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EMiLia HaLUSKOVA, DANICA STUDENOVsKA,2 Kosice

(Received September 5, 1991)

The concept of a closed quasi-homomorphism in partial algebras was thoroughly
studied by P. Burmeister and B. Wojdylo [1]. This concept is one of possible gener-
alizations of the notion of homomorphisin if we deal with partial algebras instead of
coinplete algebras.

Homomorphisms of unary algebras were investigated e.g. in [6], [7] and [3]. In
[3] pairs of monounary algebras (A, f) and (4, g) such that (4, f) and (A, g) have
common systems of endomorphisins were studied. Analogous questions concerning
endomorphisius have been investigated in [4] and [5].

Let (A, f) be a partial monounary algebra. We denote by the symbols EQ(f) and
EQ.(f) the system of all partial inappings g of A into A such that the partial algebras
(A, f) and (A, g) have common sets of quasi-endomorphisms or common sets of closed
quasi-endomorphismns, respectively. The system EQ(f) was investigated in [2].

The present paper deals with systems of partial monounary algebras which have
the same underlying set and common sets of closed quasi-endomorphisms. The main
purpose consists in giving a constructive description of all partial mappings belonging
to EQ.(f). It turns out that card FQ.(f) < ¢. Next it will be proved that either
EQ.(f) C EQ(f) or EQ(f) C EQ.(f) is valid (in fact, both these cases can occur).

1. PRELIMINARIES

Let N be the set of all positive integers, Ng = NU {0}, Z the set of all integers.
The system of all monounary algebras will be denoted by % and for the notation
of the system of all partial monounary algebras we will use the symbol %,.

3 Supported by SAV grant 362/91.
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Counsider (A,f) € %,. Let B C A. Put fg = {[z,f(z)]: z € B N dom f}.
If mmg fg C B, then the partial algebra (B, fg) is called a subalgebra of (A, f).
A partial algebra (A, f) is said to be connected, if for each z,y € A there exist
m,n € Np such that f™(z) = f*(y). If (B, fg) is a maximal connected subalgebra
of (A, f), then B is said to be a component of (A, f). We will say that partial
algebras (A, f) and (A, g) have the same component partitions, if B is a component
of (A, g) for each component B of (A, f) and conversely.

The system of all connected algebras belonging to % will be denoted by the symbol
.. The component of a partial monounary algebra (A, f) containing an element
z € A will be denoted by Ky (z).

A nonempty set C C A is called a cycle of (A,f) € %,, if C C Ky(z) forz € C
and there exists k € N with f*(y) = y for each y € C.

A set R C A is said to be a chain of (A, f), if (R, fr) is a subalgebra of (A, f) and
one of the following conditions is satisfied:

. R={a,as,...,an},n €N, n>1and f(a;) = aig1 fori=1,2,...,n-1,
a, ¢ dom f;

2. R ={ai,i € N} and f(a;) = a4 for each i €N;

3. R={a;,i € Z} and f(a;) = a;4, for each i € Z,

4. R={ai;i€Z,i< 1} and f(a;) = aj4+ foreach i€ Z,i <0, a; ¢ dom f.

(In the above conditions we assume that a; # a; for i £ j.)

Put F(A) = {g: g is a partial mapping of A into A}.

A mapping g € F(A) is called an endomorphism of a partial monounary algebra
(A, f) if domg = A and z € dom f implies g(x) € dom f and g(f(z)) = f(g(z)).
Further, ¢ € F(A) is said to be a quasi-endomorphism of (A, f) if ¢ € dom f
and z, f(z) € doing yield g(z) € dom f and g(f(x)) = f(g9(z)). If g is a quasi-
endomorphism and there is no z € A such that £ € dom f and z, f(z) € domg, then

we will say that g is a trivial quasi-endomorphism of (A, f).
For (A, f) € %, put

H(f) = {g € F(A): g is an endomorphism of (A4, )},
Q(f) = {g € F(A): g is a quasi-endomorphism of (A, f)},

Q:(f) = {9 € F(A): g € Q(f) and f € Q(9)}.

Following [1], an element of the set Q.(f) is called a closed quasi-endomorphism

of (A, f).
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We will use the following notation:

EH(f)={9€ F(A): H(f) = H(9)},
EQ(f) = {9 € F(A): Q(f) = Q(9)},
EQ:(f) = {9 € F(A): Qc(f) = Q:(9)}.

EHo(f) = EH(f) N H(f).

Remark. Let (A, f) € U,.

(A1) H(f) C Qc(f) C Q).

(A2) If g € EQ.(f), then f € EQ.(9).
(A3) If £ ¢ Q(g), then g ¢ Q.(f).

These facts follow immediately from the definition and will be sometimes used

without quotation.

Further we put

Kq = {a € dom f: {a} is a component of (A, f)},
K, = {a ¢ dom f: {a} is a component of (4, f)},
K=KqUK,.

We will say that (A, f) is of type a, 7, #, v or é if it fulfils the following condition
(a), (1), (%), (7) or (8), respectively (cf. Fig.1):

() K # A and each component B of (A, f) such that ||B|| > 1 is a cycle or a
chain;

(t) K # A, dom f = A and there is a € A with f(z) = a for each z € 4;

() K = A, ||K4ll =1 and ||A]| > 1;

(1) Kn = A;

(0) Ka = A.

