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Czechoslovak Mathematical Journal, 43 (118) 1993, Praha 

PARTIAL MONOUNARY ALGEBRAS 

WITH COMMON CLOSED QUASI-ENDOMORPHISMS 

EMILIA HALUSKOVA, DANICA STUDENOVSKA,3 KoSice 

(Received September 5, 1991) 

The concept of a closed quasi-homomorphism in partial algebras was thoroughly 

studied by P. Burrneister and B. Wojdylo [1]. This concept is one of possible gener­

alizations of the notion of homomorphism if we deal with partial algebras instead of 

complete algebras. 

Homomorphisms of unary algebras were investigated e.g. in [6], [7] and [3]. In 

[3] pairs of monounary algebras (A,f) and (A,g) such that (A,f) and (A,g) have 

common systems of endomorphisms were studied. Analogous questions concerning 

endomorphisms have been investigated in [4] and [5]. 

Let (A, f) be a partial monounary algebra. We denote by the symbols EQ(f) and 

EQc(f) the system of all partial mappings g of A into A such that the partial algebras 

(A, f) and (A, g) have common sets of quasi-endomorphisms or common sets of closed 

quasi-endomorphisms, respectively. The system EQ(f) was investigated in [2]. 

The present paper deals with systems of partial monounary algebras which have 

the same underlying set and common sets of closed quasi-endomorphisms. The main 

purpose consists in giving a constructive description of all partial mappings belonging 

to EQc(f)- It turns out that card EQc(f) .$ c. Next it will be proved that either 

EQc(f) C EQ(f) or EQ(f) C EQc(f) is valid (in fact, both these cases can occur). 

1 . PRELIMINARIES 

Let N be the set of all positive integers, N 0 = N U {0}, Z the set of all integers. 

The system of all monounary algebras will be denoted by 9/ and for the notation 

of the system of all partial monounary algebras we will use the symbol °?/p. 

'Supported by SAV grant 362/91 . 

225 



Consider ( A , / ) G %. Let B C A. Put / # = {[xj(x)]: x G £ O d o m / } . 

If rng /B C # , then the partial algebra (B,fs) is called a subalgebra of ( -4 , / ) . 

A partial algebra (-4, / ) is said to be connected, if for each x ,y G A there exist 

m,n G No such that /m(«r) = /n(y)« -f ( # , / B ) is a maximal connected subalgebra 

of ( -4 , / ) , then I? is said to be a component of ( -4 , / ) . We will say that partial 

algebras ( A / ) and (A,g) have the same component partitions, if B is a component 

of(A,g) for each component B of ( A , / ) and conversely. 

The system of all connected algebras belonging to 9/ will be denoted by the symbol 

tf/c. The component of a partial monounary algebra (-4, /) containing an element 

x G A will be denoted by Kj(x). 

A nonempty set C C A is called a cycle of (Ayf) G %, if C C Kf(x) for x G C 

and there exists k G N with / f c(y) = y for each y G C. 

A set ft C .4 is said to be a chain of (A, / ) , if (ft, //?) is a subalgebra of (v4, / ) and 

one of the following conditions is satisfied: 

1. R = {ai , a 2 , . . . , a n } , 71 G N, n > 1 and /(a,-) = a t+i for i = 1, 2, . . . , n — 1, 

an £ dom / ; 

2. R = {a t , i G N} and / ( a t ) = at+i for each i G N; 

3. R — {a t , i G Z} and /(a,-) = at+i for each i G Z; 

4 . ft = {a t; i G Z,i i$ 1} and / ( a t ) = at+i for each i G Z, i .$ 0, ai £ d o m / . 

(In the above conditions we assume that at -̂  a;- for i ^ j . ) 

Put F(-4) = {( / :# is a partial mapping of A into A}. 

A mapping g G F(-4) is called an endomorphism of a partial monounary algebra 

( A , / ) if dom<7 = A and x G d o m / implies g(x) G d o m / and g(f(x)) = f(g(x)). 

Further, # G K(-4) is said to be a quasi-endomorphism of ( .4 , / ) if x G d o m / 

and x, / ( x ) G doin# yield g(x) G d o m / and g(f(x)) = f(g(x)). If <7 is a quasi-

endomorphism and there is no x G -4 such that x G d o m / and ar, / ( # ) G dom a, then 

we will say that g is a trivial quasi-endomorphism of ( A , / ) . 

For (A J) e% put 

H(f) = {</ G K(-4): y is an endomorphism of ( A , / ) } , 

Q(f) = {<7 G K(-4): <7 is a quasi-endomorphism of (A , / ) } , 

0 e ( / ) = {</ € F( ,4): g € <?(/) and / € Q(g)}. 

Following [I], an element of the set Qc(f) is called a closed quasi-endomorphism 

of(AJ). 
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We will use the following notation: 

EH(f) = {g€ F(A) 

EQ(f) = {ge F(A) 

EQc(f) = {ge F(A) 

H(f) = H(g)}, 

Q(f) = Q(9)}< 

Qc(f) = Qc(g)}, 

EH0(f) = EH(f)nH(f). 

Remark. Let (A,f) G Up. 

(A\)H(f)cQc(f)CQ(f). 
(A2) If g 6 EQc(f), then / € EQc(g). 
(A3) If / $ Q(g), then g I Qe(f). 
These facts follow immediately from the definition and will be sometimes used 

without quotation. 

Further we put 

Kd = {a G d o m / : {a} is a component of ( A , / ) } , 

Kn = {a £ d o m / : {a} is a component of (_4,/)}, 

K = KdUKn. 

