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Czechoslovak Mathematical Journal, 43 (118) 1993, Praha 

CYCLIC EXTENSIONS OF THE MEDVEDEV ORDERED GROUPS 

MICHAEL R. DARNEL,* South Bend 

(Received April 30, 1991) 

S E C T I O N O N E : I N T R O D U C T I O N AND B A C K G R O U N D 

An i-variety is a class of lattice-ordered groups defined by a set of equations . Any 

^-group law can be expressed in the form "w(x) = e," where w(x) is an element of the 

free J?-group on a countable set X of free generators; w(x) has, then, a (nonunique) 
_ • m n p £ 

standard form w(x) = V A 11 xijJk > w n e r e eijk = ± 1 and Xijk G X U {e} . An 
» = i j = i j f e = i 

^-group G satisfies "w(x) = e" if for any mapping of X into G, letting gijk he the 
_^ m n p 

image of xijk, w(g) = V A f l Qui* = e-
t = i i = i i k = i 

Weinberg [W] showed tha t the ^-variety sz/ of abelian ^-groups is the smallest 

nontrivial i-variety. Since ss/ is finitely based, any ^-variety properly containing 

x / contains an ^-variety minimal with respect to properly containing s/, called a 

cover of s/. Scrimger [Sc] proved the existence of countably infinitely many solv­

able covers of s/, one for each prime integer p, known now as the Scrimger covers 

5fp. These I-varieties were generated by ^-groups that are not representable: i.e., 

not representable as subdirect products of totally ordered groups. Subsequently, 

Gurchenkov-Kopytov [GK], Reilly [Rl] , and Darnel [Dl] showed that the Scrimger 

covers were the only nonrepresentable covers of s/. Medvedev [M] proved the exis­

tence of three solvable representable covers of &/. Of these, one, herein denoted ^ ° , 

is generated by the free nil-2 group on two generators a and 6, where if c = [a, 6], 

any element is of the (unique) form akbmcn, ordered lexicographically from the left 

by k, 7?i, and n. 

Describing the other Medvedev covers requires more explanation. Let A and B 

be totally ordered groups. The restricted wreath product A wr B can be ordered in 

* This research was done while the author was a Visiting Lecturer at the Department of 
Mathematics and Statistics at Bowling Green State University, Bowling Green, Ohio, 
1990-91. The author thanks the Department for it warm welcome and hospitality. 
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two ways. For g G A wr B, g = (/,&), where f:B—*A has finite support . Define 

(/>&) > (e,e) if 6 > e or 6 = e and / (6o) > e for 60 = max(supp ( / ) ) . This gives 

an o-group denoted by A wr B. A wr B is defined analogously, except (/,&) > (e, e) 

if 6 > e or if 6 = e and /(&i) > e for 61 = min(supp ( / ) ) . One Medvedev cover, 

denoted ^ + , is generated by Z wrZ, where Z is the group of integers with the usual 

order, and the order by Z wr Z. 

Two other representable covers of s/ are known at this time, based on orderings 

of the free group of rank two. Bergman [B] and Kopytov [K] independently proved 

the existence of one of these, ^ + , and by reversing the order, Kopytov [K] obtained 

the other, &~. 

The lattice of all /?-varieties is distributive, and thus if W and V are covers of s/, 

then <% W covers both "?/ and Y. Gurchenkov [Gul] proved that all /'-varieties have 

covers. Presently much more is known about the ^-varieties containing the Scrimger 

covers tha t those containing the Medvedev covers. Indeed, Holland and Reilly [HR] 

and Gurchenkov [Gu2] independently described all ^-metabelian ^-varieties whose 

intersections with the ^-variety & of representable ^-groups is the abelian ^-variety 

s/. (An ^-group G is t-metabelian if there exists a convex ^-subgroup A <G such 

tha t A and G/A are abelian. In this case, as indeed for all ^-groups, there exists a 

unique largest abelian convex ^-subgroup [H] called the abelian radical and which is 

denoted by s/(G). G is thus l-metabelian if and only if G/s/(G) G s/.) 