Let us mention the following theorem from [2] which will be used in some proofs
of this paper.

Theorem 4.10/[2]. Let (A, f) € %,.

1° If (A, f) is of type «, then EQ(f) = {f,¢}, where dom g = g f and
9(f(a)) = a for each a € dom f.

2° If (A, f) is of type T with a € A such that f(a) = «a, then EQ(f) = {f, g},
where (A, g) is of type © with g(a) = a.

3° If (A, f) is of type m with a € A such that f(a) = a, then EQ(f) = {f, g},
where (A, f) is of type T with g(a) = a.

4° If (A, f) is of type 8, then EQ(f) = {f, g}, where (A, g) is of type 7.
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Figure 1.

5° If (A, f) is of type v, then EQ(f) = {f, g}, where (A, g) is of type §.
6° Otherwise EQ(f) = {f}.

The following assertions can be proved quite analogously as the assertions 1.1-1.4
and 1.7-1.9 of [2].

1.1. Lemma. Let (A, f) € %. Then EQ(f) = {g € Q:(f): Qc(S) = Q:(9)).
1.2. Lemma. Let (A, f) € %,. If g € EQ.(f), then EQ.(f) = EQ.(g).

1.3. Lemma. Let (A, f) € %,. Then EQ.(f) C EH(/).

1.4. Corollary. Let (A, f) € %,. Then EQ.(f) N H(f) C EHo(f).

1.5. Lemma. Let (A, f) € %, be neither of type T nor of type w, and let
g € F(A). Ifg € EQ.(f), then (A, f) and (A, g) have the same component partitions.

1.6. Lemma. Let (A, f) € 9%, be neither of type T nor of type =, let B be a
component of (A, f) and g € EQ:(f). Then Q.(98) = QfB)-

1.7. Lemma. Let (A, f) € %,. Then |[EQ(f)|| < c.

We will also apply some results of [3]. The notions used in the present paper differ
from those in [3] only in the point that now we write EH(f) instead of Eq(f) (used

in [3]).
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2. SOME AUXILIARY RESULTS
In this section we assume that (A, f) € U,.

2.1. Lemma. Suppose that (A, f) contains a cycle C with ||C]| = p > 1 and let
h € Qc(f). Further suppose that x € CNdom h, h(z) € dom f and f*(h(z)) € dom f
fork=0,1,...,p—2. Then C C domh and h(C) is a cycle such that ||h(C)||
divides p.

Proof. Let usshow that C' C domh. We have f(z) € domh, because f € Q(h)
(cf. (A3)). Further h(f(z)) = f(h(z)) € dom f by assumption. Since f € Q(h), we
obtain f%(z) € domh and h(f*(z)) = f(h(f(z))) = f?(h(z)). By induction we get
that f*(z) € domh and h(f*(z)) = f(h(f*~Y(2)) =...= f¥(h(z)) for k=3, ...,
p — 1 in the same way.

To complete the proof we will prove that f7=!(h(z)) € dom f and f?(h(z)) = h(z).
The relations h(f?~'(z)) € dom f and h(fP(z)) = f(h(f?~!(z))) are valid, because
h € Q(f) and fP~'(z) € dom f and fP~'(z), fP(z) € dom h. Further h(fP~1(z)) =
SP71(h(z)) € dom f and fP(h(z)) = f(S*~'(h(z))) = f(h(JP~'(2))) = h(f?(z)) =

h(r), as desired. @]

2.2. Lemma. Let h € Q.(f) and let B be a component of (A, f) possessing a
cycle C' with a period p, p > 1. Further let £ € BNdomh be such that h(z) € dom f
and f¥(h(x)) € dom f for each k € N. Then {f*(z): k € No} C domh and h(C) =
C', where C’ is a cycle belonging to a component B’ of (A, f), ||C’|| divides ||C|| and
{h(S*()): k €No} C B

Proof. Let m be the least non negative integer such that f™(z) € C. We can
show that f¥(z) € domh and h(f*(z)) = f*(h(z)) for k = 1,...,m in the same way
as in the proof of the assertion above. Therefore {z, f(z),..., f™(z)} C domh and
the h-image of {z, f(x),..., f™(z)} belongs to one component of (A, f). Further
J™(z) € C and the previous lemma implies C C domh and h(C) = C’, where C’ is
a cycle of (A, f) with a period ¢, q divides p. Assume that C' C B’, where B’ is a
component of (A, f). We conclude now {f*(z): k € No}UC C dom h and h({f*(z):
ke No}) = h({z, f(z),..., /™ (x)}uC)C B O

2.3. Lemma. Let (B, fg) be a subalgebra of (A, f) and h € Q.(f). Then

{[z.h(2)]: z € B,h(z) € B} € Q.(fB).

Proof. Let h={[z,h(z)]: z € B,h(x) € B}. It is easy to see that & € Q(fg).
Consider z € domh and z, h(x) € domf. Since f € Q(h) (due to (A3)), we
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have f(z) € domh and h(f(z)) = f(h(z)). Further h(z) € B yields f(h(z)) € B.
Therefore h(f(2)) € B and f(z) € domh. ]

2.4. Lemma. Let (A, f) be not of type w and let each component of (A, f) have
only one element. Then EQ.(f) = EQ(f).

Proof. First notice that Q(h) = Qc(h) if h is the identity on some B C A,
because g € Q(I) implies h € Q(g).