We will say that (-4,/) is of type a, r, 7r, 7 or 6 if it fulfils the following condition 
(a), (r) , (TT), (7) or (o), respectively (cf. Fig. 1): 

(a) K ^ A and each component B of (-4,/) such that ||£J|| > 1 is a cycle or a 
chain; 

(r) /if ^ J4, dorn/ = A and there is a G -4 with / ( r ) = a for each a: G -4; 
(7r)K = ^ , | | / f d | | = l a n d | M | | > l ; 

(7) Kn = yJ; 

(*) A'd = A. 
Let us mention the following theorem from [2] which will be used in some proofs 

of this paper. 

Theorem 4.10/[2]. Let (A , / ) G %. 

1° If (A,f) is of type a, then EQ(f) = {/,</}, wijere dom g = rng/ and 
g(f(a)) = a for each a G dom f. 

2° If (A J) is of type r witij a G A such that / (a) = a, then .£(?(/) = {/,#}, 
wijere (A,g) is of type w with g(a) = a. 

3° If (A J) is of type TT witij a e A such that / (a) = a, then £<?(/) = {/,#}, 
where (A, f) is of type r with g(a) = a. 

4° If(A,f) is of type 6, then EQ(f) = {/,</}, where (A,g) is of type 7. 
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Figure 1. 

5° lf(A,f) is of type 7, then EQ(f) = {/,#}, wAere (A,g) is of type S. 

6° Otherwise EQ(f) = { / } . 

The following assertions can be proved quite analogously as the assertions 1.1-1.4 
and 1.7-1.9 of [2]. 

1.1. Lemma. Let (A,f) e %. Then EQc(f) = {g G Qc(f):Qc(f) = Qc(</)}-

1.2. Lemma. Let (A J) € *&. tf</ € £<?c(/), t/ien £QC(/) = Egr(c/). 

1.3. Lemma. Let (A,f) e %. Then EQc(f) C EH(f). 

1.4. Corollary. Let (A, f) € %. Then EQc(f) n / / ( / ) C K//0(/). 

1.5. Lemma. Let (A,f) e % be neither of type r nor of type n, and let 

g e E(A). lfg G EQc(f), then (A, f) and (A,g) have the same component partitions. 

1.6. Lemma. Let (A,f) e % he neither of type T nor of type n, let B he a 

component of(A,f) and g e EQc(f). Then Qc(gs) = Qc(fn). 

1.7. Lemma. Let (A,f) 6 % Then | |KQC(/)| | ^ c. 

We will also apply some results of [3]. The notions used in the present paper differ 
from those in [3] only in the point that now we write E11(f) instead of Eq(f) (used 
in [3]). 
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2. SOME AUXILIARY RESULTS 

In this section we assume that (A,f) G Up. 

2.1. Lemma. Suppose that (A,f) contains a cycle C with \\C\\ = p > 1 and let 
A e Qc(f)' Further suppose that x e COdom A, h(x) G dom / and fk(h(x)) G dom/ 
for k = 0, 1, . . . , / > - 2. TAen C C dom A and A(C) is a cycle such that \\h(C)\\ 
divides p. 

P r o o f . Let us show that C C dom A. We have f(x) G dom A, because / G Q(h) 
(cf. (A3)). Further h(f(x)) = f(h(x)) e dom/ by assumption. Since / e Q(h), we 
obtain f2(x) G dom A and h(f2(x)) = f(h(f(x))) = f2(h(x)). By induction we get 
that fk(x) e dom A and A(/*(*)) = f(h(fk~l(*))) = . . . = fk{h(x)) for k = 3, . . . , 
p — 1 in the same way. 

To complete the proof we will prove that fp~x(h(x)) e dom/ and fp(h(x)) = h(x). 
The relations h(fp-](x)) G dom/ and h(fp(x)) = f(h(fp'l(x))) are valid, because 
A € Q(f) and / ^ ( a r ) € d o r n / a n d P^i^Pi*) € dom A. Further h(fp"l(x)) = 
/*- !(fc(*)) € dom/ and /*(*(*)) = W W * ) ) ) = f(h(fp~l(*))) = M/p(*)) = 
h(x), as desired. D 

2.2. Lemma. Let A G Qc(/) and Jet B be a component of (A,f) possessing a 
cycle C with a period p, p > 1. Further let x G BfldomA be such that h(x) e dom/ 
and fk(h(x)) e dom/ for eacA k e N. TAen {fk(x): k e N0) C dom A and A(C) = 
C, where C is a cycle belonging to a component B1 of(A,f), IJC'II divides ||C|| and 
{ A ( / * ( * ) ) : * € N 0 } C # ' . 

P r o o f . Let m be the least non negative integer such that fm(x) G C. We can 
show that fk(x) e dom A and h(fk(x)) = fk(h(x)) for k = 1 , . . . , m in the same way 
as in the proof of the assertion above. Therefore {x,f(x),.. ,fm(x)} C dom A and 
the A-image of {x, f(x),..., fm(x)} belongs to one component of (A,f). Further 
fm(x) e C and the previous lemma implies C C dom A and A(C) = C, where C is 
a cycle of (A,f) with a period q, q divides p. Assume that C C B1, where B' is a 
component of (̂ 4, / ) . We conclude now {fk(x) : k e N0} U c C dom A and h({fk(x): 
keNQ}) = h({x,f(x),...,f'n(x))uC)CB'. D 

2.3. Lemma. Let (B,fB) be a subalgebra of(A,f) and A G Qc(f)- Then 

{[*./i(*)]: x e B,h(x) eB}e Qc(fB)-

P r o o f . Let A = {[x,h(x)]: xe BJi(x)e B}. It is easy to see that AG Q ( / B ) -