Darnel [D2] showed that ^ + is contained in the /'-variety «^+ generated by 

all l-metabelian o-groups G having the positive infinite shifting property: for any 

e < ft G f/(G) and e < g G G\s/(G), g~lhg >- ft; and produced laws for / T + . From 

these laws, results due to Huss [Hu] and Reilly [R2] that M+ is not closed with 

respect to lex extensions by the ordered group of integers will be proven in Section 

Three. 

A convex i-subgroup C of an ^-group G is a sublattice and a subgroup with the 

property that if e 1$ x ^ c G C, then x £C. The lattice order of G induces a lattice 

order on the set of right cosets &G(C) of C by Cx V Cy = C(x V y). A convex 

^-subgroup is prime if x Ay G C implies x G C or y G C; this is equivalent to @G(C) 

being totally ordered. Note a convex ^-subgroup P is prime if and only if for convex 

^-subgroups A and B, P C A and P C B implies P C A n B. 

S E C T I O N T W O : O - G R O U P S OF ^-VARIETIES G E N E R A T E D BY O R D E R E D G R O U P S 

The /'-variety generated by a class ^f of /'-groups is the class of all /'-groups G 

tha t are l-homomorphic images of ^-subgroups of cardinal products of numbers of ^f. 

Thus if ^f is a collection of o-groups, any o-group G in ^-Var(^f) is the /Miomomorphic 
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image of an if-subgroup 5 of a cardinal product IIAGA of o-groups {G\} C *€ by a 
prime subgroup P of S. While P is always the intersection of a prime Q of IIAGA 
with 5, in general S? need not be contained in the normalizer N\\(Q) of Q in IIAGA 

and so we can not in general substitute SQ for S and Q for P. 

Proposition 2.1. Let G be a representable l-group, S be an l-group ofG, and 
P be a prime of S. If P < S, then there exists a prime subgroup Q of G such that 
P = S n Q, S is contained in the normalizer NG(Q), and Q < SQ. In this case, 
SQ/Q a S/P. 

P r o o f . We start by replicating from [C] that there is always a prime subgroup 
Q of G such that SnQ= P. 

Let & = {C G *&(G): CnS = P}. 31 / 0 as the convex ^-subgroup of G generated 
by P is in &. Let ^ be a chain in Si. Then P C S n (J if. Suppose there exists 
9 € ( U ^ n S) \ P. Then g G C G ^ and g G S, implying g eCnS = P. Thus Si 
has maximal elements; let Q be one. 

Now suppose e = a A 6 where a,b e G\Q. Then Q C T = G(Q,a) and Q C 
fl = G(Q,b). So P C 5 n T and P C S n R. But since P is prime in 5, P C 
(S nT) n (S n R) = 5 n (T n R) = S n Q = P, an obvious contradiction. So Q is 
prime in G. 

Now suppose that G is representable and that P<S. Suppose by way of contradic­
tion that S 2 NG(Q)- Choose s E S such that s~lQs ^ Q. Since G is representable, 
either Q C s~lQs or Q C sQs"1. 

Assume Q C s~lQs. Then P C Sns~lQs = r ^ S ' f l Q J s = s~lPs = P since 
P <S. So 5 C Nc(<2) which is an ^-subgroup of G ([BKW, p. 77], [Mc], [HI], and 
[Dl]). The rest follows from the Second Isomorphism Theorem. • 

Proposition 2.1 allows us to consider only o-groups arising from quotients of 
^-subgroups of a cardinal product of o-groups by prime subgroups of that product. 
We can further specify those primes. 

Since the intersection of prime subgroups is prime, every prime subgroup contains 
a minimal prime subgroup. Conrad and McAlister [CM] showed that the minimal 
prime subgroups M of a cardinal product IIAGA of o-groups {GA} are in a one-
to one correspondence with the set of ultrafilters ^ on A; the correspondence is, 
for M, <?/M = {{A G A; there exists g G M such that #A = «}}, and for <?/, 
M<w = {g G I IAGA: {A: g\ = e} G 9/}. Since minimal primes are normal in 
representable ^-groups, this means that o-groups in ^-varieties generated by o-groups 
arise in a very natural way from quotients of ^-subgroups of ultraproducts of the 
generating o-groups. 
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S E C T I O N T H R E E : R E P R E S E N T A B L E C O V E R S OF J(+ 

