Since e is an isomorphism, 

this implies tha t {z} C B, z e B. Therefore y = h(z) G {h(b): b G B} = H(H) and 

e(H) C H(H). D 

Under the assumption and notation as in 0.5, the relation (ii) holds. Now if we 

identify the elements a and h(a) for each a G -4, then we obtain tha t (i) is valid. 

Let us remark that the result analogous to 0.5 is valid also if we take directed 

subsets instead of up-directed, i.e. DC instead of DuC. 

0 .6 . R e m a r k . Let (A, f) G ?/, x,y G A, n G N. If we write y = fn(x), then 

we suppose that x G d o m / , f(x) G d o m / , . . . , fn~l(x) G d o m / and the elements y 

and fn(x) are equal. If we write y ^ fn(x), then either 

(i) x G d o m / , / ( x ) G d o m / , . . . , fn~l(x) G d o m / 

and then y and fn(x) are distinct, or (i) fails to hold. 

1. D I R E C T E D CONVEX SUBSETS OF PARTIAL MONOUNARY ALGEBRAS 

In this section we shall study pairs of partial monounary algebras (A, f) and (A, g) 

such tha t D C ( , 4 , / ) = DC(A,g). 

1.1. L e m m a . Let (A, f) G ^ , a. 6 G A. Assume that there is n G N such that 

b = / n ( a ) and fk(a) ^ b for each k G N U {0}, k < n. If 

(1) there is a cycle C of (A,f) with more than one element such that 

{fn-l(a),r(a)}CC, 
then the least convex subset of (A, f) containing a and b is {a, / ( a ) , . . . , / n ( a ) } U C. 

If (I) does not hold, then the least convex subset of (A,f) containing a and b is 

{ a , / ( a ) , . . . , / " ( « ) } . 

P r o o f . First assume tha t (1) does not hold. Then a, / ( a ) , . . . , / n ( a ) are 

distinct elements and either none of them belongs to a cycle or only fn(a) belongs 

to a cycle. Consider a path X going from a to 6 = fn(a) and not containing b twice. 

Then X consists of the elements a, / ( a ) , . . . , / n ( a ) , hence {a, / ( a ) , . . . , fn(a)} is a 

subset of the least convex subset of (A,f) containing a and b. It is obvious that 

{ a , / ( a ) , . . . , / n ( a ) } is convex, thus the least convex subset of ( -4 , / ) containing a 

a n d 6 i s { a , / ( a ) , . . . , / n ( a ) } . 

Now let (1) be valid. Analogously as above, {a, / ( a ) , . . . , fn(a} is a subset of the 

least convex subset of ( -4 , / ) containing a and b. Put 62 = / n _ 1 ( a ) a n d let Y be a 

pa th going from 6 to 62 and containing 62 only once. Then Y consists of the elements 

6, /(&), . . . , 62, i.e., of the elements of the set C. Therefore 

{a,f(a),...,fn(a)}UC 
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is a subset of the least convex subset of (A, / ) containing a and 6. This set is convex, 
hence it coincides with the least convex subset of (A J) containing a and 6. • 

1.2. Definition. Let (A J) € ^ , a, 6 G A. Assume that there is n G N U {0} 
such that 6 = fn(a). The least convex subset of (A J) containing a and 6 will be 
denoted by [a, 6]/ and called an interval in (A J). We denote by l(AJ) the system 
of all intervals in (A, /)including the empty set. (This notion was introduced in [4].) 

1.3. Lemma. If (A J) £ <%', then l(AJ) C DC(,4,/). 

P r o o f . Assume that (AJ) £<%/ and B is a nonempty interval in (A J). There 
are a,6 £ A and n G NU{0} with 6 = fn(a) such that B = [a,6]/. According to 1.2, 
B is convex. If n = 0, then [a,6]y = {a} G DC(AJ). Let n G N and suppose that 
fk(a) 7- 6 for each k G N U {0}, k < n. Consider the condition (1) from 1.1. If (1) 
does not hold, then 1.1 yields that [a, 6]/ = {a, / ( a ) , . . . , / n ( a ) } ; if (1) is valid, then 
[a, b]f = {a, / ( a ) , . . . , fn(a)} U C. Therefore there is k G N such that 

[a,6]; = {a , / ( a ) , . . . , / f c (a )} , 

where f'(a) ^ /1(a) for each 0 ^ i < j ^ k. Let 6i, 62 G B. Without loss of 
generality we can suppose that b\ = / ' ( a ) , 62 = / J (a ) for some 0 -̂  i -$ j ^ k. Put 
u = 62, v = 61. There exist paths X\ = Y2 = / ' ( a ) / , + 1 ( a ) . . .p(a),X2 = 62 and 
Yi = 61 such that X{ goes from 6,- to u and Y{ goes from 1; to 6, for 2 = 1, 2. Hence 
B is directed, thus B G DC(,4, / ) . • 

1.4. Lemma. Let (A J) G %, a, 6 G A If there is H G DC(,4,/) such that 
{a, 6} C B} then there is n G N U {0} such that either a = / n (6) or 6 = / n ( a ) . 

P r o o f . Suppose that {a, 6} C £ G DC(A , / ) . In view of the definition there 
is v G A and paths Y and Z, Y going from v to a and Z going from v to 6. Then 
a = /*(v) and 6 = f* (y) for some i,j G NU{0}. We can assume that i ^ j . Therefore 

b = f*{v) = fi-'ifiv)) = fi-*(a). 