Suppose that g € EQ(f). The algebra (4, g) consists of one-element components
according to 4.10/[2]. Thus EQ(f) = {g € Q(f): Q(f) = Q(9)} = {9 € Q:(f):
Q:(f) = Q(9)} = {g € Qc(f): Qe(f) = Qe(9)} = EQc(/), as desired. a

2.5. Lemma. Suppose that (A, f) € % and (A, f) contains a component with
more than one element. Then EQ.(f) C EHo(f).

Proof. Consider h € Q.(f) — H(f). We will show that h ¢ EQ.(f).

Choose yo ¢ dom h. First assume that f(yo) # yo. To argue the desired conclusion
Q.(h) # Qc(f) define ¢ € F(A) as ¢ = {[yo,y0]}. Then ¢ € Q.(h), because the
conditions ¢ € Q(h) and h € Q(y) are trivially satisfied. But yo € dom¢p,dom f = A
and f(yo) & dom . Therefore f ¢ Q(¢), which iniplies that ¢ ¢ Q.(f) by (A3).

Now let f(yo) = yo. There exists y € A such that f(y) # y by the assumption.
Consider y € domh. (If y ¢ domh we can use the previous part of this proof for
vo = y.) Let us define € F(A) such that domy = {f*(y): k € No} U {f*(h(v)):
k € No} and ¢(z) = yo for each z € domy. We have ¢ ¢ Q(h), because y € domh
and y,h(y) € domy and ¥(y) ¢ domh. If z € domy, then f(z) € domy and
¥(f(z)) = yo = f(¥(x)). Thus we can conclude ¥ € Q.(f). 0

2.6. Lemma. Suppose that (A, f) is of none of the types 7, # and 6 and a € A
is such that f(a) = a. If g € EQ.(f), then a € domg and g(a) = a.

Proof. Let B = Kj(a). The algebra (A, g) has the same partition into compo-
nents according to 1.5. Thus B is a component of (A, g). We have Q.(fs) = Q.(98)
by 1.6. First we will show that a € domyg.

Assume that ||B}] > 1. The relation EQ.(fp) C EHo(fB) is valid by 2.5. We get
g € H(fp) and a € domg.

Further let B = {a}. Suppose that a ¢ domy. Since (A, f) is not of type §, we
can choose y € A such that either y ¢ dom f or f(y) # y. Define ¢ € F(A) such
that ¢ = {[a,y]}. Then ¢ € Q.(9) — Q(f) C Q:(9) — Q:(f) according to (Al), which
contradicts the hypothesis ¢ € EQ.(f).

1t remains to show that g(a) = a. Consider ¥ = {[a,a]}. Then ¥ € Q.(f) = Q.(9)-
This implies g(a) = a, because a € dom® and a,y(a) € domg. 0
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2.7. Lemma. Let (A, f) be of type m. Then EQ.(f) = {f}-

Proof. Assume that g € EQ.(f).

If domg = 0, then 2.4 and 4.10/[2] imply EQ.(9) = EQ(g9) = {g,9'}, where
domg’ = A,g'(y) = y for each y € A. This contradicts the relation f € EQ.(g)
(cf. (A2)).

If (A,g) contains a component with more than one element, then EQ.(9) C
EHgy(g), therefore f € EHo(g), thus (A, f) € %, a contradiction.

We have domg # 0 and g(y) = y for each y € domg. Denote by a an element
of A, such that dom f = {a} ((A, f) is of type «). Let ¢ # f. Then we can choose
z € A such that z € domg — dom f. Define ¢ = {[a,z]}. Then ¢ € Q.(g9) — Q(f),
a contradiction.

We conclude g = f as desired. (]

2.8. Lemma. Let (A, f) be of none of the types v, m, v and §. If g € EQ.(f),
then (A, g) is of none of the types v, m, v and é.

Proof. |If (A,g) is of type é, then 2.4 implies EQ.(g) = EQ(g). Thus f €
EQ(g) (by (A2)) and (A, f) is of type ¥ by 4.10/[2], which is a contradiction. If (4, g)
is of type v, then 2.4 implies EQ.(g9) = EQ(yg), thus f € EQ(g) and (A4, f) is of type
§ by 4.10/[2], a contradiction. If (4, g) is of type 7, then EQ.(9) C EHo(g) = {9}
by 2.5 and Th. 3/[3]. Hence (4, f) is of type 7, because f € EQ.(g). If (A,g) is of
type m, then (A4, f) is of type 7 by 2.7 and this completes the proof. a

2.9. Lemma. Assume that (A, f) is of none of the types w,7 and § and a € A
with K;(a) = {a}. Further let g € EQ.(f).

a) If f(a) = a, then g(a) = a.

b) If a ¢ dom f, then a ¢ domg.