In the Introduction, J(+ was mentioned as being contained in the ^-variety 

2?+ generated by all ^-metabelian o-groups G having the property that for any 

e < h e &(G) and e < g eG\ &f(G), g~lhg > h. In [D2], it was shown tha t laws 

for ^ + are: 

P r o p o s i t i o n 3 . 1 . / T + is defined by the laws: 

(i) y~lx+y /\x- = e 

(ii) [|ti;i| A|[xi ,yi] | , | iU2| A |[x2 ,y2]|] = e 

(iii) for e ^ u <Z.v, v~l\[a,b]\v ^ w_ 1 | [a,6] |u 

(iv)* | [* 3 , ft, t]\ A | ( | [* 3 , y3] | | 2 , | [x3 , y 3 ] | " 2 A e) | A \(\z\W\z\-2 A e)\ = e 

(v-7i) fore^y^x, x~](\[x,y]\ A \w\)x > (\[x, y]\ A \w\)n, n = 1, 2, 3, . . . . 

Containment of J(+ in /i7+ is obvious since Z wr Z is an ^-metabelian o-group 

hasving the infinite shofting property. 

These laws also show that J(+ is not closed with respect to lex extensions involving 

the group of integers. 

P r o p o s i t i o n 3 .2 . a) (Huss [Hu]) (Z wir ZJxZ £ J(+, 

b) (Reilly [R2]) Z x ( Z wr Z) £ J(+. 

P r o o f , (a) for G = (Z wr Z )xZ , any element is of the form ( / , m,?i), where 

/ : Z -> Z and 7?i, 7i G Z. Then tf(G) = {(f,m,n): m = n = 0} . So if h = xo, 

the characteristic function of {0}, and g = (0 ,0 ,1) , then g~lhg = h is not infinitely 

greater than /i. 

(b) For H = Z x ( Z wr Z), elements of the form (m,f,n), where 771,71 e Z and / : 

Z — Z. .c/(H) is then { (m, / , ?* ) : 7l = 0}. I f h = (1 ,0 ,0) and y = (0,0, 1), then 

9~lhg = g. D 

There is a third way to totally order ( Z w r Z ) ® Z . Define ( ( / , n ) , m ) G ( Z w r Z ) ® Z 

to be positive if n > 0, if n = 0 and m > 0, or if 71 = m = 0 and f(k) > 0 for 

k = m a x ( s u p p ( / ) ) . We will denote this o-group as Z wr(oxZ) (ZxZ) , t-ne subscript to 

denote that the wreath action is done by the upper component of Z x Z while the lower 

component has a trivial action. To be consistent with the order on Z wr( 0 x z) (ZxZ) , 

we will write an element ((f,n),m) as (f,m,n). 

P r o p o s i t i o n 3 .3 . Z wr( 0 xz) (Z^rZ) ^ J(+. 

P r o o f . Let g = (6,0, 1) and h = (6 ,1 ,0) . Then h is in the abelian radical while 

g is not, and g~*hg = h. D 

* Due to Andrew Glass 
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R e m a r k s . This author originally had a proof based on ultrapowers of ZwrZ that 
showed ZwT(0xi)(ZxZ) $ jft+. A. M. W. Glass then devised law (iv) of Proposition 
3.1 that simultaneously excluded Zx(ZwrZ), (ZwrZ)xZ, and Z wr(0xz)(ZxZ) from 
J(+. 

The following proposition, whose proof will be left to the reader, describes 
Zx(Z wr Z), (Z wr Z)xZ, and Z wr(0 x i) (2x2) in terms of generators. 

Propos i t ion 3.4. Let G be an o-group generated by elements a, 6. and c. 
a) If e < c <C 6 <C ci, [a, c] = [c, 6] = [6flm, ba ) = e for all integers m and n, and if 

6 < ba, then G S Zx(Z wr Z). 
b) If e < c <C 6 <C a, [a,c]= [a, b] = [cb , cb ] = e for all integers m and n, and if 

c < c6, then G = (2 wr Z)x 2. 
c) If e < c <C 6 <C a, [a, 6] = [6, c] = [ca , ca ] = e for all integers m and n, and if 

c^ca, then G = 2 wr(0xZ) (ZxZ). 

