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As usual, by C' we denote the Cantor set equipped with the topology inherited
from the real line. We assume that {0, 1} is the two-element group equipped with the
discrete topology. Throughout the paper we denote by X the set of all continuous
functions from C' to {0, 1}.

We write z,, — () and say that a sequence {z,} converges to z in (X, ) if
zy,z € X for n € N and for every subsequence {u, } of {z,,} there are a subsequence
{vn} and an open dense subset A of C such that

va(t) — 2(t) fort e A.

It 1s not difficult to prove that G 1s a FLUSH-convergence, i.e., it satisfies the
conditions:

(F) x, — a implies z,,, — z;

(L) 2, — z, yo — y implies z,, £ y, — ¢ L y;

(U) if for every subsequence {u, } of a given sequence {z, } there is a subsequence
{vn} of {u,} such that v, — z for a given z, then z,, — z;

(S) if z,, = 2 for n € N, then z,, — z;

(H) if2,, - ¢ and z, — y, then z = y.

We claim the following:

Theorem. (a) If V is a nonempty subset of X such that z, € V for sufliciently
large n whenever x, — z((') and © € V, then for every y € X there is a sequence
{z,} of elements x,, in V such that z,, — y((7).

(b) If 7 is a topology on X which prescrves the covergence (i, ie., x, — z(()
implies x,, — z in (X, 7), then nonempty open sets in (X, 1) are sequentially dense
in X.



(¢) If 7 is a topology on X which preserves the convergence G, then the intersection
of any two nonepmty open sets in (X, T) is nonempty.

(d) G 1s a FLUSHP-convergence, i.e., i satisfies the following condition:

(P) ifz;; — z; as j — oo for i € N and for any two subsequences {p;} and {q;} of
{i} we have x, , — x for a given x, then z; — z.

Summarizing, we may say that there 1s no Hausdorff topology which induces the
convergence (. An example of a FLUSH-convergence group for which there is no
Hausdorff topology inducing the convergence is given in [1]. J. Pochcial notes in [2]
that convergences in T3-topological spaces are FLUSHP-convergences and conver-
gences in topological groups are FLUSHP-convergences.

Observe that (a) implies (b) and (b) irplies (¢). Hence it suffices to prove (a) and
(d).

Proof of (a). Let a be an arbitrary fixed point in X and let U = V — a. We
assert that if z € U and z, — z in (X, (), then z, € U for sufficiently large n.
Indeed, if £ € U then z = v — a for some v € V and, by (L), 2, + a — v in (X, ().
Therefore z,, + a € V for sufficiently large n or, equivalently, z,, € U for sufliciently
large n. Assume that v € U and {w,} is a sequence of all rational numbers. Let
{P,} be a base at w; of closed-open subsets of C such that P, D P,4; for n € N.
We put

up = u-Ic\p,

where I\ p, is the characteristic function of the set C'\ P,. We note that u, € .\ for
n € N and u,(¢) — u(t) for t € C'\{w,}. Therefore u, — uin (X, G). Consequently,
there is an index n; such that z; € U with

Ty =up, =u-lg\g, €U and Q= Fy,,.

We note that @ is a closed-open subset of C' and w; € ;. By induction we find a

sequence {x,} and a sequence {Q,} of closed-open subsets of C' such that

rh =u-Ile\(Qu..uQ.), Tn €U  and  w, € Q,

for n € N. We put
A=) @
n=1

and note that A is an open dense subset of C' and z,(t) — 0 for ¢t € A. This means
that z, — 0 in (X,G) and z, € U for n € N. Let {y,} be a sequence such that
Z, = Yn — . Then y, € V for n € N and, by (L), y, — a, which was to be proved.
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To complete the proof of our Theorem we should show that GG has property (P).

To this aim we shall prove a numnber of lemmas.

Lemma 1. The following conditions are equivalent:

(1) zp — z in (X, G);

(i1) for every subsequence {y,} of {z,} and for every nonempty open subset U of
(' there are a subsequence {z,} of {y,} and a nonempty open subset V of U such
that z,,(t) =0 fort € V and n € N.