Consider x G dom A and x, h(x) G dom/. Since / G Q(A) (due to (A3)), we 
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have f(x) e d0™'* and h(f(x)) = f(h(x)). Further h(x) E B yields f(h(x)) E B. 
Therefore A(/(x)) € .9 and f(x) E dom A. D 

2.4. Lemma. Let (A , / ) be not of type T and let each component of(A,f) have 
only one element. Then EQc(f) = EQ(f). 

P r o o f . First notice that Q(h) = Qc(h) if h is the identity on some B C A, 

because g E Q(h) implies h E Q(g)-

Suppose that g E EQ(f). The algebra (A,g) consists of one-element components 

according to 4A0/[2]. Thus EQ(f) = {g E Q(f): Q(f) = Q(g)} = {g E Qc(f): 

Qc(f) = Q(9)} = {ge Qc(f): Q c(/) = Qe(^)} = EQc(f), as desired. D 

2.5. Lemma. Suppose that (A,f) E "?/ and (A,f) contains a component with 

more than one element. Then EQc(f) C EHo(f)-

P r o o f . Consider h E Qc(f) - H( / ) . We will show that h £ EQc(f). 
Choose yo £ dorn A. First assume that /(yo) ^ yo- To argue the desired conclusion 

Qc(/0 # Qc(/) define <p E F(A) as 9 = Uy0,yo}}. Then 9 E Qc(h), because the 
conditions <p E Q(A) and A E Q(^) are trivially satisfied. But y0 E dom<p, dom / = A 
and /(y<>) g dom (p. Therefore / £ Q(<p), which implies that 9 £ Q c( / ) by (A3). 

Now let f(yo) = y0. There exists y E -4 such that /(y) 7̂  y by the assumption. 
Consider y E dom A. (If y £ dom A we can use the previous part of this proof for 
yQ = y.) Let us define V € K(-4) such that dom^ = {fk(y)' * € N0}.U {/*(A(y)): 
Ar E No} and ij)(z) = y0 for each z E d o m f We have ip £ Q(h), because y E dom A 
and y,h(y) E dom^ and V;(y) £ dom A. If -r E dom^, then f(x) E dom^ and 
xl)(f(x)) = yo = f(*p(x)). Thus we can conclude ip E Qc(f)- • 

2.6. Lemma. Suppose that (A,f) is of none of the types r, TT am/ 6 a;jd a E -4 
is such that f(a) = a. /f y E EQc(f), then a E domy arid y(a) = a. 

P r o o f . Let B = K/(a). The algebra (-4,y) has the same partition into compo­
nents according to 1.5. Thus B is a component of (Ay) . We have Qc(fs) = Qc(gB) 

by 1.6. First we will show that a E domy. 
Assume that ||H|| > 1. The relation EQc(fB) C EH0(fB) is valid by 2.5. We get 

gB € H(/B) and a E domy. 
Further let B = {a}. Suppose that a £ domy. Since (A,f) is not of type b, we 

can choose y E A such that either y £ dorn/ or f(y) ^ y. Define <p E E(A) such 
that <p = {[a,y}}. Then 9 E Qc(g)-Q(f) C Qc(g)-Qdf) according to (Al), which 
contradicts the hypothesis y E EQc(f). 

It remains to show that g(a) = a. Consider V = {[a>°]}- Then tp E Qc(/) = Qc(g)-
This implies y(a) = a, because a E dom^ and a, xp(a) E domy. D 
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2.7 . L e m m a . Let (A,f) be of type n. Then EQc(f) = { /} . 

P r o o f . Assume that g E EQc(f). 

If domy = 0, then 2.4 and 4.10/[2] imply EQc(g) = EQ(g) = {g,g'}, where 

domy' = A,g'{y) = y for each y E A. This contradicts the relation / E EQc(g) 

(cf. (A2)) . 

If (A,g) contains a component with more than one element, then EQc(g) C 

EHo(g), therefore / E EH0(g), thus (A,f) E W, a contradiction. 

We have domy ^ 0 and (/(y) = y for each y E domy . Denote by a an element 

of A, such that dorn/ = {a} ((A,f) is of type 7r). Let y -̂  / . Then we can choose 

x £ A such that x E domy — d o m / . Define y? = {[«,£]}• Then <p E Qc(g) ~ Qc(f), 

a contradiction. 

We conclude y = / as desired. • 

2 .8 . L e m m a . Let (A,f) be of none of the types r , w, 7 and 6. If g E EQc(f), 

then (A,g) is of none of the types r , 7r, 7 a/id o\ 

P r o o f . If (A,g) is of type <5, then 2.4 implies EQc(g) = EQ(g). Thus / E 

EQ(g) (by (A2)) and ( .4 , / ) is of type 7 by 4.10/[2], which is a contradiction. If (A,g) 

is of type 7, then 2.4 implies EQc(g) = EQ(g), thus / E EQ(g) and (J4, / ) is of type 

5 by 4.10/[2], a contradiction. If (A,g) is of type r, then EQc(g) C EHo(g) = {y} 

by 2.5 and Th . 3/[3]. Hence (A,f) is of type r, because / E EQc(g). If (A , y ) is of 

type 7T, then (-4 , / ) is of type n by 2.7 and this completes the proof. D 

2 .9 . L e m m a . Assume that (A,f) is of none of the types w,y and S and a E A 

with Kj(a) = {a}. Further let g E EQc(f). 

a) If f(a) = a, then g(a) = a. 

b) If a £ d o m / , then a £ domy . 