Definition. Y* will be the ^-variety generated by Zx(Z wrZ), Y+ the if-variety 
generated by Z wr(0xz) (ZxZ), and Y* the ^-variety generated by (Z wrZ)xZ. 

Our goal is now to show that Y*, Y+, and Yt
+ are distinct /'-varieties and to 

discuss their containments. For the discussion, recall that elements g and h of an 
^-group are a-equivalent if there exist positive integers m and n such that \h\ ^ \g\m 

andk/KH". 

Propos i t ion 3.5. Y+ C Y+. 

P r o o f . In ( Z w r Z ) i Z , let a = (6,1,0), 6 = (6,0,1), and c = (xo,0,0). Then 
6_1c6 = c, while a~1ca( /\i,0, 0). 

Note (a6)_1c(a6) = a~lca and a6 is a-equivalent to 6. 

Consider the elements a = (a, 6, (a, 6)2, (a, 6) 3 , . . . ) , 6 = (6,6,6,...), and c = 

(c,c,c,...) of Y[ [(ZwrZ)xZ]. For any nonprincipal ultrafilter 9/ onw = {0, 1,2,.. .}, 
n = 0 

the images a, 6, and c of a, 6, and c, respectively, in [ (ZwrZ)xZ] w /^ , have the prop­
erties that a ^> 6 ̂ > c, (a)~xc(a) ^> c, (b)~lc(b) = c, and a6 = 6a. So the ^-subgroup 
generated by a, 6, and c is o-isomorphic to Z wr(0xi) (ZxZ). Thus Y+ C Yt+. 

To show ^ + C Yt+, it suffices to note that Z wr(0xz) (ZxZ) satisfies (iii) of 
Proposition 3.1 while (Z wr Z)xZ does not. • 

Propos i t ion 3.6. Y+ is incomparable to Y+. 

P r o o f . For any integer n, it is easy to verify that Z wr(0 x i) (ZxZ) satisfies 
(v-n) of Proposition 3.1 while Zx(Z wr Z) does not. So Y^ <£. Y+. 

197 



The following law showing Y+ £ rf ls ^ u e to A. M. W. Glass and again replaces 
a proof by this author that used ultraproducts. 

>̂ + satisfies the law: 

«\[z, y, t}\ A KM"'.-!-1 A e)| A |(|[x, y]|'»l|[x, y ] | - 2 A e)| 

A |(|[*,»]| 1-1-^6)1 = 6." 

For in Z#(ZwrZ), if [x, t/, t] ^ e, then [x,y] ^ e and / is of the form (mi , / i ,n i ) where 
7ii 7̂  0. So if z is of the form (m2,0,0), then |(|[x, y]))!-:!""1 Ae| = e, while if z is of the 
form (m 2 , / 2 ,0 ) , then \z\M > \z\ and so | ( JJZT |**l |̂ r |"~ 2/Ve) j = e. Finally if z is of the form 
(m2 , /2,n2) , where n2 ? 0, then \[x,y]\^ > \[x,y]\ and so \(\[x, y]\^\[x, y]\~2 Ae)| = 
e. 

Now Z wr(oxZ) (Z-PZ) does n°t- satisfy this law as can be seen by using the substi­
tution x = (xo,0,0), y = t = (6,0,1), and z = (6,1,0). So r+ £ Y+. D 

Proposition 3.7. V? £ rt+. 

P r o o f . It is easy to verify that (Z wr Z) x Z satisfies the law: 

2» "fore^t/^ar, (|[x, t/]| A \c\)* V (|[x, y]| A \c])*~ > (\[x, y]\ A \c\) 

which fails in lx(Z wr Z). D 

With the aid of two lemmas, we will show that if G is an o-group in 7̂ + \ J(+, 
then G contains a copy of Zx(Z wr Z), which will then prove >̂ + covers J{+. 

Lemma 3.8. r6+ n ^+ = ^ + . 

P r o o f . Let G be an o-group in T6+ fl ^ + ; if G G «*/, then G G Jt+. So 
assume G is not abelian. Since G G ^ + , there exists a set A, an ^-subgroup S of 
IIA(Zx(ZwrZ)), and prime subgroup P of I1A(ZZ(Z wrZ)) such that G = S/P. Let 
M be the minimal prime subgroup of // = IIA(ZX(Z wr Z)) contained in P, and let 
<?/ be the ultrafilter defined by J{. 