Proof. Assume that (i) holds, {y.} is a subsequence of {z,} and U is a
nonempty subset of C'. Let {u,} be a subsequence of {y,} and let A be an open
dense subset. of C' such that u,(t) — 0 for every t € A. We see that W =UNAisa
nonempty open subset of U. We put

Fo={te W:uy(t)=0form>nand m,n € N}.

. o0

Note that [, are closed subsets of W and W = |J F,. Hence, by the Baire category
n=1

theorem, there is an index ng such that int F,; # 0. Assuming z, = Unp,4n forn € N

and V = int F,,, we see that z,(t) = 0 for every t € V and n € N. This shows that
(1) implies (ii). To prove that (ii) implies (i) we take a countable base {U, : n € N}
of open sets in C and a subsequence {y,} of {z,}. If (ii) holds, then there are a
subsequence {z1,} of {yn} and an open subset Vi such that V; C Uy and 21,(t) = 0
for t € Vi and n € N. By induction we find a sequence of sequences {zn} and a
sequence {V, } of open sets V;, such that {zx4; ,} is a subsequence of {z;,} for k € N
and z4,(t) = 0 for t € Vi and n € N. We put

and

vn = 27171

for n € N. Then A is an open dense subset of ') v,(t) — 0 for t € A and {v,}
is a subsequence of {y,}. This shows that z,, — 0 in (X, () or, equivalently, (ii)
nnplies (i). a

We introduce auxiliary convergences on X. We write &, — z(Tp) or z,, — «
m (X, Tp) iff z,,,z € X for n € N and there is a dense subset A of C such that
rp(t) — z(t) for t € A. We write 2, — 2(T) or z, — z in (X, T) iff for every
subsequence {u,} of {z,} there is a subsequence {v,} of {u,} such that v, — z(7p).

Obviously, #,, — x((') implies z,, — z(T) but not conversely.



Lemma 2. (X,T) is a FUS-convergence space with the following properties:

(Lo) Ifz, » 2 in (X, T) and y€ X, then z, +y — 2 +y in (X,T). Ifz,, — 2 In
(X,T), then —z,, — —z in (X, T).

(Ho) If z,, =z and z, — y in (X, T), then z = y.

Proof. Properties FUS of T" are obvious. Properties (Lg) and (Hg) follow from
the fact that if  and y are continuous functions and z(t) = y(t) for ¢ belonging to

a dense subset of C', then ¢ = y. O

Lemma 3. For every sequence {z,} in X the following conditions are equivalent:
(1) zpn — 0 in (X, T);

(ii) for every subsequence {y,} of {z,} the set
A={t € C: y,(t) =0 for infinitely many n € N}

is dense in C;
(iii) for every subsequence {yn} of {x,} and for every open set U C (' there is
t € U such that y,(t) = 0 for infinitely many n € N.

Proof. Obviously, (i) implies (ii) and (ii) implies (iii). To prove that (iii)
implies (i) we take a countable base {U,,: n € N} of open sets in C' and a subsequence
{yn} of {z, }. If (iii) holds, then there is an element ¢; of U; and a subsequence {z},}
of {yn} such that z1,(t;) — 0. By induction we select a sequence of sequences {z, }
and a sequence {¢;} such that, for every k € N, {zx41 .} is a subsequence of {zx,},
ty € Up and 2, (tr) — 0 as n — oo. Denoting zp = zx for £ € N and A = {t;:
k € N} we see that A is a dense subset of C' and 2,,(t) — 0 for t € A. This shows
that (iil) implies (i). a

Lemma 4. If no subsequence of {z,} converges to zero in (X, T), then for every
subsequence {u,} of {z,} there are a subsequence {v,} of {u,} and a nonempty
open set V in C such that v,(t) =1 fort € V and n € N.

Proof. We claim that, under the conditions of the lemma, for every subse-
quence {u,} of {z,} there are a subsequence {z,} of {u,} and an open set {/ in C
such that, for every t € U, z,(t) = 0 for sufficiently large n. Otherwise, by Lemma 3
(iii), there would exist a subsequence {u,} of {z,} such that w,, — 0 in (.\',T"). We
put

Fo,={teU: z,(t) =1 for m > n}

and note that F}, are closed subsets of C' and
(e )
U= F.
n=1
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By the Baire theorem there is an index ng such that int F;,, # 0. Denoting V =
int F,, and v, = 2,540 for n € N we see that v,(t) = 0 for every t € V and n € N,

which was to be proved. O

Lemma 5. Assume that {x,} is a sequence in X such that z, — 0(T) and the

only limit of every subsequence of {x,} is zero. Then z,, — 0(G).