P r o o f . It follows from 1.5 that (-4, / ) and (A,g) have the same component 

partitions, thus {a} is a component of (A,g). Therefore either a £ domy or g(a) = a. 

If f(a) = a, then g(a) = a by virtue of 2.6. Let a £ d o m / . Then (A, f) is not of 

type r . Assume that g(a) = a. According to the assumption and in view of 2.8 we 

obtain that (A,g) is of none of the types r, ir, 7 and 6. We can use 2.6 with / and 

y interchanged; this implies a E d o m / , a contradiction. • 
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3. ALGEBRAS WITH A CYCLE IN EACH COMPONENT 

For p £ N let 0\p) be the system of all connected monounary algebras (A, f) such 

that (A, f) contains a cycle C with | |C| | = p and f(x) £ C for each x £ A. 

In this section we assume that ( -4, / ) £ 9/ and each component of (A,f) has a 

cycle. 

3 . 1 . L e m m a . Let (A,f) £ 0(p) for some p £ N and let t £ N be such that 

(t,p)=i,0<t< p. Then Qc(p) = Qc(f). 

P r o o f . Suppose that C is a cycle of (A, / ) . Since (t, p) = 1 the set C is a cycle 

of (A,fl) and there exists k £ N such that fkt(x) = / ( x ) for each x £ A. 

First we prove that Q c( /*) C Q c ( / ) . Let >̂ £ Qc(f
1)* If domy? = 0, then 

<p £ Qc(f). Consider domy? -̂  0. Then ar £ dom<^ implies fl(x) £ dom^> and 

fnt(x) £ domy? for each n £ N by induction. We have f(x) = fkt(x) £ domy?. 

Further / O ( x ) ) = /"(?(*) ) = f^'Wi*))) =••• = <P(f\*)) = M*)) We 
conclude <p £ Qc(f). 

To complete the proof let us show that Qc(f) C Qc(f
1)- Assume that p £ Qc(f), 

doiny? -̂  0. We have C C domy? and thus fn(y) £ dom^> for any y £ A and n £ N. 

Choose x £ domy?. We get <p(fl(x)) = / ( ^ ( / ' - l ( ^ ) ) ) = • = /'(<?(*))• • 

3 .2 . L e m m a . Let (A,f) £ "?/c and ||A | | > 1. lf(A,f) £ <?(p) for some p £ N , 

p > 2, t/ie/i tfQct/) = { / ' : 0 < t < p, (t,p) = 1}; otherwise EQc(f) = { / } . 

P r o o f . If there exists p £ N ,p > 2 such that (-4, /) £ ^(p) then the inclusion 

{ / ' : 0 < t < p,(t,p) = 1} C EQc(f) follows, and the converse inclusion is obtained 

by 2.5 and Th .2/[3] . In the other case we have EH0(f) = { / } according to Th.3/[3] 

and EQc(f) = { / } according to 2.5. D 

3 .3 . N o t a t i o n . Let B and C be components of (A, f) which have cycles with the 

period p or q, respectively. Further let g £ E(A) be such that B, C are connected 

components of(A,g). Consider the following conditions: 

(al) lf(B,fB) t ^ ( P ) a " r f 4f/P. tlieii 9c = fc-

(o2) lf(B, / # ) £ 0(p), q > 1 andp/q, then there exists n £ N such that 0 < n < q, 

(n, q) = 1, n = 1 (mod p) and gc = fc. 

(P) lf(B,fB) £ O'(p), (C,fc) £ 0\q), p > I, q > 1 and q/p, then there exists 

n £ N such that 0 < n < p, (n,p) = 1 and gc = /£., g# = / £ . 

3 .4 . T h e o r e m . Suppose that (A,f) fails to contain only one-element compo­

nents. Let g £ F(A). Then g £ EQc(f) if and only if 

(i) (A, f) and (A,g) have the same partition into components, 
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(ii) if B is a component of (A J), then Qc(fB) = Qc(gB), 

(iii) if B,C are components of (A J), then the conditions (al) , (o;2) and ((5) are 

satisfied, 

(iv) if {a} is a component of (A J), then a £ domg. 

P r o o f . Assume tha t g £ EQc(f). Then 2.5 yields that g £ EH0(f). If (A J) 

is of type r , then Th.3/[3] implies EQc(f) = EH0(f) = {f},g = f, thus (i)-(iv) are 

trivially satisfied. Assume that (A J) is not of type r . The assertions (i) and (ii) 

are valid in view of 1.5 and 1.6. Since g £ EH0(f), we obtain that (iii) is satisfied 

according to Th.4/[3] . Further, doing = A, thus (iv) is valid. 

On the other hand, suppose that g £ F(A) is such that (i)-(iv) are satisfied. We 

will show that Qc(f) = Qc(g)-

Assume that <p £ Qc(f)- Let x £ d o i n ^ f l B, where B is a component of (A J). 

Then { / ' (*) : i £ N} C domy?. If (BJB) £ 0\p) for p £ N , p > 1, then gB = / £ 

for some 0 < k < p, (k,p) = 1 by virtue of (ii) and 3.2. Thus gB(x) = g(x) belongs 

to the cycle of (BJB),gB(x) £ domy?. If (BJB) £ 0(p) for any p £ N - {1}, then 

gB = fB according to 3.2 and thus g(x) = f(x) £ d o i n ^ . 