Suppose P < Ps G sd(S/P). Then $A = ( » U , / A , « A ) I where mA,«A G Z, and /A : 
Z —> Z. Since S/P is not abelian, there exists P < Ps < Pt $ s/(S/P). S/P G ^ + 
implies Pp"1 ,*"1] < Ps < P[M~*] and hence Afp"1,*"1] < Ms < Aftp,*"1], 
giving us that {A: [ l * 1 , ^ 1 ] < sx < [ ' A , ^ 1 ] } £ ^ T h u s i A : w* = 0 and /A > 0} G 
^ . Clearly if P < Ps g d(S/P), {A: nA > 0} G ?/. 

Let Q = {<7 = (mA,/A,nA)G nA(Z*(Z wr Z)): {A:/A = 6 and nx = 0 } G ^ } ; 
since M C Q, Q is prime and so is comparable to P because M C P . Suppose 
P C Q. Now from the proof of Proposition 2.1, we can assume that P is maximal 
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with respect to P fl S being a prime subgroup of S, and s o P = Pfl5cQn5. 
Let e < s e(SC\Q)\ P. Then if Ps G .Q/(S/P), we have seen that {A: /A > 0 and 
?iA = 0} G ? / , while if Ps £ */(S/P), {A: nx > 0} € <?/• So Q C P and consequently 
5 / P is an o-homomorphic image of S/Q. 

Define <r: n A (Zx(ZwrZ)) —• IIA(ZwrZ): (mx, f\,nx)cr\ = (f\,n\). Then <r is 
an l-hornomorphism. Now for the diagram 

S/Q n A ( Z w r Z ) / ^ 

a /? 

S • nA (ZwrZ) 

with a and /? natural. Clearly Qa C Ker/? and so a lifts to an £-homomorphism ": 

5/Q —nA(ZwrZ)/«r. 
Let * G Ker/? and s G 5 0 {0*"""1- T h e n ( A : *A = (6A,0)} G ^ and so {A: 

s\ = (m\, f\,n\) with /A = OA and ?IA = 0} G ^ . Thus s £ Q and so ~ is an 
^-isomorphism. D 

Lemma 3.9. For every positive integer n, V* satisfies the iaw: 

1[r,s, t)\ A |(|[a, 6]|l-l|[«,6]|"» A e)| A |(|z|""|z|-» A e)| 

A | ( | [ o , 6 ] | | - | - 1 A c ) | = e . " 

P r o o f . Assume [r,s,/] / e ^ [a,6] in Zx(Z wr Z). If |z| = (m,0,0), then 
Ifa,^!^!"1 > e. If \z\ = ( ?" , / , 0), where / > 0, then for any ?i, \z\W > \z\. Finally, 
if \z\ = (in, f,k), when k > 0, |[a,6jW > |[a,6]|. D 

T h e o r e m 3.10. r 6
+ c o v e r s ^ * . 

P r o o f . Let G be an o-group in V^ \J(+. Then there exist e < /i G &/(G) 
and e < g E G\ &f(G) such that g~~lhg is a-equivalent to /i. 

We show first that if [a, 6] -̂  e, then h <C |[a,6]|. Suppose e < |[a,6]| ^ /i. Since 
G is not nil-2, there exist r,s,t G G such that [?*,-M] ?- e. Then t G G \ . t / (G) ; and 
since G/s/(G) is abelian, |^|'t'|flf|"n < e for all n ^ 2. Likewise, since g > |[a,6]|, 
Ifa.tJIflT1 < e and so for the law of Lemma 3.9 to hold for z = g, |[a,6]|^ > |[a,6]|n 

for all n ^ 0. Thus g~l\[a,b]\g > |[a,6]|. 
So |[a,6,g]\ ^ e. For n ^ 2 and any integer k, h~*|[a,6]|/i*|[a, 6]|~n < e, while 

g~l(hk)g being a-equivalent to h implies there exists M > 0 such that for all n ^ A/, 
(g~~xhkg)h-n < e. So again for Lemma 3.9 to hold with r = a, s = b, t = g, and 
z = h, we must have |[a, 6]| > hk for all k. 
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In particular, [g, h] = e, since g lhg being a-equivalent to h implies either [g, h] < 
h or [g, h] is a-equivalent to h. 

