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ON LATTICE O R D E R E D PERIODIC SEMIGROUPS 

THERESE MERLIER, Paris 

(Received April 22, 1991) 

As in our previous papers [3], [4], [5], by a lattice ordered semigroup, we mean a 

semigroup S on which we can define an order relation -̂  such that 

- (S, ^ ) is a distributive lattice; A and V are the least upper bound and the greatest 

lower bound . 

- Va V6 Vc a(b A c) = a6 A ac and (b A c)a = 6a A ca 

- VaV6Vc a ( 6 V c ) = ab V ac and (6 V c)a = 6a V ca. 

The purpose of this note is to give some algebraic properties of lattice ordered 

periodic semigroups and particularly in the finite case. 

1. L A T T I C E O R D E R E D NILSEMIGROUPS. L A T T I C E O R D E R E D P E R I O D I C 

SEMIGROUPS 

P r o p o s i t i o n 1. Let S he a lattice ordered finite semigroup, generated by the 

element "a". If the order of S is n, then {a n } is the unique subgroup of S and an is 

a zero of S. Moreover, S is totally ordered. 

P r o o f . We know, cf. [2], chapter 1, that S = (a) = {a, a 2 , . . ., a r , . . . , a n } , 

where A' = { a r , a r + 1 , . . . , a n } is a cyclic subgroup of 5 of order n — r + 1, with 

a n+ i _ a r L e t ak _ e k e t n e idempotent of A', the identity element of A'; k ^> r 

and (e V a)k = (a7)k for some integer i and consequently (e V a)k = (ak)1 = e. 

But since S is abelian, we have e = e V e a V ea2 V ...eak~l V ak and ea ^ e, 

cak = e ^ eak~l . . . ^ ea ^ e and e = ea(= ae); e is the zero of S. Clearly, A' = {e}. 

Let us now show that S is totally ordered. If a and a2 are incomparable, then 

a V a2 = a1, i > 2 and a A a2 = a-7, j > 2. From a A a2 = a3', we deduce a n _ 1 A a n = 
a ; + n - 2 _ eaj-n _ g _ f£n a n c j fln < a n - l an(.j from fl y Q2 _ a ^ w e d e c l u c e similarly 

a n _ 1 < a n , contradicting an < an~l. Hence a and a2 are comparable and S is totally 

ordered . • 
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P r o p o s i t i o n 2. Every lattice ordered nilsemigroup is locally finite. 

P r o o f . Let S be a such semigroup, of zero 0. Let a i , a2 , . . . , ap be elements of 

S and denote by A the subsemigroup they generate. We show that A is finite. (We 

know tha t this property is true if 5 is abelian, or if S is totally ordered, cf. [6]). As S 

is a nilsemigroup, we can suppose an = an = . . . = an = 0 = (a\ Va 2 V a 3 . . . V a p ) n = 

(a\ A a2 A . . . A a p ) n , since an* = 0 implies akn% — 0 for every integer k, k >̂ 1. Let a 
Iv 

be in A: a — \\ Xi, with .r, G {ai , a 2 , . . . , a p } . Suppose that N ^ n. 
i = i 

Then a = (:ri.r2 . . . x n ) x n + \ • • #Iv, and 

a ^ (a\ V a2 V . . . V a p ) n x r i + i . . . x^ = 0 and 

a ^ (ai A a2 A . . . A ap)nxn_j_i . . . x/v = 0 since, for each X{, 

we have (a\ A a2 A . . . A a p) ^ x^ ^ (ai V a2 V . . . V a p ) . 

Finally a = 0, and every element of A 9-= 0 is a product of at most n — 1 elements, 

chosen among p elements. Therefore A is finite and S is locally finite. D 

T h e o r e m 1. Let S be a periodic ordered semigroup, and suppose that the idem-

potents ofS form a bisimple semigroup ofS. Then every spindle Fe is a subsemigroup 

of S, convex sublattice of S, nilsemigroup of zero e. 

"Let us recall that in a periodic semigroup S we can define the equivalence relation 

^ b y 

a = b&&3eeS, e = e2 and 3n G N*, a n - b n - e . 

Every class is called a spindle and will be denoted by Fe, where e is the idempotent 

of this class. It is well known, cf. [6] that if 5 is totally ordered, Fe is a subsemigroup 

of 5 . " 

P r o o f . In a first time, we show that e is zero of Fe. Let x be in Fe; xn — e for 

some integer n. As 

xe = ex = xn + l, (x V e)n = xn V xn~le V xn~2e . . . V xe V e 

= xn'le V xn~2e... V xe Ve 

and x(x V e ) n = xne V ^ n _ 1 e V . . . V x2e V xe - e V x n _ 1 e V xn~2e . . . v A v are. 

Then x(x V e) n = (# V e) n and xk(x V e) n = (x V e) n for any integer k. Finally 

(x V e)(z V e) n = (x V x n ) (x V e) n = ar(a; V e)n V xn(x V e)n = (x V e) n and (x V e) n = 

/ = f2. (x V e) n = / is an idempotent such that xf = / = fx by symmetry. We 

deduce ef — fe — f. But e /e = e, / e / = / since the idempotents of S form a 

bisimple subsemigroup. Hence e = / and xn = (x V e) n = e. Similarly, (x A e) n = e. 
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From (x V e) n = e, we deduce xe ^ e and xne = e ^ xn~1e ^ xe <C e. In conclusion, 

e is zero of the spindle Fe. 

Now let x and y be two elements of Fe : xn = yn = e. From xe = ex = ey = ye = e, 

we find (x V g)e = e, and if £• V y belongs to Fgy with g = g2, ge = eg = e. But 

ege = e, geg = g, and g = e. And we have # V y G Fe and similarly x A y £ Fe. 