Let us prove that <p £ Q(g). Assume that (BJB) contains a cycle with a period 

p and let x £ doing ,g(x) £ domy?. 

a) Suppose that p = 1. If | |fl | | = 1, then gB(x) = x = fB(x), i.e., gB = fB, since 

B is a component of (A,g) by (i) and x £ dom^r. If | |B | | > 1, then (ii) and 3.2 

imply gB = fB. Since <p £ Qc(f),<p(x) belongs to a component C of ( A / ) , which 

possesses a one-element cycle. As above, if | |C | | > 1, then gc = fc. If | |C | | = 1, then 

(iv) implies <p £ doing, thus gc = fc. We obtain g(<p(x)) = gc(<p(x)) = fc(<p(x)) = 

f(<p(x)) = p(f(x)) = p(fB(x)) = p(gB(x)) = <p(g(x)), since <p £ Q(f) (by (Al ) ) . 

b) Now let p > 1 and (BJB) (£ O(p). We obtain gB = fB according to (ii) and 

3.2. Further <p(x) £ C, where C is a component of (-4, /) with a cycle with a period 

q,q/p in view of 2.2. We get gc = fc by ( a l ) . Then g(<p(x)) = <p(g(x)) similarly as 

in a). 

c) Let p > 1 and (BJB) £ 0(p). We have <p(x) £ C, where C is a component of 

(A J) with a cycle with a period q,q/p. 

Let (CJc) £ 0"(q). There exists n £ N such that 0 < n < p, (n,p) = 1 and 

gB = fB, gc = fc by v i r t u e o f (P)- U s ^ g <P € Q(f), w e get g(<p(x)) = gC(<p(x)) = 

KM*)) = fn(p(x)) = fn-l(<P(f(x))) = • • • = P(fn(x)) = <p(f£(x)) = p(gB(x)) = 

p(g(*))-

Let (CJC) £ O(q). By (cv2) we get gc = fc and gB = fk
B for some fc £ N, 

0 < fc < p, (fc,p) = 1, fc = I (mod q). We get p(g(x)) = <p(fk
B(x)) = fk(p(x)) = 

/ c ( ^ W ) = fc(<p(x)) = gc(<p(x)) = g(<p(x)). Therefore <p £ Q(g). Since we have 
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g(x) G dom(p and <p(g(x)) = g((p(x)), we obtain # G #(<£) and hence y? G Qc(g), 

which completes the proof of the relation Qc(f) C Qc(g)-

Now let us prove the inclusion Qc(g) C Qc(f)> First assume that there is a G 

A — dom </. The element a belongs to a component B of (A, / ) ; I? is a component of 

(A,g), since (i) is valid. Then Qc(fB) = Qc(gB) in view of (ii). It follows from (iv) 

that | | £ | | > 1. According to 2.5 we obtain EQc(fB) C EH0(fB), thus gB G EH0(fB) 

and (B,gB) is a complete monounary algebra, which is a contradiction. Thus A = 

dome/, (A,g) G <?/. The condition (i) implies that (A,g) contains a component with 

more than one element. Let us denote by (i /)-(iv /) the conditions analogous to the 

conditions ( i)-( iv) , where / and g are interchanged. Then (i) and (i') are identical. 

Using (i) we obtain that (i) and (ii) are equivalent to (i') and (ii'), and (i) and (iii) 

are equivalent to (i') and (iii') (notice that if gc = /£> then there is j with fc — gc). 

Further, (A,f) is complete, thus a G d o m / for each a G A and obviously, (iv7) is 

satisfied. Therefore (i ' )-( iv ') are valid. Under these assumptions we obtain tha t 

Qc(g) C Qc(f), using what we have proved above if we interchange / and g. 

Hence Qc(f) = Qc(g). D 

3.5 . Corol lary. Assume that (A,f) contains a component with more than one 

element. Then EQc(f) = EH0(f). 

P r o o f . If g G EQc(f), then 2.5 yields g G EH0(f). Let g G EQc(f) - EH0(f). 

Then dom</ ^ A and there is a G A — dom</. It follows from 3.4 (iv) that {a} is not 

a component of (A, f) and the element a belongs to a component B with \\B\\ > 1 

(B is a component of (A,f) and of (A,g) too, with respect to 3.4(i)). Then 3.4(ii) 

implies Qc(fs) = Qc(g&) and by 2.5, gs G EQc(gB) C EH0(fB), a contradiction, 

since (B,gB) is not complete. D 

3.6 . Corol lary. There exists a countable set A and a unary operation f on A 

such that | | K Q , ( / ) | | = c. 

P r o o f . Let {pn : n G N} be a set of primes greater than 2. Define a monounary 

algebra ( . 4 , / ) such that (A,f) consists of components An,n G N, which are pn-

element cycles of ( A , / ) . Then EQc(f) = EH0(f) by 3.5 and Th.5.2/[3] implies tha t 

||K//o(/)|| = c. • 
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4 . PARTIAL ALGEBRAS WITH A CHAIN 

In this section we suppose that (A,f) G ^/P and (A,f) contains a component B 

without a cycle such tha t ||£J|| > 1, i.e., ( -4 , / ) contains a chain as its subalgebra . 

4 . 1 . L e m m a . If d o m / B 7- B, then EQc(fB) = {fB}. 

P r o o f . Let g G EQc(fB),g / fB. The algebra (B,g) is connected by 1.5 and 

thus \\B-Aon\g\\ <$ 1. If doing = B, then EQc(g) C EH0(g) by 2.5. But fB £ H(g) 

and therefore Qc(g) ^ Qc(fs)y a contradiction. Thus \\B — dom</|| = 1. 

Let us denote by a, 6 such elements of B that a £ dom fB,b £ dome/. If a = 6, 

then we will show that g = fB and if a 7- 6, then we will show that Qc(fB) ^ Qc(g)\ 

this will complete the proof. 