Thus the O-subgroup of G generated by /i, |[a,6]|, and g is (^isomorphic to 
Z i ( Z w r Z ) . D 

The proof that Y+ covers ./£+ is much the same except in one key step which 
will be pointed out later. 

Lemma 3.11. Y+ n &+ = Jt+. 

P r o o f . Let G be an o-group in Y+ C\ /T+ . If G is abelian, then G e Ji+. 
Otherwise, for any e < he s/(G) and e < g eG\ s/(G), g~xhg > h. 

G e Y+ implies, by Proposition 2.1, that there is a set A, an ^-subgroup S of 

H = IIA(Z wr(oxZ) (Z#Z)), and a prime subgroup P of H such that P <S and 

G^S/P. 

Let M be the minimal prime subgroup of H contained in P. Then M < S and 
since S/ P is an o-homomorphic image of S/M, it suffices to show that S/M e ~dt*. 

We first show S/M e «^+. To do so, we must show for any M <C Ms e s/(S/M) 
and any M < Mt <£ s/(S \ M), Ms < Mt~lst. 

Suppose by way of contradiction that Pt G s/(S/P). Since S/P is nonabelian, 
there exists r G S such that P ^ Pt < Pr $ s/(S/P). Since S/P G &+, Pt < 
Pr~ltr and so Mt < Mr~ltr. Now &/(S/M) = Q/M for some prime Q <S. Since 
S'/M is I-met abelian, S/Q is abelian and so there is q e Q such that g< = r~ltr. Since 
M2 g s/(S/M) = Q/M, M <C M\q\ < M* < Mr~ l*r, implying M ^ < Mr~ltr 
[BCD, Prop. 1.4], a contradiction since qt = r~xtr. So Mt (£ s/(S/M) implies 
Pt $ s/(S/M). 

So P ^ Ps < Pt implies Ps < Pt~xst, and hence MB < M*_1s*. 

Let & be the ultrafilter on A such that M = {g G H: {A: gx = e} G <?/}. For 
B G 5, BA will be written (fX}nix,nx) as before. 

M < Ms £ s/(S/M) implies {A: nA > 0} G ?/ , as if {A: nA = 0} G <?/, then 
MB G s/(H/M) and so is in s/(S/M). 

On the other hand, M < Ms e s/(S/M) implies that for any M < Mt G (S/M)\ 
s/(S/M), Ms < Mt~xst; so Ms < M[*,B~l] and thus {A: sA < [<A.*A1]} e <?/. 
Thus M ^ Ms e s/(S/M) implies {A; mA = nA = 0} G <?/• 

Define <r; nA(Z wr(oxz) (Z*Z)) —> nA(Z wrZ) by (fX}mx,nx)ax = (fx,nx). a is 
a group homomorphism but, even on 5, need not be an £-homomorphism. Consider, 
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though, the diagram: 

S/M nA(ZwrZ)/<2r 

« ß 

• nA(ZwrZ) 

where a and (3 are natural. Then Ma C Ker /3 and so <r lifts to a homomorphism a 

from S/M into (Z wr Z)A /^r . 

Now t = ( . . . , ( /A,n A ) , . . . ) G Ker/? implies {A: (/A,nA) = (6,0)} G * \ So s = 
(• • . , ( / A » " - A , ^A) , • • ) G <^"1 implies Ms G s/(S/M). Since then {A: mx = 0}fl{A: 
/ = 0 and HA = 0} G ̂ , Ms = M and thus a is an isomorphism. 

Ms > M implies, if Ms £ s/(S/M), {A: ?IA > 0} G ̂  and so (Ms)a is positive 
in (Z wr Z ) A / ^ or, if Ms G ̂ ( 5 / M ) , {A: nA = mA = 0 and /A ^ 6} G ̂  and again 
(Ms)a is positive. So a is an o-isomorphism and thus S/M G ̂ + . D 

Lemma 3.12. For every positive integer n, Y£ satisfies 

1[r,»,.] |A|( |[x,tf] | l '" |[*,»]|-BAe)|-.e .» 