1.5. Lemma. Let (A, f) G ̂ . If B G DC(yl, / ) and B is finite, then B G I(-4, / ) . 

P r o o f . Let B be a nonempty finite set, B G DC(^4,/). If card B = 1, then 
B £ 1(^4,/). Let card B > 1. By 1.4, B is a subset of one connected component of 
(A J). If B contains only elements of some cycle, then the fact that B is convex 
implies that B contains all elements of this cycle and then B—a cycle—is an interval 
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in (;4,/). Suppose that there is x G B such that x does not belong to any cycle. 
Then the assumption that B is finite implies that there is a G B such that the set 

{y G B: a = fn(y) for some n G N} 

is empty. Let z G B. According to 1.4, there is k G N such that z = fk(a). Hence 

B C {a} U {/*(a): k G N, / ^ ( a ) G d o m / } . 

The set 5 is finite, thus there are b G B, n G N with 6 = / n ( a ) and such that either 

(1) fk(a) £ B for any k G N, k > n, i f /*" 1 ^) € dom/ , 

or 

(2) / " ( a ) e d o m L / n + 1 ( a ) € { / ( „ ) , . . . , / » } . 

We have {a, (>} C B, fl is convex, hence we obtain that 

{ « , / ( « ) , . . . , / > ) = 6} CH . 

Therefore B = {a, / ( a ) , . . . , / " (a)} = [a, 6]; G I(-4, / ) . D 

1.6. Lemma. Let (A , / ) , (A,g) G ^ . I fDC(A , / ) = DC(A,g), then I (A , / ) = 

I(A</). 

P r o o f . Assume that DC(,4,/) = DC(A,g) and B G I(-4,/). According to 1.3, 
B G D C ( J 4 , / ) , thus B G DC(^4,<7). Since each interval in (-4,/) is finite, in view of 
1.5 this yields that B G l(A,g). Thus I(-4,/) C \(A,g). The convergence inclusion 
is analogous, therefore I(-4,/) = I(.A,<y). D 

1.7. Lemma. Let ( A / ) , ( A , £ ) G ^ . IfI(-4 ,/) = l(-4,y), then DC(A , / ) = 
DC(Ayg). 

P r o o f . Suppose that 1(^4,/) = I(-4,g). By virtue of [4], Theorem 3.8, (A J) 
and (A,g) must have the same partition into connected components. If A' is a 
connected component of (-4,/), then instead of f\Af or g\A' we write / and g, 
respectively. Now it suffices to verify that for each connected component A' of (A, / ) 
the relation 

(1) DC(>1',/) = DC(>1')«/) 

is valid. 
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Take (A', / ) fixed and consider the possibilities how to define g on A' such that 

\(A',f) = \(A',g). Let us deal with the following cases: 

a) card A' ^ 2. Then g on A' can be defined in an arbitrary way, only A' must be a 

connected component of (A,g) (according to [4], 3.8). In this case also D C ( A ' , / ) = 

DC(A',g). 

b) card A' > 2 and there are a, 6 G A' such that a = f(b), {x G A': x G 

d o m / , f(x) = 6} = 0 and either f(a) = a or a ^ d o m / . In view of [4], 3.8, we 

obtain tha t if x E A' — {a}, then x G doing and </(.r) = f(x) and either g(a) = a or 

a ^ domg . It is obvious that in both cases (1) is valid. 

c) (A',f) is isomorphic to some of the partial monounary algebras considered in 

[4], 2.1-2.7. In these sections of [4] we have described (up to isomorphism) all (A', g) 

with \(A', f) = 1(^4', g). In each of these cases it is easy to see that (1) holds as well. 

• 
In view of 1.6 and 1.7 we obtain 

1.8. T h e o r e m . Let (A,f),(A,g) G <?/. Then D C ( ^ , / ) = DC(A ,g ) if and only 

if\(A,f) = \(A,g). 

Let (A, f) G ^ . According to 1.8, the conditions given in [4], Theorem 3.8, give a 

characterization of all (A,g) G % such that (A,f) and (A,g) have common systems 

of directed convex subsets. 

2. AUXILIARY RESULTS 

In what follows we shall study up-directed convex subsets of partial monounary 

algebras. 

2 . 1 . L e m m a . Let (A, f) G ^ , x,y G A. Then x and y belong to the same con­

nected component of(A, f) if and only if there is M G D u C ( A , / ) with {x,y} C M. 

P r o o f . Suppose that x and y belong to the same connected component of 

(A, / ) . Then there are m, n G N U {0} with fn(x) = fm(y). 

Put 

M = {x,y} U {f(x):i G N,f~l(x) G d o m / } U {f(y): i G N,f'l{y) G d o m / } . 

According to the definition, M G D u C ( A , / ) . Conversely, let there be M G 

DuC(^4, / ) such that {x, y} C M. Since M is up-directed, there are u G M and 

paths X, Y such that X goes from x into u and Y goes from y into u. Thus x and 

u (y and u) are in the same connected component of (^4, / ) and therefore x and y 

belong to the same connected component of (A,f). • 
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2.2 . Corol lary. Let (A,f), (A,g) G &, D u C ( A , / ) = BuC(A,g). Then (A, f) 

and (A,g) have the same partition into connected components. 

2 . 3 . N o t a t i o n . Let <?/c be the class of all connected partial monounary algebras. 

Further, let W be the class of all connected partial monounary algebras which contain 

a cycle with more than two elements, and let 77 = °}/c — W. 