Let a = b. Since (B, fB) is connected and CIOHI/B ^ B, for each x G B there is a 

uniquely determined number k G N 0 such that fk(x) = a. Proceeding by induction 

with respect to k we will prove that g(x) = fB(x) for each x G B. 

Let k = 1 and x G B be such that fB(x) = a. Let g(x) ^ a. Define <p = 

{[a, a], [x,x]}. Then p G QC(JB). Further <p(x) = x,x G doni(/ and g(x) £ domp, 

because (B,g) contains no cycle and g(x) ^ a. Thus g £ Q(<p) and <p £ Qc(fB) — 

Qc(g) according to (A3), a contradiction. We conclude g(x) = a. 

Now assume that for 0 < s < k,fB(y) = a implies fB(y) = g(y) for y G B. Let 

x G B be such that fB(x) = a. We get fB(JB(x)) = g(fB(x)) = fB(g(x)) according 

to fB(x) = fB'l(fB(x)) = a,g G Q(fs) (cf. ( (Al) ) and the induction hypothesis . 

Further fk
B^(g(x)) = fk

B'2(fB(g(x)) = fk
B(x) = a and fB(g(x)) = g(g(x)) = g*(x) 

by assumption. We have fl(x) = g2(x) = fB(g(x)) = g(fB(x)). 

Let fB(x) ^ g(x). Define V = {[fs(x), f*(x)]: s = 0, 1, . . , , k). Then ^ G Qc(fB). 

Further x G dom I/J D clonic, %l>(x) G domr/ and g(x) £ d o m 0 , because g(x) ^ f(x) 

and fk"x(g(x)) = a. Thus g £ Q(4}) and i/> £ Qc(g) by (A3). This is a contradicton 

and consequently g(x) = fB(x). 

Now consider a -7-. 6. Denote V = {x G B: gk(x) = a for some k G N 0 } . We have 

a G V, 6 £ V. Define C = {[2/, y]'. y G -9 - V). Let ?i be the least natural number such 

that fl(b) G V. Pu t a0 = / £ ( 6 ) and 60 = fB~x(b). We obtain / B £ Q(Q and thus 

C £ Qo(//?), because 60 G clornC n d o m / B , C ( M = b0 and fB(b0) = a0,a0 g doniC-

If x G doniy and x,g(x) G clomC, then Q(x) = x G domg and C(g(x)) = g(x) = 

g(Q(x)). Hence C G £?(«/). If x G clomy n d o m C a i-d C(*) G clom^, then x £ V. T h a t 

means tha t there exists no k G N 0 such that gk(x) = a. This yields g(x) £ V and 

thus g(x) G domC-

We have shown C € Qc(g) - < ? C ( / B ) . D 

4 .2 . L e m m a . Let d o m / B = B . T/ien EQc(fB) = {fB). 

235 



P r o o f . Since domfB = B, 2.5 implies EQc(fB) C EHo(fB)- Thus it suffices 

to investigate the case when EH0(fB) # {fB}. Th.2/[3] implies that B = (J {XJ}U 

Bj,Xj £ Bj and fB(bj) = £j + i for each bj G {XJ}U Bj,j G Z, where x, -^ Xj for t -^ 

j , i,j G Z. According to this theorem EHo(fB) = {/#,flf}, where </(&j) = arj_i for 

each 67 € {XJ}UBJJ G Z. 

We will show that Qc(fB) ?- Qc(g). Define <p(bj) = bj for j G N 0 , &, G {xj} U H;. 

It is obvious that (p G Qc( /B ) . We have <^(^0) = xo, </(*o) = £_i and </(xo) £ don\<p. 

Therefore g $ Q(<p) and <p £ Qc(g) by (A3). Hence g £ EQc(fB), i.e. EQc(fB) = 

{fB}. • 

4 . 3 . T h e o r e m . lf(A,f) contains a subalgebra which is a chain, then EQc(f) = 

{/}• 

P r o o f . Let g G EQc(f),g -^ / . The algebra (A,g) has the same partition 

into components by 1.5 and Qc(fc) = Qc(gc) for each component C of (A,f). Let 

(B,fB) be a component of ( A , / ) which contains a chain. Then gB = fB in view of 

4.1 and 4.2. 

Suppose that x G A and either r/(x) ^ f(x) or x G (dorn r/ — d o m / ) U ( d o m / — 

domjr). Let C be a component of (A , / ) such that x G C. If a component C contains 

a chain of (A, / ) , then EQc(fc) = {/c} by 4.1 and 4.2 and gc = fc> & contradiction. 

Thus either \\C\\ = 1 or (C, fc) has a cycle. According to the assumption, (A, f) is of 

none of the types 7T, 7 and 6 and then 2.9 yields that | |C | | > 1 (using the properties 

of the element x). Then 3.2 implies that (C,fc) G 0\p) for some p G N, p > 2 and 

tha t g = f \ 0<t <p, (t,p)= 1. 