P r o o f . Suppose [r, s], [r, s, £], and [x, y] are all nonidentity elements of Zwr^oxz) 

(ZxZ). Then t = ( / i ,m, 7i) where n ^ 0 since [r,s,J] ^ e and |[x,t/]| = (/2,0,0). 
Then |[a?,2/]|''' >> |[#,2/]| and so the law is true. • 

(The above laws were proposed by Reilly [R2] as part of a set of laws that might 
define ^ + . ) 

In showing that V* covers ^ + , we showed that any o-group G G ^ + \ ~ ^ + 

contains a copy of Zx(Z wr Z). Unfortunately, it is not true that every o-group 
K G y£ \ ^ + contains a copy of Z wr(0xi) (ZxZ). Indeed, let H be the o-subgroup 
of Z wr(0xz)(Z ;c-^) generated by (0,0,1) and (—Xo, 1,0). Then H does not contain a 
copy of Z wr(oxi) (^-x^-)- We will, however, show that every o-group K G ^ + \ ^ r + 

contains a copy of H and so ^-Var(H) does cover ^ + . The next lemma shows that 
AVar(iY) = r f +. 

L e m m a 3.13. Let G = Z wr(0xz) (Z^Z) a*-d H be the £-subgroup ofG generated 
byd = (6,0,1) and b = ( -*o , 1,0). Tiie/i £-Var(H) = * £ . 

P r o o f . It suffices to show that if G does not satisfy an ^-group law "w(x) = e," 
neither does H. 
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—.> —• m n p 
So suppose g = {gijk} is a substitution for w(x) = V A II x\]3k m t o ^ s u c n 

t = i y = i j b = i 

that w(g) -̂  e. Since G is totally ordered, we can, by using w~x(x) if necessary, 
assume w(x) > e. Furthermore, if "w(x) = e" is not a law for abelian ^-groups, it 
obviously is not a law for ̂ -Var(II) [W] and so we can assume w(g) = ( / ,0 ,0) . 

Note that gijk = (/ijjb, m»>Jk, ntjjb). 

For II, [H, //] is freely generated as an abelian o-group by {[a,6](a)n : n G Z} and 
[II, II] is convex in IF Thus any element of H can be written uniquely in the form 
(],bm,an), where J G [H,H]. 

For 0tJib = (/tjjb,mtJib,ntjjb), / t J* = £ ^ijkrXr- Define 7tjJb to equal 
r 6 s u p p ( L j f c ) 

£ ctjJfc(Xr - Xr-i); then fijk = [ /^ a , (a)"1]- Moreover, [a, 6] = xi - Xo 
r€supp(/7,fe) 

and so \ r — x>-i = a~^r"^[a, 6]dr~1 G II; hence fijk G IF 

We first show that the substitution tijk = (7o"Jfe» m»'jJt, rc.jjfc) gives iv( £) ^ e. 
-> p 

It is easily verified that if Wij(g) = II (/•i*>m«i*»n«i*)£iifc = (9ij>uijivij)* t n e n 

Jk=i 
P 

fi (/->*> mO'*»n->jOCiifc = ( [^ i i 1 ^^)" 1 ] )^ )^*) = (Qij^ij.Vij). Hence if v^ / 0 
Jk=i 
and/or utJ -̂  0, (<jij,Uij,Vij) is positive or negative as ( t̂J-, mj, u tJ) is. Suppose, 
though, that Vij = utJ = 0 and <7tJ ^ 0; then supp(ytJ) has a maximal element s t J . 
Now for any s, gij(s) = gij(s) — <7tj(s -hi) . So §ij is positive or negative as ytJ is. If 

v̂ - = Uij = 0 and gij = 0, then <7tJ = 0 as well. So w( t) ^ e. 

Unfortunately, t may not be contained in H. A naive substitution (that al­

most works) is to substitute for tijk the element hijk = fijkbmtjkdntjk = (fijk — 
v 

mijkXo>mijk>nijk). However, letting fj (m.jJbXo, mtjJt, n,-j*)*•** = (/*»>, ".>> v,,), it 
Jk=i 

p 

is easily verified that H hijk = (#.j — /it j , ut j , i>t;), and so, if stJ = max(supp(<7tJ)), 
Jk = i 

we might easily obtain that hij(sij) = (jij(sij). 