For (A,f)£t%fc,x,y£A, the symbol Lf(x, y) denotes the least up-directed convex 

subset B of (A, f) such that {x, y} C B. 

2.4 . L e m m a . Let (A, f) G Wc and let C C A , card C > 2. Then C is a cycle of 

(A, f) if and only if Lf(x, y) = C for each x,y G C, x 9- y. 

P r o o f . Assume that C is a cycle of (A,f). It follows from the definition of 

up-directed convex subsets that Lf(x,y) = C for each x, y G C, x 7- y. Now suppose 

that C is not a cycle and that 

(1) Lf(x, y) = C for each x,y G C,x ^ y. 

Since card C > 2, we can take fixed x,y G C, x ^ y. If x and y belong to a cycle 

D, then Lf(x,y) = D, D = C, a contradiction. Since (A, f) is connected, we can 

assume (without loss of generality) that x does not belong to any cycle. If x = fn(y) 

for some n G N, then Lf(x,y) = {y, f(y), • • •, fn(y) = x} = C. Then f(y) G C 

and f(y) ^ y. Thus by (1), Lf(y,f(y)) = C. Then {y,f(y)} = C, which is a 

contradiction, since card C > 2 in view of the assumption. Therefore x £ {y}U{/ l (y ) : 

i G N,f-l(y) G d o m / } . Put z = f(x). We have Lf(y,z) C {y,z} U \fl(y): 

i e N,fl-l(y) G d o m / } U { / ' ( z ) : i G N , / ' " 1 ^ ) G d o m / } . If z G L / ( y ^ ) , then 

there is i G N U {0} with x = fl(z), i.e. x = fl*l(x) and x belongs to a cycle, a 

contradiction . Hence x £ Lf(y,z) and we get C = Lf(x,y) 7- Lf(f(x),y). Further, 

f(x) G Lf(x,y) = C, therefore (1) implies Lf(f(x),y) = C, a contradiction. • 

2.5 . Corol lary. Let (A,f), (A,g) G Wc and DuC(A, f) = DuC(A,g). If C C A 

and c a r d C > 2, then C is a cycle of (A,f) if and only if C is a cycle of(A,g). 

2.6. N o t a t i o n . Let (A, f) G W'. For x G ^ put n(x) = min{ i G N U {0} : fl(x) 

belongs to a cycle }. If c G A, n(c) = 0 (i.e., c belongs to a cycle), then we denote 

Af(c) = {x£A: fn{x\x) = c}. 

2.7 . L e m m a . Let (A, f) G W and assume that C is a cycle of (A, / ) . Let c G C. 

Tiien x G ^4/(c) if and only if the following condition is satisfied: 

(i) c is the unique element of C such that Lf(x, c)C\C = {c}. 
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P r o o f . Let x G Af(c),n = n(x). Then c = / n (x ) and Lf(x,c) = { x , / ( x ) , . . . , 
fn(x)}. I f d G C - { c } , then L/(x,d) = { x , / ( x ) , . . . , / n ( x ) } u C , therefore L/(x ,c)n 
C = {c} and L / ( x , d ) n C = (7. 

Now assume that x £ A and that (i) is valid. Then x G -4/(d) for some d £ C. As 
we have shown in the first part of the proof, this yields 

(1) d is the unique element of C such that L/(x, d) H C = {rf}. Therefore d = c in 
view of (i) and (1), hence x G A/(c). D 

From 2.5 and 2.7 we obtain 

2.8. Corollary. Let (A,f), (A,g) G Wc and DuC(A , /) = DuC(A,p). Assume 
further that C with cardC > 2 is a cycle of (A, f). Then C is a cycle of(A,g) and, 
for each c G C, the relation Af(c) — Ag(c) is valid. 

3. THE CLASS y-. BASIC LEMMAS 

This section deals with up-directed convex subsets of partial monounary algebras 
which belong to the class y, i.e. of such connected (A, f) for which one of the 
following conditions is satisfied: 

(1) d o m / 7 - A, 
(2) d o m / = A and (A, f) contains a cycle C with cardC ^ 2, 
(3) d o m / = A and (A, f) contains no cycle. 

3.1. Nota t ion . Let (A, f) E f , x, y G A. Put 

kf(x,y)= m'm{ieNU{0}:fi(x)e{y}U{P(y):jeN,f-l(y)edomf}}) 

ms(y, x) = min { j G N U {0}; /*'(*•">(*) = /' ' (y)} , 

df(x, y) = k/(x, y) + mf(y, x). 

3.2. Lemma. Let (A, f) € y, x,y E A. If x = /J'(t/) for some j G N and 

* £ {y>/ (* / )>• • • , / J "~ 1 (2 / )}> t i i e n di(x>y) = j -

P r o o f . By 3.1, kf(x,y) = 0, m/(y, x) = j and df(x,y) = 0 + j = j . D 

3.3. Lemma. Let (.A,/) G ̂ , x,y G A. If k = kf(x,y), m = m/(y, x), then 

L/(x,y)={x,/(x),...,/^(x)}U{u,/(u),...,/-(t/)}, 

where a/i elements in the above sets are mutually distinct except fk(x) = fm(y). 

P r o o f . Since L/(x,y) is the smallest up-directed convex subset of (A,f) con­
taining x and y, the required relation follows immediately from 3.L D 
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kf(x,y) 

kf(x,y) 
mf(y,x) mf(y,x) 

3.4. Corollary. Let (A,f) G Y, x,ye A. Then df(x,y) = card Lf(x,y) - 1. 

P r o o f . In view of 3.3 we obtain 

cardL/(x,y) = (kf(x,y)+ l) + (mf(y,x)+ 1) - 1 

= kf(x,y) + mf(y,x)+ 1 

= df(x,y)+\. 