Choose z G BDdomf. Define <p = {[z,x]} U {[/*(*), / * ( * ) ] : ifc G N , / * " 1 ^ ) G 

d o m / } . Clearly <£> G Qc(f)- We have r G dom*/ and z,g(z) G d o m ^ , because 

z G d o m / and gB = fB. But v?(~) G doin^, #(<£>(-:)) = </(x) = f\x) and v?(.7(~)) = 

<p(f(z)) = f(x). Since 1 < t < p we see that g(<p(z)) 7- <p(#(-0)- Thus <p £ Q(g) and 

g c ( / ) ^ Q c(g) (cf. (Al ) ) , a contradiction. D 

5. T H E REMAINING CASE 

If (A,f) is a complete monounary algebra, then either each component contains a 

cycle or some component contains a chain. The first possibility was investigated in 

Section 3, the second in Section 4. Thus we shall study (A,f) G ̂ /v — *?/. Further, 

if a component which has nonempty intersection with A — d o m / has more than one 

element,then ( -4 , / ) contains a component with a chain, which was investigated in 

Section 4. If (A,f) contains only one-element components and is not of type 7r, it 

was studied in 2.4. If (A,f) is of type TT, it was studied in 2.7. 
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Let (A,f) G Wp. Put A2 = domf, A\ = A - d o m / . Therefore, the remaining 

case we ought to study is as follows: 

(1) A!* 9, 
(2) if B is a component of (A,f) with BC\AX ^ 0, then ||i9|| = 1, 

(3) M ± 0, 
(4) if B is a component of (A,f) with B C\ A\ = 0, then B contains a cycle of 

(A/), 
(5) there exists a component B of (A,f) with | |B| | > 1. 

In this section we will assume that ( l ) - (5 ) are valid. 

According to the assumption (5), the assertions 1.5 and 1.6 yield that if g G 

EQc(f), then (A,g) has the same partition into components as ( -4, / ) and each 

component has the same system of closed quasi-endomorphisms with respect to / as 

with respect to g. 

5 .1 . L e m m a . Let g G EQc(f). Then domg = d o m / and if x G A2, then either 

g(x) = f(x) or g(f(x)) = x. 

P r o o f . Consider g -̂  / . The assumptions of 2.9 are satisfied and we see 

that dom</ C\ A\ = 0 . Let B be a component of (A,f) (i.e., B is a component of 

(A, </)). If ||J3|| > 1, then B C A2 and the relation Qc(fs) = Qc(gn) and 2.5 imply 

that domgn = B. If B = {a} and / ( a ) = a, then 2.9 yields g(o) = a. Therefore 

domg = A2 = d o i n / . 

Let a 6 -42 be such that g(a) -̂  f(a) and g(f(a)) / a. Suppose that a belongs 

to a component C of ( -4 , / ) . Then | |C| | > 1 and it follows from 3.2 that (C,fc) G 

0\p) for some p G N , p > 2 and gc = / c f° r some 0 < t < p, (t,p) = \. Then 

</(a) -̂ a. Choose z £ A\. Define >̂ = {[a, z], [/(a), z]} . We have <p £ Qc(f), because 

a G d o m / , a , / ( a ) G dom<p and <p(a) = z,z £ domf. Assume that x G domg and 
XJ9(X) £ dom^. Thus x -̂  a, because (/(a) ^ a,</(a) ^ / ( « ) , i.e. 0(a) £ dom<p. 

Hence ;r = / ( a ) and g(f(a)) G doni<.p, then g(f(a)) = / ( a ) . This means that the 

component C contains a one-element cycle, a contradiction. We have proved that <p 

is a trivial element of Q(g). Since <p(y) = z £ domr/ for any y G dom<£>, we obtain 

the relation g G Q(p), and hence y? G Qc(g)- This is a contradiction, Qc(f) ^ Qc(g)-

D 

5.2 . Corol lary. Let J5 C ^42 be a component of(A,f), g G EQc(f). 

(i) //* H is a cycle with \\B\\ = p, then either g& = / a or gB = Z^" 1 . 

(ii) If B is not a cycle,then g& = / # . 

P r o o f . Suppose that gB ^ fB. Since gB G EQc(fD), it follows from 3.2 that 

(H, fo) G ^(p) for some p G N, p > 2 and </# = / # for some 0 < * < p, (t,p) = 1. 
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This implies (B,gB) G 0\p) and a £ B belongs to the cycle of (B,fs) if and only 

if a belongs to the cycle of (B,gs). Further g(y) ^ f(y) for each y € B. According 

to 5.1 we have g(f(y)) = y. Thus t = p — 1 and every element of B belongs to the 

cycle of (B,gs). • 

5.3 . L e m m a . Let g G F(A). If 

(a) domg = d o m / , 

(b) gA2 € EQc(fA2), 
(c) for x e A2 either g(x) = f(x) or g(f(x)) = x, 

then g G EQc(f). 

P r o o f . Notice that A2 = d o m / = domr/. First let us show that Qc(f) C 

Qc(g). Consider <p G Qc(f). Let x £ dom <p, x, <p(x) G dom^r. Put <p = {[a, <p(a)]: 

a G A2, <p(a) G ^ b } - This mapping belongs to Qc(fA2) by 2.3. Thus (p G Qc(</>t2) by 

(b). Since x £ dom<p, we obtain </(x) G dom<£ C dom<p and g(<p(x)) = g(<p(x)) = 

< (̂flf(a;)) = <p(g(x)). Therefore g G Q ( ^ ) . Now let y G dornt; and y,g(y) G d o m 9 . 

By (c) we have either g(y) = f(y) or g(f(y)) = y. If g(y) = f(y), then the relation 

<p G Q ( / ) implies that <p(y) G d o m / and according to (b) we obtain that <p(y) G 

domg and g(<p(y)) = <f(g(y)). Let g(y) 7- f(y), i.e. g(f(y)) = y. Assume that B is 

a component of (A,f) such that y G -9. Since (b) is valid, we have </# G EQc(fs) 

and then 3.2 yields that g# = / # , 1 < ^ < p, where p > 2 is a period of a cycle in 

H. In view of the fact that ##(/#(*/)) = 1/ we conclude that k = p — 1 and hence 

fs(9B(y)) = fB(fPBX(y)) - y- P u t 0(2/) = «• Then a G d o m / , a, / ( a ) G c l o n i c 

thus the relation <p G Q ( / ) (cf. (Al ) ) implies that <p(y) G d o m / and in view of (b) 

we obtain tha t <p(y) G dom g,g(<p(y)) = <p(g(y)). Therefore <p G Q(#) and hence 

9 G 0c (0 ) . 
The proof of the inclusion Qc(g) C Qc(f) is analogous. D 

5.4 . T h e o r e m . Let g G F(-4). TJieu g G F<?c(/) if and ou/y if 

(a) dom </ = dom / , 

(b) gM € £oc(E.J, 
(c) for x G A2 either g(x) = / ( x ) or g(f(x)) = i . 