Proof. Let U be a nonempty open subset of C'. We may assume that U is an
open-closed set. Let z be the characteristic fuction of U, let {u,} be a subsequence
of {z,,} and let {v,} be a subsequence of {u,} such that v, — 0in (X, Tp). Assume
that for a subsequence {w, —z} of {v, —z} we have w, —z — 0in (X, T). Then, by
(Lo), wp, — z in (X,T) and & # 0 which is impossible. Therefore, no subsequence
of {v, — 2} converges to zero in (X,T). Hence, by Lemma 4, there exist an open
set V and a subsequence {w,, — z} of {v, — «} such that w,(t) — z(t) = 1 for every
t € V and n € N. We claim that V C U. Otherwise, V \ U would be a nonempty
open subset of C and, consequently, there would be an element ¢t € V' \ U such that
wy(t) = 0 for sufficiently large n and z(¢) = 0. On the other hand, w,(t) + z(t) = 1.
Hence w,(t) = 1 for sufficiently large n, which is impossible since w,(t) = 0 for
sufficiently large n. This contradiction shows that V C U. Therefore, w,(t) = 0
for t € V and n € N. In this way we have proved that, under the conditions of
Lemma 4, condition (ii) of Lemrma 1 is satisfied or, equivalently, £, — 0 in (X, G),
which completes the proof of Lemna 5. a

From Lemma 5 we get

Corollary 1. We have z,, — z in (X,G) if z, — z in (X,T) and there is no
subsequence of {x,} which converges in {X, T} to an element different from z.

Lemma 6. The convergence (X, T) satisfies the following diagonal type condition:

(@) If 55 € X fori,j €N, zjj > z; in (X,T) asj > oo fori e Nandz; — 0
in (X, T), then there are subsequences {m;} and {n;} of {i} such that z,, ,, — 0 in
(X, T).

Proof. We may and will assume that x;; — x; in (X, Tp) as j — oo for i € N,
and z; — 0 in (X, Tp). Otherwise, applying the diagonal procedure, we would take
such a submatrix. Let Vi, V5, ... be a base for the topology in C. Note that if y, — y
in (X, 7o), V is an open set in C and y~!({0}) NV # 0, then there are an element
t € y“1({0}) NV and an index ng such that y,(t) = 0 for n > ny. Consequently,
v 1({0}) NV # 0 for n > no. This remark implies that there is a subsequence {m;}
if {i} such that 1;1}({0}) NVi#BforieNand k=1, ..., ¢ By the same remark
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there exists a subsequence {n;} of {i} such that

X

;:En,({o}) N ‘1‘171{({0}) n Vk # m
For every subsequence {7;} of {7} we put

P

A= Ol U U e (0 0 ({03 15,

j=1

where p; = m,, and ¢; = n,, for i € N. First note that A is the intersection of a
countable family of dense and open subset of (. Therefore, by the Baire Category
Theorem, A is a dense subset of C'. Moreover, notice that if t € A, then x, , (1) =0
for infinitely many ¢ € N. Hence, by Lemma 2(b), x,,,,, — 0 in (.X,T), which was
to be proved. O

Assume that Y is an abelian group equipped with a convergence V. By IV, we

denote the convergence in Y such that
r, —z(W,) iff  z, — O0(W) implies z,, + z, — (V).
We see that ¢, — z(W.) implies 2, — (V).

Lemma 7. Assume that W is a FLoUSHg-convergence in Y. Then

(1) Wi is a FLUSH-convergence in Y';

(i1) if &, — x(W.), then the only limit of every subsequence of {z,} is x, i.e., if
xn, — 0(W.) and {yn} is a subsequence of {x,} such that y, — y(W), then y = &;

(i) if W has property (®), then W, has property (P).