3.5. Corollary. Let (A,f) G Y, x,y€ A. Then df(x,y) = df(y,x). 

P r o o f . The assertion follows from 3.4, since Lf(x,y) = Lf(y,x). 

D 

D 

3.6. Corollary. Let(A,f), (A,g) G Y and suppose that DuC(A, / ) = DuC(A,g). 
Then df(x,y) = dg(x,y). 

P r o o f . If the assumption is valid, then Lf(x,y) = Lg(x,y), thus 3.4 yields the 
assertion. D 

3.7. Lemma. Let (A, f) G V, x, y, z G A. If df(x,z) + df(z,y) = df(x,y), then 
z e Lf(x,y). 

P r o o f . Let the assumption hold, df(x,z) + df(z,y) — df(x,y). If x = y, 
then df(x,y) = 0 = df(x,z) and z = x, z G Lf(x,y). The cases z = x or z = y 
are obvious. Suppose that x, y and z are distinct. First, let y = fn(x) for some 
n G N, y £ {x, f(x),..., fn~-l(x)}. In view of 3.2, df(x,y) = n. Since df(y,z) < n, 
fx(z) -̂  x for each i G NU{0} (in the opposite case y = fx+n(z), df(y, z) = i+n ^ n). 
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Put k = kf(x,z), u = fk(x). Then k ^ df(x,z) < n and y = fn~k(u). Further, if 

m = rrif(z,x), then n = fm(z), in < n and y = fn~k(u) = / n " f c + m ( z ) . Then 3.2 

implies 

df(y,z) = n — k-\- m, 

thus 

n = ^ / ( x , z) -f J/(z, y) = £ / (# , z) -f nif(z, x) -f n — k -f m 

= . f c - f m + n — .fc-fm = n- f 2m, 

m = 0. 

Therefore u = z — fk(x) and we get that U G { X , / ( ^ ) , • • •, fn(x)} = Lf(x, y). 

Now suppose that y ^ / ' (a ; ) , £ ^ fl(y) for any i E N U {0}. Then kf(x, y) ^ 0 ?-

mf(y, x). Put k = fc/(.r, y), m = m/ (y , z ) , ki = /LT/(X, z), mi = nif(z, x). If ki <C k, 

then 

(1/(x, z) = &/(#, z) -f nif(z,x) = ki -f m i , 

cl/(z, y) = mi + (fe - &i) -f m, 

n = rf/(x, y) = J/(x, z) -f df(z, y) 

= ki -f rn\ -f 7ni -f k — k\ -f m = (k -f m) -f 2mi = n -f 277ij, 

thus mi = 0 and z = fkl(x). Since ki ^ k, we have 

z € L / ( x , y ) = { x ) / ( x ) , . . . , / t ( x ) } u { y J / ( 2 / ) ) . . . , / m ( y ) } . 

Suppose that k\ > k. Then 

c//(x, z) = kf(x, z) -f rrif(z, x) = k\ + m\, 

df(y, z) = mi -f (ki - k) -f m, 

n = df(x,y) = df(x,z) -f df(z,y) = ki -f mi -f mi -f ki - k -f m 

= (ki - r m ) + (&i — Ar) -f 2mi > k -f m -f 2mi = n -\- 2m \, 

which is a contradiction. D 

3.8 . L e m m a . Let (A, f), (A, g) G V and suppose that df(x, y) = dg(x, y) for all 

x,ye A. Then DuC(A , / ) = DuC(A , g). 

P r o o f . Let the assumption be satisfied and suppose that there is M G 

DuC(A,f) — D\xC(A,g). First, let M be not convex in (A,g). Then there are 
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x, y G M, z G A- M and there is a path in G(A,g) going form x into y, containing 
y only once and containing z. Put n = kg(x,y), j = kg(x, z). Then j < n and 

V = 9n(x), z = g3(x), 

mg(y, x) = 0, fng(z, x) = 0. By the assumption we get 

j = dg(x,z) = df(x,z), 

n = dg(x,y) = df(x,y), 
n~j = dg(z,y) = df(z,y), 

thus df(x,z) + df(z,y) = df(x,y). Lemma 3.7 implies that z G Lf(x,y). Since 
M G DuC(A,f), x, y G M, we have Lf(x,y) C M and 2 G M, a contradiction. 
Therefore M is convex in (^4,g), hence M is not up-directed in (A,g) and there are 
x, y G M, x / y, such that 

Mn{tf l(:r): ^ _ 1 (x) Gdomsr, i G N, i^> kg(x,y)} = 0. 

Put k = kg(x,y), z = gk(x). Then z £ M. We have 

dg(x,z) + dg(z,y) = dg(x,y), 

thus the assumption yields that 

df(x,z) + df(z,y) = df(x,y). 

It follows from 3.7 that z G Lf(x, y), hence z G M, which is a contradiction. D 

3.8. Corollary. Let (A,f), (A,g) G r . Tiien DuC(.4,/) = DuC(,4,g) if and 
only if df(x, y) = dg(x, y) for each x} y G A. 

4. T H E CLASS r 

We shall describe here two constructions which assign to each given partial mo-
nounary algebra (A,f) £Y some new partial monounary algebras. These construc­
tions will be called "breaking (A, f) at one point" and "turning up (̂ 4,f) along a 
thread". 