Proof. It follows from 1.5 that (A, f) and (A, g) have the same component
partitions, thus {a} is a component of (A, g). Therefore either a ¢ dom g or g(a) = a.
If f(a) = a, then g(a) = a by virtue of 2.6. Let a ¢ dom f. Then (A, f) is not of
type 7. Assumne that g(a) = a. According to the assumption and in view of 2.8 we
obtain that (A, g) is of none of the types 7, m, ¥ and 6. We can use 2.6 with f and
g interchanged; this implies a € dom f, a contradiction. O
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3. ALGEBRAS WITH A CYCLE IN EACH COMPONENT

For p € N let 0'(p) be the system of all connected monounary algebras (A, f) such
that (A, f) contains a cycle C' with ||C|| = p and f(z) € C for each z € A.

In this section we assume that (A, f) € % and each component of (A, f) has a
cycle.

3.1. Lemma. Let (A, f) € O(p) for some p € N and let t € N be such that
(t,p) = 1,0< t < p. Then Q.(f*) = Q(f).

Proof. Suppose that C is a cycle of (A, f). Since (¢,p) = 1 the set C is a cycle
of (A, f*) and there exists k£ € N such that f*!(z) = f(z) for cach z € A.

First we prove that Q.(f') C Q.(f). Let ¢ € Q.(f*). If domy = @, then
¢ € Q.(f). Consider domyp # 0. Then z € domy implies f*(z) € dom¢p and
f*(z) € doiny for each n € N by induction. We have f(z) = f¥'(z) € dome.
Further f(¢(2)) = f*'(p(2)) = fEDp(f(2)) = ... = p(f4(2)) = p(f(z)) We
conclude ¢ € Q.(f).

To complete the proof let us show that Q.(f) C Q.(f'). Assume that ¢ € Q.(f),
domp # 0. We have C' C dom ¢ and thus f*(y) € domy for any y € A and n € N.
Choose z € domp. We get o(f'(z)) = f(e(f*"Hz))) = ... = fi(p(z)). 0

3.2. Lemma. Let (A, f) € % and ||A|| > 1. If (A, f) € O(p) for some p € N,
p> 2, then EQ.(f) = {f': 0 <t < p,(L,p) = 1}; otherwise EQ.(f) = {f}.

Proof. If there exists p € N,p > 2 such that (A, f) € @(p) then the inclusion
{f:0<t<p,(t,p) =1} C EQ.(f) follows, and the converse inclusion is obtained
by 2.5 and Th.2/[3]. In the other case we have EHo(f) = {f} according to Th.3/[3]
and EQ.(f) = {f} according to 2.5. o

3.3. Notation. Let B and C' be components of (A, f) which have cycles with the
period p or q, respectively. Further let ¢ € F(A) be such that B, C are connected
components of (A, ¢). Consider the following conditions:

(al) If (B, fB) ¢ O(p) and q/p, then g¢ = fc.

(o2) If (B, fg) & O(p), ¢ > 1 and p/q, then there exists n € N such that0 < n < gq,
(n,q)=1,n=1 (mod p) and g¢ = f§.

B) If (B, fu) € 0(p), (C,fc) € 0(q), p > 1, ¢ > 1 and q/p, then there exists
n € N such that 0 < n < p, (n,p)=1and gc = f¢, g8 = fp-

3.4. Theorem. Suppose that (A, [) fails to contain only one-element compo-
nents. Let g € F(A). Then g € EQ.(f) if and only if

(1) (A, f) and (A, g) have the same partition into components,
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(ii) if B is a component of (A, f), then Q.(fs) = Q:(98),

(i) if B,C are components of (A, f), then the conditions («l),(a2) and (3) are
satisfied,

(iv) if {a} is a component of (A, f), then a € domyg.

Proof. Assume that g € EQ.(f). Then 2.5 yields that g € EHo(f). If (A, f)
is of type 7, then Th.3/[3] implies EQ.(f) = EHo(f) = {f},9 = f, thus (i)-(iv) are
trivially satisfied. Assume that (A, f) is not of type 7. The assertions (i) and (ii)
are valid in view of 1.5 and 1.6. Since g € EHo(f), we obtain that (iii) is satisfied
according to Th.4/[3]. Further, domg = A, thus (iv) is valid.

On the other hand, suppose that g € F(A) is such that (i)-(iv) are satisfied. We
will show that Q.(f) = Q.(9).

Assume that ¢ € Q.(f). Let £ € dome N B, where B is a component of (A, f).
Then {fi(z): i € N} C domyp. If (B, fg) € O(p) for p € N,p > 1, then gp = f§
for some 0 < k < p, (k,p) = 1 by virtue of (ii) and 3.2. Thus gg(z) = g(x) belongs
to the cycle of (B, fg),gs(z) € dome. If (B, fg) ¢ O(p) for any p € N — {1}, then
gp = fp according to 3.2 and thus g(x) = f(x) € dom .