Proof of (). Assume that z, — z(W,), {2, } is a subsequence of {z,} and
zp, — 0(W). We put u,,, =z, forn e Nand vy = 0if k € N and k # m,, for n € N.
By (Ho), (U) and (F), u,, — 0(W). Hence x,+u,, — 0(W). By (F), zm,+2n — 0(1V)
which proves (F). To prove (L) we note that z,, — «(W.) iff 2, —z — 0(IV.). Indeed,
assume that z,, — z(W.) and z, — 0(W). Then z,, + z, — z(W). Hence by (Lo)
we have z, — z + 2, — 0(W) or, equivalently, z, — x — 0(W.). Assume now that
z, —z — 0(W.) and z, — O(W). Then z,, — z + z, — 0(W). Hence, by (Lo),
z, + zn — (W) or, equivalently, x, — x(1¥,). Now assume that r,, — z(IV.) and
Yo — y(Wi) and z,, — O(W). Then z, —z — 0(W.) and y, —y+ 2z, — 0(W). Ilence
we get

(zn — )+ (yn — ¥) + 20 — O(W)

or, equivalently, z,, + y, — 2 —y — 0(W,) and &,, + y», — x + y(W.). This proves
(L). Assume that 2 € Y, {&,} is a sequence in ¥, and for every subsequence {u, } of
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{x,} there is a subsequence {v,} of {u,} such that v, — z(W.). Moreover assume
that z, — O(W). Then, by (F), z, + z, — z(W) or, equivalently, z, — 2(W.). This
proves (U). Properties (S) and (H) follow from (Hg) and (Lo). a

Proof of (it). Assumne that z,, — z(W.), zm, — y(W) and {z,} is a sequence
such that z,, =y —2z,, forn € Nand zx = 0 for k € N and k£ # m,, for n € N.
From (Lo), (Ho), (F) and (U) it follows that =, — 0(W). Thus &, + z, — x(W) and
Zm, + zm, =y for n € N. Hence, by (F) and (Hg), y = z, which proves (ii). O

Proof of (iii). Assume that x;; € Y for 7,j € N, z;; — z;(W.) as j — oo for
i € N and for any subsequences {m;}, {n;} of {i} we have

Zm,n, — 0(Wy).

To show that x; — 0(W.) we take an arbitrary sequence {z;} such that z; — 0(W),
and choose a subsequence {p;} of {i}. Then, by the definition of W, and properties
(F) and (L) for W, we can write

Lp, = Tp,p, +2p, — 2, (W)

as j — oo for i € N and z,, — 0(W). Now, if the convergence W has property(®),
there exist two subsequences {r;} and {s;} such that

(.I,'kl + Zk') - T, — 0(”’)
and
zpq, — 0(Wy)

with k; = p,, and l; = p,, for ¢ € N. This together with the definition of W implies
T, + 2, — O(IV)

In this way we have shown that every subsequence of {z; + z;} has a subsequence
which converges to zero in (.X, W) or, equivalently, »; + z; — 0(W). Consequently,
z; — 0(W.), which proves (iii). a

Now we can prove statement (d).

Proof of (d). By Lemmas 2 and 6, T is a FLoUSHy®-convergence in X.
Therefore, by Lemma 7, T is a FLUSHP-convergence in X. We claim that (G = T,.
Indeed, assume that z,, — & in (X,G), zn — 0in (X, T) and {p,} is a subsequence
of {n}. Let {r,} be a subsequence of {p,} and let A be an open dense subset of C
such that z, (f) — x for t € A. Let {g.} be a subsequence of {r,} and let B be a
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dense subset of C' such that z; (t) — 0 for t € B. Then AN B is a dense subset of
C and zg, (1) + z4,(t) — z(t) for t € AN B. Consequently, z, + 2, — x(T). This
shows that =, — z(7T.), l.e., G C T.. Assume now that z, — z(7.) and {y,} is a
subsequence of {z,} such that y, — y(7). Then, by Lemma 7 (ii), y = z. [ence,
by Corollary 1, x,, — z(G) which shows that G D T,. Finally, G = T*. Since T. is a
FLUSHP-convergence on X, (¢ is a FLUSHP-convergence in X and this proves (d).

a
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