4.1.1. Construction. Let (A, f) G r', a G A. We define a partial mapping g of 
A into A as follows: 
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(1) if x G d o m / and x -7- fl(a) for each i G N U {0}, then x G domg and 

g(x) = f(x); 

(2) if a G d o m / , x = / ( a ) 7- a, fcnen x G dom a and a(x) = a; 

(3) if / , , _ 1 ( a ) G d o m / , x = / ' ( a ) for some i G N, i > 1 and x £ { / i _ 1 ( a ) , 

/ * ~ 2 ( a ) } , then x G domg and g(x) = / 1 _ 1 ( a ) ; 

(4) a G domg , g(a) = a . 

Notice that (-4,g) G Y and it is a complete monounary algebra. 

4 .1 .2 . Def in i t ion . Let (A, f) El', a £ A. If a partial mapping a of A into ,4 is 

constructed as in 4.1.1, then we say that (A,g) ls obtained by a-breaking (^4,/) at 

a point a G A. 

4 .2 . Def in i t ion . Let (A, f) £ Y, a £ A. Assume that g is a partial mapping 

of A into A such that ( l ) - (3 ) from 4 .LI are valid Consider the following conditions 

for g: 

(P) If a G d o m / and f(a) ^ a, then a G domg and g(a) = f(a). 

(7) a £ dom g. 

If (/?) holds, then the partial monounary algebra (A,g) is said to be obtained by 

/^-breaking ( A / ) a t the point a. Similarly, if (7) is valid, the we say that (A, g) 

is obtained by 7-breaking (A,f) at a. Let us remark that if either a £ d o m / or 

f(a) = a, then /^-breaking (^4,/) at a is not defined. 

4 .3 . Def in i t ion . Let (A,f) e Y, a e A. If (A,g) is obtained by a-, /?-, or 

7-breaking (A,f) at a point a G -4, then we shall say that (A, g) is obtained by 

breaking (A, f) at a G A If there is b G 4̂ such that (A, g) is obtained by breaking 

(A, f) at this 6, then (^4, g) is said to be obtained by breaking (A, / ) . 

4 .4 . L e m m a . Let (A,f) G Y and suppose that (A,g) is obtained by breaking 

(A,f). Ifx, y G A and dj(x,y) = 1, then dg(x,y) = 1. 

P r o o f . Assume that (A,g) is obtained by a-breaking (A,f) at a G A (the 

cases of /?- or 7-breaking are quite analogous). Let x, y G -4, dj(x,y) = 1. Then 

x / y and either y = f(x) or x = / ( y ) ; we can suppose that y = / ( x ) . One of the 

following conditions is satisfied: 

(1) x 7- fx(o) for each i G N U {0}, 

(2) x = a, 

(3) x = / ( a ) ^ a , 

(4) x = / ' ( a ) for some t 6 N, t > 1 and x g { / I "" 1 (a) i / I ' " 2 (a)}-
If (1) is valid, then 4 .LI (1) implies that x G domg and g(x) = f(x) = y, 

thus dg(x,y) = 1. Let (2) hold. Then a G d o m / , g = / ( a ) 7- a and 4 .LI (2) 

yields tha t y G dom a and a(t/) = a = x, therefore dg(x,y) = 1. Assume that the 

condition (3) is satisfied. By 4 .LI (2) g(x) — a. If y = a then dg(x,y) — 1. Let 
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y 7- a; then y £ {f(a),a} and y = f2(a). Thus 4.1.1 (3) implies that y G domg and 

g(y) = f(a) = x. Hence dg(x, y) = 1. Now suppose that (4) holds . According to 4.1.1 

(3), x G domg and g(x) = / t - 1 ( a ) . If y = fl~l(a), then y = g(x) and dg(x,y) = \. 

Let y g {f(a),f-l(a)}. We have y = f+l(a). By 4.1.1 (3), </(</) = f(a) and 

hence c/(y) = x, dg(x,y) = 1. D 

4.5 . L e m m a . Let ( A , / ) £ 7 r and suppose that (A,g) is obtained by breaking 

(A, / ) . The;] df(x, y) = dg(x, y) for each x, y 6 A. 

P r o o f . Similarly as in 4.4 we restrict ourselves to the case when (A,g) is 

obtained by a-breaking (A, f); the proofs for the other two cases can be performed 

analogously. 

Let x, y G A, df(x, y) = n. If n = 0, then x = y and dg(x, y) = 0. If n = 1, then 

the assertion is obtained by 4.4. Suppose that n > 1 and assume that the assertion 

is valid for 0, 1, . . . , n - 1. First, let y= fn(x). Then y £ {x, f(x),..., fn~l(x)}. 

Put z = fn~1(x). Then df(x,z) = n- 1, df(z,y) = 1. By the induction hypothesis, 

dg(x,z) = n—\,dg(z,y) = 1. These relations, according to the definition of dg, imply 

that either dg(x, y) = n — 2 or dg(x, y) = n. If dg(x, y) = n — 2 then df(x, y) = n — 2 

by the induction hypothesis, which is a contradiction . Therefore dg(x,y) = n = 

df(x,y). Now suppose that neither y = fn(x) nor x = fn(y) holds. Since (A,f) is 

connected, this implies that x G d o m / . Put v = f(x). We obtain that df(x,v) = 1, 

df(v,y) = 7i—l. As above, dg(x,v) = 1, dg(v,y) = n - 1, thus either dg(x,y) = n — 2 

or dg(x,y) = n. By the induction hypothesis, \idg(x,y) = n — 2, then df(x, y) = n—2, 

which is a contradiction, and hence dg(x,y) = n. • 

4 . 6 . 1 . De f in i t ion . Let (A,f) G f . A set H C A is called a thread of ( A , / ) , if 

it satisfies one of the following conditions: 

(a) B = {bi: i el}, 6,- / bj for each i, j G Z, i ?- / , and / ( 6 t _ i ) = 6t for each 

i G Z; 

(b) 5 = {6t-: i G N } , 6t / bj for each i, j G N , i / j , / ( 6 t + i ) = 6t for each i G N 

and either 6i ^ d o m / or 6i belongs to a cycle of (A, / ) . 