P r o o f . According to 5.1 and 5.3 we have to prove only that g G EQc(f) implies 

9A2 G EQc(fA2)' We will show (i)-(iv) from 3.4 (with A replaced by A2). 

As we have remarked before 5.1, the conditions (i) and (ii) are satisfied. The 

condition (iv) follows by 2 .9 . Let g G EQc(f). 

Suppose tha t B and C are components of (A2,JA2) which have cycles with the 

period p or q, respectively. To prove the condition ( Q 2 ) suppose that (B,JB) $. 
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0(p),q > 1 and p/q. If gc i=- fc, then C is a cycle and gc = fc~l by virtue of 5.2. 
We will show that gc = / £ " implies q — 1 = 1 mod p. Choose x £ B, y £ C such 
that they belong to cycles. Define A' = {[gk(y), gk(x)]: k = 0, 1,..., q — 1}. Then 
A' G Qc(y). Using Q c ( / ) = Qc(y) we have gB(x) = </(*) = hf(g(y)) = A'(</C(y)) = 
V{fh~\y)) = A'(/^!(y)) = /(A'(/*'2(y))) = ... = / ' - ^ ' ( y ) ) = /T'OO- Since 
9B = /B , w e obtain </ — 1 = 1 mod p. 

Now let us show that if gB = fB and <//p, then gc = / c - Suppose that gB = / a 
and <//p. Choose x G -9, y G C such that .r and y belong to the corresponding cycles. 
Define A = {[/*(*),/*(y)]: i = 0 , . . . , p - l } . Then A G Q c ( / ) . Using Qc(f) = Qc(y) 
we obtain fc(y) = /(y) = h(f(x)) = A(/B(ar)) = A(</B(.r)) = 9c(h(x)) = y c(y). In 
view of (ii) and 3.2 we conclude that gc = / c -

If (B,fB) £ #(p) and <//p, then y# = fB by (ii) and 3.2. Thus gc = / c and this 
gives (a l ) . 

Finally, let (B,fB) G ^ (p ) , (C , / c ) G ^(^))P > l,g > 1 and q/p. The relation 
p - 1 = ^ — 1 moda holds. We have shown that gB = fB implies gc = fc- We need 
to show that if gB = f^~ and /£"" = /^~ then yc = /c~ • Using the mapping 
A G Qc(f) from this proof we have yc(y) = yc(A(x)) = h(g(x)) = h(gB(x)) = 
A(/rX(^)) = /(A(/p"1(^))) = ... = /p-!(A(x)) = fpc~x(y). This completes the 
proof of (/3) and of the theorem, too. D 

6. T H E RELATIONSHIP BETWEEN EQ(f) AND EQc(f) 

6.1. Lemma. Suppose that (A,f) is of type a and (A,f) contains no chain as 

its subalgebra. Further let g G E(A) be such that domy = dom/ and g(f(x)) = x 

for each x G dom/ . Then g G EQc(f). 

P r o o f . We have d o m / -̂  0 by the definition of an algebra of type a. Denote 
A2 = dom/ . We will verify (a)-(c) from 5.3. To prove (b) we will show (i)-(iv) 
from 3.4 for the algebra (-42»/^2) and the mapping gJ\2. By the assumptions of the 
lemma (a), (c), (i), (ii) and (iv) are valid. We need to show (a l ) , (a2) and (/i) for 
(A2JA2) and gA2. 

Assume that B and C are components of (A, f) which have cycles with the period 
p or q, respectively. The conditions (a l ) , (a2) are trivially satisfied, because each 
component of (A, f) is an element of (?(r) for some r G N. Suppose that p > 1, q > 1 
and q/p. We know that gB(fB(x)) = x for each x G B and therefore gB = /£"" . In 
the same way gc = / £ " . Since q/p, we get </ — 1 = p — 1 mod</. Analogously as in 
the previous proof we conclude gB = /£~ l and gc = / c " 1 - D 
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6.2. Propos i t ion. 

(1) Let (A,f) be of type a and contain a chain. Then EQc(f) = {/} according 

to 4.3 and \\EQ(f)\\ = 2 by 4.10/[2]. 

(2) If (A, f) is of type ct and contains no chain which is its subalgebra, then 

EQ(f) = {/, </}, where dom/ = domg and g(f(x)) = x for each x e dom/ 

in view of 4.10/[2], and 6.1 yields that EQ(f) C EQc(f). 

(3) lf(A,f) is either of type r or of type n, then EQc(f) = {/} by virtue of 2.5 

and 2.7. 

(4) lf(A,f) is either of type 6 or of type y, then EQc(f) = EQ(f) by 2.4. 

(5) Let (A, f) be of none of the types a, w, r, j , S. Then EQ(f) = {/} according 

to4.10/[2]and feEQc(f). 

These considerations imply 

6.3. T h e o r e m . Suppose that (A,f) e %. 

Then either EQ(f) C EQc(f) or EQc(f) C EQ(f). 
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