But hij = 51 CijkXr- Now since iv( f) -̂  e, then for any q, (d)~qw( t )(d)q -̂  
r£supp(hij) 

e, (a)~*u;( J )a* = \J f\((d)~qgij(d)q, u>ij, v^), and (§ij)a has as its maximal support 
/ J 

element Sij-r-q. Thus if we choose q such that for all i and j , stj+q > max(supp(/it.j»)) 

for all V and / and let h'ijk = (d)-q]ijk(d)qbm*ikdn»k, we obtain that iv(/i') ?- e. 

Theorem 3.14. V+ covers JC+. 
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P r o o f . Let G be an o-group in Y+ \J{+. Since G $ &+ (by Lemma 3.11), 
there exist e < h £ s/(G) and e < g G G \ ^/(G) such that a"1 Ay is a-equivalent 
to h. 

There exists e < c < d ^ g such that |[c,</]| -̂  e. So 0"M[c,c% ^ rf""1!^,d]|rf > 
|[c, rf]|. Now for any e < a < 6 such that [a, 6] -̂  e, by Lemma 3.12, we have 
I M , </]| A | ( | [M]| f | [ M ] r n A e ) | = c, implying g~l\[a,b]\g > |[a,6]|. We must have, 
then, that h > |[«,&]| for any a and 6, since if h < |[a,t]| for some e < a < 6, 
6~1/i6 = b~l(h A |[a,6]|)6 > A A |[a,6]| = A, and thus [6,A"1] > A > [/i"1,6"1] > e. 
So o'^A"*1]*/ > g~lhg ^ flf"1^1,'"1]^ > I*"1,*"1] which is a-equivalent to A, 
a contradiction to g~lhg and A being a-equivalent. Hence h > |[p, A]|. 

-f [9 J1] = e> then the o-subgroup of G generated by a, A, and |[c, af]| is o-isomorphic 
to Zwr ( 0 x i ) (ZiZ) . 

Suppose [0, A] ̂  e; first assume [</, A] > e. Then the o-subgroup of G generated by 
g and A is o-isomorphic to the o-subgroup of Zwr(0xZ)(Za:Z) generated by a = (0,0,1) 
and 6 = (—Xo, 1,0). By Lemma 3.13, this o-subgroup generates Y+. 

If [a, A] < e, then 

[9,[9,h)h] = g-ih-1[g,h]-1g[g,h]h = g-'h-'gg-'^h^ghy^] 
= 9-lh->ghg-lg[9,h)-lg[g,h)=[g,h)2[g,h)-' > e. 

So the o-subgroup generated by g and [a, A]A is o-isomorphic to H. O 

For the other Medvedev ^-variety M~, we likewise obtain Yb~ covering Ji~, Y,~ 
covering Jl~, Yb~ ^ Y~, and Y^ C Yt~. A surprising result, due to Huss [Hu] but 
with a proof simpler than hers, is: 

Proposition 3.15. Y+ = Y~. 

P r o o f . Let H = Y[[(1YFT l)xl] and let a be the element ((6,0,1), (6,0,2), 

(6 ,0,3) , . . . ) , 6 be the element ((6,0,1),(6,0,1),(6,0,1), . . .) , c be the element 
((6,1,0), (6,1,0), (6,1,0), . . .) and ^ 

Let 9/ be any nonprincipal ultrafilter on u = {0 ,1,2,. . .} and a, 6, c, and d be the 
respective images of a, 6, c, and d in H/9/. Then a > 6 * > c > a ' > e and a, 6 are 
central elements. Then the o-subgroup generated by a, 6(c)"1, and d is o-isomorphic 
to (Z wr Z) x Z. % • 

Finally, we prove: 

Proposition 3.16. Jf° g Y+. 

203 



P r o o f . We leave it to the reader to check that (Z WT Z)xZ satisfies the law: 

"for e^y^x, \[x,y]\* V \[x,y]\'~l ^ \[x,y)\\" 

Now for the free nil-2 o-group on generators a and 6 with a*6m[a,6]n ^ e if k > 0, 
k = 0 and m > 0, or k = m = 0 and ?i ^ 0, it is clear that [a, 6] = [a, 6]a V [a, 6]a~* < 
[a,6]2. D 
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