4 . 6 .2 . De f in i t ion . Let ( 4 , / ) , (.4, g) G f and let B be a thread of (A, / ) . Then 

(^4,y) is said to be obtained by turning up (A, f) along a thread B, if domg = A, 

9(x) = / ( . r ) for each x G A - B and whenever 6 G H, then 6 ?- g(6) G B D dom / and 

4.7. L e m m a . Assume tijat ( A , / ) G f , 5 C / 4 and (A,g) is obtained by turning 

up (A, f) along a thread B. One of the following conditions is satisfied: 

(a) B = {bi: i G Z}, 6t- ^ 6;- for each i, j £l,i^ j , and /(&,•-1) = 6i = 9(bi+i) 

for each i G Z; 

(b) H = {6X-: t G N } , bi £ bj for each i, j G N, i # j , / ( 6 i + i ) = 6.-, flr(fc) = 6t+i 

for eacij i G N a/jci eifcijer 6i ^ d o m / or 6i belongs to a cycle of (A, / ) . 
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P r o o f . Let the assumption hold. Then either (a) or (b) of 4.6.1 is valid. First, 

suppose that (a) of 4 .6A is valid and let 6t G B. By 4.6.2 we have f(g(b{)) = 

6t = / ( 6 t _ i ) and / ( 6 j _ i ) = bj for each j G Z, thus g(6t) = 6 t_i . Now let (b) of 

4 .6A hold, 6t G B. According to 4.6.2, there is j G N, j" ^ i, with g(6t) = bj. 

Then bi = f(g(bi)) = f(bj). If j > 1, then f(bj) = 6 i _i , thus t = j - 1 and 

g[b{) = bj = 6 t + i , i > 2. Let j = 1. We have 6t = / ( 6 i ) . By 4.6.1, 6i belongs 

to a cycle. Since / ( 6 2 ) = 6i, this implies that either / ( 6 i ) = 6i, or / ( 6 i ) = 62, or 

/ ( 6 i ) = 6, / (6) = 6i, 6 fc B. The relation / ( 6 i ) = 6i contradicts the fact that j ^ i, 

the relation / ( 6 i ) = 6 contradicts 6t = / ( 6 i ) , therefore / ( 6 i ) = 62. We obtain 6t = 62 

and g(b2) = &i. D 

4 .8 . Def in i t ion . Let (^4,/) , (A,g) G 1r. If (A,g) is obtained by turning up 

(A,f) along a thread B, then (A,g) is said to be obtained by turning up (A, / ) . 

4.9 . L e m m a . Let (A,f), (A,g) G 1r and suppose that (A,g) is obtained by 

turning up (A,f). If x, y G A and df(x,y) = 1, then dg(x,y) = 1. 

P r o o f . Let (A,g) be obtained by turning up (A,f) along a thread B. If x, 

y G A, df(x,y) = 1, then we can assume that y — f(x). If x £ B, then g(x) = 

f(x) — y and hence dg(x,y) = 1. Let x G B, i.e., x = 6t for some i G Z (i G N) . 

According to 4.7, either (a) or (b) of 4.7 is valid. Suppose that (a) holds. Then 

4.7 implies that / ( 6 t ) = 6 t+i, #(6t_|_i) = 6t, hence g(y) = x and dg(x,y) = 1. Now 

let (b) be valid. If i > 1, then dg(x,y) = 1 similarly as if (a) holds. Let i = 1. 

Since f(x) = y, df(x,y) = 1, we obtain that x — b\ belongs to a two-element cycle, 

because (^4,/) G ^ . Then f(y) = x. If y £ B, then g(y) = f(y) = x (in view of 

4.6.2), hence dg(x,y) = 1. If y G B, then y = 62. According to 4.7, g(6i) = 62 = y, 

thus dg(x, y) = 1. D 

4 .10 . L e m m a . Let (A,f), (A,g) G 1r and suppose that (A,g) is obtained by 

turning up (A, / ) . Then df(x, y) = dg(x, y) for each x, y G A. 

P r o o f . Analogously as 4.5. D 

4 . 1 1 . L e m m a . Let (A,f), (A,g) G 1" and suppose that df(x,y) — dg(x,y) for 

each x, y G A. If z G domg and g(z) ^ z, then either z G d o m / and g(z) = f(z), or 

g(z) G d o m / and f(g(z)) = z. 

P r o o f . Let the assumption hold and let z G domg , g(z) ^ z. Then 1 = 

dg(z,g(z)) = df(z,g(z)). Put y = g(z). Assume that either z £ d o m / or z G d o m / , 

g(z) zfz f{z) (i.e., y ^ f(z)). The relation df(z,y) — 1 implies that then y G d o m / 

and / ( y ) = z. Thus g(z) G d o m / and f(g(z)) — z. D 
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4 .12 . L e m m a . Let (A J), (A,g) E V, 9 ?- / • Ifdj(x,y) = dg(x,y) for each x, 

V G A, then (A,g) is obtained either by turning up or by breaking (A,f). 