Let us prove that ¢ € Q(g). Assume that (B, fg) contains a cycle with a period
p and let z € domg, g(z) € domep.

a) Suppose that p = 1. If ||B|]| = I, then gp(z) = z = fg(z), i.e., gg = fB, since
B is a component of (A,g) by (i) and z € domg. If ||B|| > 1, then (ii) and 3.2
imply gp = fp. Since ¢ € Q.(f), p(z) belongs to a component C of (A, f), which
possesses a one-element cycle. As above, if ||C|| > 1, then g¢ = fc. If ||C|| = 1, then
(iv) unplies ¢ € dom g, thus g¢ = fe. We obtain g(¢(z)) = ge(e(z)) = fe(e(z)) =
J(p(2)) = p(f(x)) = ¢([B(2)) = (98(2)) = p(9(x)), since p € Q(f) (by (Al)).

b) Now let p > 1 and (B, fg) ¢ O(p). We obtain gp = fp according to (ii) and
3.2. Further ¢(x) € C, where C' is a component of (A, f) with a cycle with a period
q,q9/p in view of 2.2. We get gc = fc by (al). Then g(¢(z)) = ¢(g(z)) similarly as
in a).

c) Let p > 1 and (B, fg) € O(p). We have p(x) € C, where C is a component of
(A, f) with a cycle with a period q,q/p.

Let (C, fc) € O(q). There exists n € N such that 0 < n < p, (n,p) = 1 and
gp = [, 9c = f¢ by virtue of (B). Using ¢ € Q(f), we get g(p(z)) = gc(p(z)) =
fé(p() = [M(p(2) = 1 He(f(2)) = ... = o(S"(2)) = o(fB(2)) = p(9B(2)) =
p(g(x)).

Let (C, fc) ¢ O(q). By (a2) we get gc = fc and gg = f% for some k € N,
0<k<p (kp)=1 k=1 (modq). Weget p(g(z)) = p(fi(2)) = f*(¢(z)) =
TE(e(2) = Je(p(x) = g9c(¢(x) = y(¢(2)). Therefore p € Q(g). Since we have
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g(z) € domyp and p(g(z)) = g(p(z)), we obtain g € Q(¢) and hence ¢ € Q.(g),
which completes the proof of the relation Q.(f) C Q.(9g).

Now let us prove the inclusion Q.(9) C Q.(f). First assume that there is « €
A —domg. The element a belongs to a component B of (A, f); B is a component of
(A, g), since (i) is valid. Then Q.(fB) = Qc(gn) in view of (i1). It follows from (iv)
that ||B|| > 1. According to 2.5 we obtain EQ.(fg) C EHo(fB), thus gg € EHo(fB)
and (B, gp) is a complete monounary algebra, which is a contradiction. Thus A =
domyg, (A, g) € Z. The condition (i) imnplies that (A, g) contains a component with
more than one element. Let us denote by (i’)-(iv’) the conditions analogous to the
conditions (i)-(iv), where f and g are interchanged. Then (i) and (i’) are identical.
Using (i) we obtain that (i) and (ii) are equivalent to (i’) and (ii’), and (i) and (iii)
are equivalent to (i’) and (iii’) (notice that if g = fZ, then there is j with fo = g{;).
Further, (A, f) is complete, thus a € dom f for each a € A and obviously, (iv’) is
satisfied. Therefore (i')-(iv’) are valid. Under these assumptions we obtain that
Qc(9) C Qc(f), using what we have proved above if we interchange f and g.

Hence Q.(f) = Q.(9). C

3.5. Corollary. Assume that (A, f) contains a component with more than one
element. Then EQ.(f) = EHo(f).

Proof. Ifge EQ.(f), then 2.5 yields g € EHo(f). Let g € EQ.(f) — EHo(f).
Then domyg # A and there is a € A — domg. It follows from 3.4 (iv) that {a} is not
a component of (A, f) and the element a belongs to a component B with ||B|| > 1
(B is a component of (A, f) and of (A, g) too, with respect to 3.4(i)). Then 3.4(ii)
implies Q.(fB) = Q.(9p) and by 2.5, gp € EQ.(98) C EHo(fB), a contradiction,
since (B, gp) is not complete. O

3.6. Corollary. There exists a countable set A and a unary operation f on A

such that ||EQ.(f)|| = c.

Proof. Let {pn,: n € N} be a set of prinies greater than 2. Define a monounary
algebra (A, f) such that (A, f) consists of components A,,n € N, which are p,-
element cycles of (A, f). Then EQ.(f) = EHo(f) by 3.5 and Th.5.2/[3] implies that
IEH(N] = e o
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4. PARTIAL ALGEBRAS WITH A CHAIN

In this section we suppose that (A, f) € %, and (A, f) contains a component B
without a cycle such that ||B|| > 1, i.e., (A, f) contains a chain as its subalgebra.

4.1. Lemma. If dom fy # B, then EQ.(fp) = {fs}-

Proof. Let g € EQ.(fB),9 # fp. The algebra (B, g) is connected by 1.5 and
thus ||[B—domg|| < 1. If domyg = B, then EQ.(y) C EHo(g) by 2.5. But fg ¢ H(g)
and therefore Q.(g9) # Q.(fB), a contradiction. Thus ||B — domg|| = 1.

Let us denote by a,b such elements of B that a ¢ dom fg,b ¢ domyg. If a = b,
then we will show that ¢ = fg and if a # b, then we will show that Q.(fr) # Q:(9);
this will complete the proof.

Let a = b. Since (B, fg) is connected and dom fg # B, for each z € B there is a
uniquely determined number k& € Ny such that f¥(z) = a. Proceeding by induction
with respect to k we will prove that g(z) = fp(z) for each z € B.