P r o o f . Assume tha t dj(x,y) = dg(x,y) for each x, y G A. If card A = 1, then 

obviously (A,g) is obtained by breaking ( -4 , / ) . Let card ,4 > 1. Then dom^r 9- 0. 

Since g / / , there exists b\ £ A such that either 

(1.1) & i G d o m / — domg 

or 

(1.2) 61 G domg and either 61 £ d o m / or 61 G d o m / , g(b\) ^ / (&i) . 

Let us introduce the following elements by induction: Let i G N, i > 1. If 61, . . . , 

&t_i are defined and 6 t_i G domg , g(6t_i) £ { 6 1 , . . . , & t_i}, then put 6t = g(6t_i). 

(In the opposite case we stop introducing &(s.) Further, let B be the set of all 6t 

defined above. One of the possibilities (a)-(c) occurs: 

(a) (A , g) contains a one-element cycle or dom# 7- A: then B = { 6 1 , . . . , 6n} and 

either g(bn) = bn or bn £ dom#; #(&t) = 6 t+i for each i G { 1 , . . . , n — 1}, if n > 1; 

(b) (-4,<1) contains a two-element cycle: then B = { 6 1 , . . . , 6 n } , n > 1 and 

^(6n) = & n- i ; .?(&*) = 6 t+i for each t e { l , . . . , n - 1}; 

(c) (-4,^) contains no cycle and dom</ = A: then B = {6t-: i G N } , g(6t) = 6 t+i 

for each i G N. 

Let us show by induction that 

(2) if 6t G £ , where i G N, i > 1, then 6t G d o m / and / ( 6 t ) = 6 t_i 

is valid. 

Assume that 62 G B. Then (V2) holds. Next, ^(61) = 62, 62 7- 61 and 4.11 yields 

that either 61 G d o m / and (/(&i) = /(61), or ^r(6i) G d o m / and f(g(b\)) — b\. In the 

first case we have got a contradiction to (1.2), in the second the required assertion 

is valid. Now let i G N, i > 2, 6t G B and suppose that if j G N, 1 < j < i, 6t G B, 

then bj G d o m / and / (6 j ) = 6 j_ i . Then 6 t_i G d o m / , / (& t_i) = 6 t_ 2 -7- 6 t_i . By 

4 . H , either 6 t_i G d o m / and ^(6 t_i) = / ( 6 t _ i ) (i.e., 6t = 6 t_i, a contradiction), or 

</(&t_i) G d o m / , f(g(bi-i)) = 6 t_i . Thus 6t G d o m / , / ( 6 t ) = 6I-_1. 

Analogously as H, we can define a set C as follows: let ci = 61 and let i G N, 

1 > 1. If ci , . . . , c t_i are defined and c t_i G d o m / , / ( c t _ i ) ^ { c i , . . . , c t _ i } , then 

put a = / ( c t _ i ) . (By (1.1) or (1.2), ct ^ B.) The set C is the set of all such c t ' s . 

(As above, we stop the process, if we cannot define the next c t.) It can be proved as 

prove tha t the following condition is satisfied: 

(3) if ci G C, where i G N, i > 1, then ct G domg and g(ci) = c t _i . Further, one 

of the conditions analogous to (a)-(c) is valid (with g, H, 6t replaced by / , C, c t). 
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Put D = B U C. If (c) holds, then D is a thread of (A J). If (a) or (b) is valid, 
i.e., B is finite, according to (a)-(c) we obtain that one of the following conditions 
is satisfied: 

(4.1) bn£domg, 

(4.2) g{bn) = bn, 

(4.3) g(bn-l) = bn, g(bn) = bn-l. 

To complete the proof let us now 

(5) g(x) = f(x) for each x e A — D. 

Let x e A - D. There is a unique k e N with /*(*) G D, fk~l(x) £ D. First, let 
k = 1, / (x) = e. According to the definition of the set D we obtain that x e domf, 
f(x) -̂  x. Application of 4.11 (with / and g interchanged) yields that either 

(6.1) x e domg and g(x) = f(x) 

or 

(6.2) f(x)edomg and g(f(x))x. 

Suppose that (6.2) is valid. Then e G doing and g(e) = x, which is a contradiction, 
since if e e domg, then g(e) G D, x (£ D. 

Now let k > 1. By the induction hypothesis, g(f(x)) = f(f(x)). Put f(x) = y. 
We have f(x) -̂  x, thus 4.H (again with / and g interchanged) implies that either 
(6.1) or (6.2) holds. If we suppose the validity of (6.2), then y G domg, g(y) = x 
and 

* = g(y) = g(f(*)) = f \ * ) -

Thus x belongs to a cycle of (A, / ) . The set C C D was constructed in such a way 
that each element of a cycle of (A, f) belongs to C; therefore x G C C D, which is a 
contradiction. 