Let £ = 1 and ¢ € B be such that fp(z) = a. Let g(z) # a. Define ¢ =
{la,a],[z,2]}. Then v € Q.(fB). Further ¢(z) = z,z € domyg and g(x) ¢ domy,
because (B, g) contains no cycle and g(z) # a. Thus ¢ ¢ Q(¢) and ¢ € Q.(fB) —
Q.(g) according to (A3), a contradiction. We conclude g(z) = a.

Now assume that for 0 < s < k, f;(y) = a implies fp(y) = g(y) for y € B. Let
z € B be such that fi(z) = a. We get fu(fp(2)) = 9(fB(2)) = fB(9(2)) according
to fh(x) = ;;-I(fy(;l?)) = a,9 € Q(fB) (cf. ((A1)) and the induction hypothesis.
Further f3,7'(9(2)) = £ (f8(9(2)) = f§(2) = a and fg(g(2)) = g(g(z)) = y*(z)
by assumption. We have f3(z) = ¢%(2) = fp(9(z)) = 9(fB(2)).

Let fp(x) # g(x). Define ¥ = {[f*(z), f*(z)]: s =0,1,...,k}. Then v € Q.(fB)-
Further z € domy Ndomg, Y(z) € domyg and g(z) ¢ domy, because g(z) # f(z)
and f*~'(g(x)) = a. Thus g ¢ Q(v') and ¥ ¢ Q.(g) by (A3). This is a contradicton
and consequently g(z) = fg(z).

Now consider a # b. Denote V = {x € B: g*(z) = a for some k € Ng}. We have
a€ V,bg V. Define ¢ = {[y,y]: y € B—V}. Let n be the least natural number such
that f(b) € V. Put ag = f5(b) and by = f;','l(b). We obtain fp ¢ Q(¢) and thus
¢ ¢ Q(fB), because by € dom¢ Ndom fg,{(bo) = b and fg(by) = ap, ap & dom(.

If z € domg and z,g¢(r) € dom(, then {(x) = z € domyg and ((y(z)) = g(¢) =
9(¢(x)). Hence ¢ € Q(g). If z € domgNdom( and {(z) € domg, then = ¢ V. That
means that there exists no k € Np such that g¥(z) = a. This yields g(z) ¢ V and
thus g(z) € dom(.

We have shown ¢ € Q.(y) — Q.(fB). ]
4.2. Lemma. Let dom fg = B. Then EQ.(fp) = {fg).
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Proof. Since domfg = B, 2.5 implies EQ.(fg) C EHo(fp). Thus it suffices

to investigate the case when EHo(fp) # {fs}. Th.2/[3] implies that B = |J {z;} U
jez
Bj,z; ¢ B;j and fg(bj) = zj4. for each b; € {z;}UB;j,j € Z, where z; # z;j for i #

Jyi,J € L. According to this theorem EHo(fp) = {fs, 9}, where g(b;) = z;_, for
each b; € {«;} UB;,j €.

We will show that Q.(fp) # Qc(g9). Define p(b;) = b; for j € No, b; € {2;} U B;.
It is obvious that p € Q.(fp). We have p(x¢) = xo, g(x0) = x-; and g(z0) ¢ domep.
Therefore g ¢ Q(¢) and ¢ ¢ Qc(g9) by (A3). Hence g ¢ EQ.(fB), i.e. EQ.(fp) =
{fs}. O

4.3. Theorem. If (A, f) contains a subalgebra which is a chain, then EQ.(f) =
{r}.

Proof. Let g € EQ.(f),9 # f- The algebra (A, g) has the same partition
into components by 1.5 and Q.(f¢c) = Q.(gc) for each component C of (A, f). Let
(B, fB) be a component of (A, f) which contains a chain. Then gg = fp in view of
4.1 and 4.2.

Suppose that 2 € A and either g(z) # f(z) or z € (domg — dom f) U (dom f —
domg). Let C be a component of (A, f) such that z € C. If a component C contains
a chain of (A, f), then EQ.(f¢) = {fc} by 4.1 and 4.2 and g¢ = fc, a contradiction.
Thus either ||C|| = 1 or (C, f¢) has a cycle. According to the assumption, (A, f) is of
none of the types m, ¥ and é and then 2.9 yields that ||C|| > 1 (using the properties
of the element z). Then 3.2 implies that (C, fc) € O(p) for some p € N, p > 2 and
that g = f1,0<t<p, (t,p)= 1.