If D is the thread of ( A / ) defined above and (5) holds, then (A,g) is obtained 
by turning up (A, f) along D. If (4.1) and (5) hold, then (A,g) is obtained by 7-
breaking (A, f) at the point bn. If (4.2) and (5) hold, then (A,g) is obtained by 
a-breaking (-4,/) at bn. If (4.3) and (5) hold, then (A,g) is obtained by /3-breaking 
(A,f) at the point bn. • 

4.13 Lemma. Let (A,f), (A,g) eV,g^f. Then DuC(A , / ) = DuC(A,g) if 
and only if(A,g) is obtained from (A, f) either by turning up or by breaking. 
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P r o o f . Let us consider the following conditions: 
(i) DuC(A,f) = DuC(A,g), 

(ii) df(x, y) = dg(x, y) for each x, y e A, 
(iii) (A,g) is obtained either by turning up or by breaking (A,f). The relation 

(i) ^=> (ii) was proved in 3.8. Further, the implication (ii) ==> (iii) was shown in 
4.12 and the converse implication, (iii) ==> (ii), follows from 4.5 and 4.10. • 

5. THE CLASS W AND THE GENERAL CASE 

In this section we shall first study (partial) monounary algebras (A,g) such that, 
if (A,f) is a connected monounary algebra possessing a cycle with more than two 
elements, then DuC(A, f) = DuC(A,g). Let us remark that C is a cycle of (A, f) if 
and only if C is a cycle of (A,g) (by 2.5). Further, the general case is investigated. 

5.1. Notation. Let (A,f) eW and assume that C is a cycle of (A, / ) . Let 0 be 
ajj equivaiejice relation A such that 

• f e 
* = < • ' " í c 

ifx Є C. 

Then 0 is a congruence relation of(A,f) and it determines a monounary algebra 
(A', / ' ) = (A, f)/e. (IfxS = {x} for x e A, we shall also write x 0 = x.) 

5.2. Lemma. Let (A, f), (A, g) e W and suppose that C is a cycle of (A, f) and 

of(A,g). Then DuC(A,f) = DuC(A,g) implies that DuC(A'J') = DuC(,4',0'). 

P r o o f . Let DuC(,4,/) = DuC(A,g), B e DuC(^',/'). (Notice that C is an 
element of A', but C is a convex set of (A,f).) If C $ B, then B e DuC(^,/) = 
DuC(A,g), and the relations C £ B, B e DuC(A,g) imply that B e DuC(A',g'). 
Let C e B. Denote Bx = B - C. Since B G DuC(^',/'), the set B j U C belongs 
to DuC(.A,/). Then (B\ U C ) / 0 = B e DuC(A',g'), because Bx U C e DuC(A,g). 
Therefore DuC(,4',/') C DuC(A',g'). The converse inclusion can be proved analo­
gously. D 

5.3. Lemma. Let (A,f), (A,g) e W, DuC(,4,/) = DuC(A,g). If x does not 
belong to a cycle of(A,f), then g(x) = f(x). 

P r o o f . Suppose that C is a cycle of (A,f) (and hence of (A, g), too, in view 
of 2.5). According to 5.2 we have 

(1) DuC(A',f') = DuC(A',g'). 
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First, suppose that g' ^ f. 
Since (A',f), (A',g') 6 r , g' / / ' , the relation (1) and 4A0 imply that (A',g') is 

obtained either by turning up or by breaking (A',f). However, (A',f) and (A',g') 
contain the same one-element cycle C, f(C) = C = g'(C), thus (A',g') is obtained 
by a-breaking (A', f) at the point C, and then g' = f ' . Therefore 

(3) g'(x) = f(x) for each x G -4 - C. 

Let x E - 4 - C , g(x)-7-/(x). Then {g(x),/(*)} C C. Put g(x) = C l, f(x) = c2. By 
2.6, x G ̂ ( c i ) and a: G A/(c2), which contradicts 2.8. D 

5.4. Notation. Let (-4,/) G ^ , iet C = {ci ,c 2 , . . . ,cn} be a cycle of(A,f), 
card C = n. Tile set of ali permutations of 1, 2 , . . . , n will be denoted by Sn. Ife G Sn, 
put f£(x) = f(x) for each x G A-C, f£(ce(i)) = c£(i+i) for each i G {1,2, . . . , n - 1}, 
</.?(cc(n)) = cc(i)- For £ G 5 n . (-4, / £) is said to be obtained from (A,f) by permuting 
a cycle. 

5.5. Lemma. Let (A, f) G W. If(A,g) G <&, then DuC(,4,/) = DuC(A,g) if 
and only if(A,g) is obtained from (A, f) by permuting a cycle. 

P r o o f . Suppose that DuC(,4,/) = DuC(A,g). If C is a cycle of (A, / ) , then C 
is a cycle of (A, g) in view of 2.5 and according to 5.3, g(x) = f(x) for each x G -4 — C. 
Therefore g = f£ for some £ G Sn. Conversely, if g = g€ for some £ G Sn, then it is 
obvious that DuC(,4, / ) = DuC(A, g). D 

In the following theorem, the operations on connected components of (A, f) and 
(A,g) are denoted by the symbols / or g, respectively. 

5.6. Theorem. Let (A, f) and (A, g) be partial monounary algebras. Then (A, f) 
and (A,g) have the same systems of up-directed convex subsets if and only if the 
following conditions are satisfied: 

(i) (A, f) and (A, g) have the same partition into connected components, 
(ii) if B is a connected component of(A,f) and the partial operations g and f 

on B are distinct, then (B,g) is obtained from (B,f) by turning up, breaking or 
permuting a cycle. 

P r o o f . Let DuC(^ , / ) = DuC(A,g). Then (i) holds by 2.2 and (ii) by 4.13 
and 5.5. If (i) and (ii) hold, then the relation DuC(A,f) = DuC(A,<jr) follows from 
4.13 and 5.5 (notice that by permuting a two-element cycle on a component B we 
have g = / on B). D 
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