Choose z € BNdomf. Define p = {[z,z]} U {[f*(2), f¥(=)]: k € N, f¥~1(2) €
dom f}. Clearly ¢ € Q.(f). We have = € domg and z,¢(z) € domgp, because
z € dom f and gy = fp. But ¢(z) € domg, g(p(z)) = g(z) = f'(z) and p(g(z)) =
e(f(z)) = f(z). Since 1 <t < p we see that g(p(z)) # ¢(g9(2)). Thus ¢ € Q(g) and
Q:(f) # Qc(g) (cf. (A1)), a contradiction. ]

5. THE REMAINING CASE

If (A, f) is a complete monounary algebra, then either each component contains a
cycle or some component contains a chain. The first possibility was investigated in
Section 3, the second in Section 4. Thus we shall study (A, f) € %, — % . Further,
if a component which has nonempty intersection with A — dom f has more than one
element,then (A, f) contains a component with a chain, which was investigated in
Section 4. If (A, f) contains only one-element components and is not of type =, it
was studied in 2.4. If (A, f) is of type =, it was studied in 2.7.
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Let (A, f) € %,. Put A; = dom f, A} = A —domf. Therefore, the remaining
case we ought to study is as follows:

(1) AL #0,

(2) if B is a component of (A, f) with BN A; # @, then ||B|| =1,

(3) A2 #0,

(4) if B is a component of (A, f) with BN A; = @, then B contains a cycle of

A, 0,
(5) there exists a component B of (A, f) with ||B|| > 1.

In this section we will assume that (1)-(5) are valid.

According to the assumption (5), the assertions 1.5 and 1.6 yield that if ¢ €
EQ.(f), then (A,g) has the same partition into components as (A, f) and each
component has the same system of closed quasi-endomorphisms with respect to f as
with respect to g.

5.1. Lemma. Let ¢ € EQ.(f). Then domg = dom f and if ¢ € Ay, then either
9(x) = f(z) or g(f(2)) = =.

Proof. Consider g # f. The assumptions of 2.9 are satisfied and we see
that domg N A; = 0. Let B be a component of (A, f) (i.e., B is a component of
(A,g)). If||B]] > 1, then B C A2 and the relation Q.(fg) = Q.(yp) and 2.5 imply
that domgp = B. If B = {a} and f(a) = a, then 2.9 yields g(a) = a. Therefore
domg = A, = doin f.

Let a € Az be such that g(a) # f(a) and g(f(a)) # a. Suppose that a belongs
to a component C' of (A, f). Then ||C|| > 1 and it follows from 3.2 that (C, f¢) €
O(p) for some p € N,p > 2 and g¢c = f& for some 0 < t < p, (t,p) = 1. Then
g(a) # a. Choose z € A;. Define ¢ = {[a, 2],[f(a), 2]}. We have ¢ ¢ Q.(f), because
a € dom f,a, f(a) € domny and p(a) = z,z ¢ dom f. Assume that £ € domg and
z,9(z) € domp. Thus £ # a, because g(a) # a,g(a) # f(a), i.e. g(a) ¢ domep.
Hence z = f(a) and g(f(a)) € dom, then g(f(a)) = f(a). This means that the
component C contains a one-element cycle, a contradiction. We have proved that ¢
is a trivial element of Q(g). Since p(y) = z ¢ domyg for any y € domp, we obtain
the relation g € Q(¢), and hence ¢ € Q.(g). This is a contradiction, Q.(f) # Q<(g)-

O

5.2. Corollary. Let B C Ay be a component of (A, f), g € EQ.(f).
(i) If B is a cycle with ||B|| = p, then either g = fp or gp = [Z“,
(i1) If B is not a cycle,then gp = fp.

Proof. Suppose that g # fp. Since gp € EQ.(fp), it follows from 3.2 that
(B, fB) € O(p) for some p € N, p > 2 and gp = f} for some 0 < t < p, (¢t,p) = 1.
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This implies (B,gg) € O(p) and a € B belongs to the cycle of (B, fg) if and only
if @ belongs to the cycle of (B, ¢gp). Further g(y) # f(y) for each y € B. According
to 5.1 we have g(f(y)) = y. Thust = p — | and every element of B belongs to the
cycle of (B, gB). O

5.3. Lemma. Let g € F(A). If

(a) domg = dom f,

(b) ga, € EQC(fAz)’
(c) for xz € Ay either g(z) = f(z) or g(f(x)) =z,

then g € EQ.(f).

Proof. Notice that A2 = dom f = domyg. First let us show that Q.(f) C
Q:(y). Consider ¢ € Q.(f). Let z € domyp,z,p(z) € domg. Put @ = {[a, p(a)]:
a € Ay, p(a) € Az}. This mapping belongs to Q.(fa,) by 2.3. Thus & € Q.(ga,) by
(b). Since z € dom @, we obtain g(r) € dom@ C domep and g(p(z)) = g(F(z)) =
?(g9(z)) = p(g(x)). Therefore g € Q(¢). Now let y € domyg and y,g(y) € dome.
By (c) we have either g(y) = f(y) or g(f(y)) = y. If 9(y) = f(y), then the relation
¢ € Q(f) implies that p(y) € dom f and according to (b) we obtain that ¢(y) €
domyg and g(v(y)) = ¢(9(y))- Let g(y) # f(y), i.e. g(f(y)) = y. Assume that B is
a component of (A, f) such that y € B. Since (b) is valid, we have gg € EQ.(fB)
and then 3.2 yields that gg = f§, 1 < k < p, where p > 2 is a period of a cycle in
B. In view of the fact that gg(fp(y)) = y we conclude that £k = p — 1 and hence
/8(98(v)) = f(S ' (¥)) = y. Put g(y) = a. Then a € domf, a, f(a) € domye,
thus the relation ¢ € Q(f) (cf. (Al)) implies that ¢(y) € dom f and in view of (b)
we obtain that ¢(y) € domg, g(¢v(y)) = ¢(g(y)). Therefore ¢ € Q(g) and hence
¥ € Qc(9)-

The proof of the inclusion Q.(g9) C Q.(f) is analogous. a

5.4. Theorem. Let g € F(A). Then g € EQ.(f) if and only if

(a) domyg = dom f,

(b) ga, € EQc(fA;)y
(c) for z € A, either g(x) = f(z) or g(f(z)) = =.

Proof. Accordingto5.1l and 5.3 we have to prove only that g € EQ.(f) implies
94, € EQc(fa,)- We will show (i)-(iv) fromn 3.4 (with A replaced by A2).

As we have remarked before 5.1, the conditions (i) and (ii) are satisfied. The
condition (iv) follows by 2.9. Let g € EQ.(f).

Suppose that B and C are components of (A2, fa,) which have cycles with the
period p or g, respectively. To prove the condition (a2) suppose that (B, fp) ¢
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O(p),q > 1 and p/q. If g¢c # fc, then C is a cycle and g¢ = fé_l by virtue of 5.2.
We will show that g¢ = fé—l implies ¢ — 1 = 1 mod p. Choose z € B, y € C such
that they belong to cycles. Define h' = {[¢*(y),¢*(z)]: k = 0,1,...,¢ — 1}. Then
I € Qu(g). Using Qu(f) = Qu(g) we have gn(z) = g(z) = (g(y)) = W(gc(y)) =
WU () = KU () = SN2 ) = - = I (1) = f§ (@), Since
g = fB, we obtain ¢ — 1 = 1 modp.

Now let us show that if gg = fp and ¢/p, then gc = fc. Suppose that gp = fp
and ¢/p. Choose ¢ € B,y € C such that z and y belong to the corresponding cycles.
Define h = {[f*(z), f¥(y)]: £ =0,...,p—1}. Then h € Q.(f). Using Q.(f) = Q.(9)
we obtain fc(y) = f(y) = h(f(z)) = h(fB(z)) = h(gs(z)) = gc(h(z)) = g9c(y). In
view of (ii) and 3.2 we conclude that gc = fc.

If (B, fB) ¢ O(p) and q/p, then gp = fp by (ii) and 3.2. Thus g¢ = fc and this
gives (al).

Finally, let (B, fg) € ¢(p),(C, fc) € O(q),p > 1,¢ > 1 and ¢/p. The relation
p—1=¢—11modq holds. We have shown that gg = fp implies g¢c = fc. We need
to show that if gg = ff;_l and fg_l = f(";l then gc = 5_1. Using the mapping
h € Q.f) from this proof we have gc(y) = ge(h(z)) = h(g(z)) = h(gp(z)) =

h(f'[;—l(:r:)) = f(M(SfP~Y(z))) = ... = P (h(z)) = fg._l(y). This completes the
proof of (3) and of the theorem, too. a

6. THE RELATIONSHIP BETWEEN EQ(f) AND EQ.(f)

6.1. Lemma. Suppose that (A, f) is of type « and (A, f) contains no chain as
its subalgebra. Further let ¢ € F(A) be such that domg = dom f and g(f(z)) =z
for each z € dom f. Then g € EQ.(f).

Proof. We have dom f # 0 by the definition of an algebra of type a. Denote
Az = dom f. We will verify (a)-(c) from 5.3. To prove (b) we will show (i)-(iv)
from 3.4 for the algebra (As, f4,) and the mapping ga,. By the assumptions of the
lemma (a), (c), (i), (ii) and (iv) are valid. We need to show (al),(a2) and (3) for
(A2, fa,) and gu,.

Assume that B and C are components of (A, f) which have cycles with the period
p or g, respectively. The conditions («l),(a2) are trivially satisfied, because each
component of (A, f) is an element of &(r) for some r» € N. Suppose that p > 1,9 > 1
and q/p. We know that gg(fp(z)) = z for each x € B and therefore gp = f5~'. In
the same way gc = fé—l. Since ¢/p, we get ¢ — 1 = p— 1 mod q. Analogously as in
the previous proof we conclude gg = f5" and g¢c = f&7'. 0
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6.2. Proposition.

(1) Let (A, f) be of type o and contain a chain. Then EQ.(f) = {f} according
to 4.3 and ||EQ(S)|| = 2 by 4.10/[2].

(2) If (A, f) is of type a and contains no chain which is its subalgebra, then
EQ(f) = {f.g¢}, where dom f = domg and ¢g(f(z)) = z for each z € dom f
in view of 4.10/[2], and 6.1 yields that EQ(f) C EQ.(f).

(3) If (A, f) is either of type T or of type w, then EQ.(f) = {f} by virtue of 2.5
and 2.7.

(4) If (A, f) is either of type  or of type v, then EQ.(f) = EQ(f) by 2.4.

(5) Let (A, f) be of none of the types a, w, 7,7, 6. Then EQ(f) = {f} according
to 4.10/[2] and f € EQ.(f).

These considerations imply

6.3. Theorem. Suppose that (A, f) € %,.
Then either EQ(f) C EQ.(f) or EQ.(f) C EQ(f).
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