Therefore Fe is a sublattice of S\ evidently a convex sublattice. 

From the inequality (a A6)2 ^ a6 ^ (a V6)2 , we deduce that Fe is a subsernigroup 

of s. a 

2. W E A K L Y NEGATIVE LATTICE O R D E R E D P E R I O D I C SEMIGROUPS 

D e f i n i t i o n . An ordered semigroup is said to be weakly negative if for all x} 

x2 ^ x. 

L e m m a 1. In a weakly negative lattice ordered periodic semigroup, every spindle 

Fe is a subset of zero e and e is the least element of Fe. 

It is routine to prove these properties. We note that generally Fe is not a sub-

semigroup. 

In the following, S is a weakly negative lattice ordered periodic semigroup . The 

definition of "height" is given in [1]. We suppose that S is a distributive lattice of 

finite length . 

L e m m a 2. Let a be an element of height 2 in a spindle Fe of S. Then a permute 

with all elements 6 of height 1 of Fe which are comparable with a, and we have 

ab = ba = e or ab = ba = a". 

P r o o f . Suppose e < b < a with a of height 2 and 6 of height 1. Necessarily 

b2 = e. We have e ^ a6 ^ (a V 6)2 ^ a V 6. But a6 = a is impossible since a6 = a 

implies a62 = ae = a6 = a = e. Therefore a6 = e or e < a6 < a with ab ^ b 

(ab = 6 => a l6 = 6 = e6 = e). 

If a2 = e, then a6 = ba = e since e ^ a6 <J a2 , e <C 6a ^ a2 by isotony. 

If a2 ^ e, e < a2 < a and a 3 = e, a2 is of height 1. We have then two possibilities: 

9 a 

1 a2 = 6 

o e 
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In the first case, a2 V b = a which implies a3 V ab = a2 = e V ab = ab and similarly 

a 3 V ba = a2 = e V 6a and ab = ba = a2 . 

In the second case, a2 = b which implies ab = ba = a3 = e. Finally in all cases 

ab = ba. • 

L e m m a 3 . If two elements a and b are of height 1 in a spindle Fe, then ab = 

ba = e. 

a Vb If a / b, we have a A b = e and a f c^ (a V 6)2 ^ a V b. The 

equality ab = a V b is impossible, as a ^ a V b = ab implies 

e < a <^ ab <^ ab2 = e by isotony. Therefore, ab < a V 6. But a 

covers a A 6 = e, b covers a A b = e, therefore a V b covers a and b, c 

and a V b is of height 2. Lemma 2 implies a(a V b) = (a V b)a e.g. 

e V ab = e V ba(a2 = e), and ab = ba. But, from e $J ab < a V b 

we deduce ab = e or ab is of height 1. Suppose that ab = ba is of height 1: then, 

a/\ab=e = a/\b = b/\ab (ab -^ a, ab ^- b otherwise a = e, b = e) and ab\/ a, ab V b 

are of height 2. But ab < a\/ b implies aVab^iaVb, b V ab <J a; as a V ab, b V ab, 

a V 6 are of the same height 2, we will have in this case a lattice of type: 

a Vb 

with aVb = aVab = bVab. But this lattice, 

sublattice of 5', is not distributive . 

Then, ab = ba = e. 

L e m m a 4. I/i a spindle Fe, the product of an element of height 2 by an element 

of height I is an element of height 1 or is egal to e (height 0). 

If e < a < b with a of height 1 and b of height 2, we have seen, in lemma 2, that 

ab = ba = e or b2. As b2 is of height 1 or b2 = e, we have the result. 

We consider now the following case: 

height 2 a2 

height 1 ai<? and we examine the product a2b with b <£ a2 . 

ai A b = e, ai and b cover e, then a] V b covers aj and b; therefore a\ V b is of 

height 2. 
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a2 A 6 = e is covered by b, therefore a2\/ b covers a2 and a2 V 6 is of height 3. 

b <fi a2 implies a\ \/ b ^ a2. Therefore a\ V b and a2 are of same height and 

incomparable. So, we have an ordered set of the following type: 

height 3 

height 2 a2 

height 1 a\ 

a2Уb 

a\Уb 

But in a spindle Fe containing x and y, we have always xy ^ (x V y)2 ^ x\J y 

and the equality xy — x V y is impossible if x ^ e, y ^ e because it implies x2y — 

x2 \/ xy — x2 \/ x \/ y = x \/ y — xy and x\/ y — x2y - = . . . = x n y -= e which is not. 

Therefore, here, a2& ^ ao V t, ba2 ^ «2 V b and also 026 ^- a 2 , 026 ^ 6, ba2 7̂  a2, 

ba2 9-= b. 

Suppose now a 2 b is of height 2. 

If b < a2b, then a2b ^ a2b ^ a2b and a2b — a\b... — a\b — e which is not. 

Therefore b <fi a2b and of course a\ V b 7- a 2 b, b A a 2 b = e. 

Suppose, moreover, that aj < a2b. 

In this case, we have: 

height 3 

height 2 a\ V b 

height 1 

ao Vb 

ai V b V a 2 = a 2 V b; a 2 V a 2 b = a 2 V b necessarily because a2 < a2V b, a 2 b < a 2 V b 

and the heights are 2 for a 2 , a 2b, 3 for a 2 V b; (a x V b) V a 2 b = a 2 V b for the same 

reasons. 

But this is impossible, as this sublattice is not distributive. 

Therefore ci\ <£ a2b and necessarily we have a scheme of this following type: 
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height 3 

height 2 a\ Vb 

height 1 

Ű9 V b 

Effectively, (a\ V b) V (a 2 b) = a 2 V b, because a 2b < a 2 V b, ai V b < a 2 V b and the 
heights of oi V b, a 2 b are 2, the height oF a 2 V b is 3. 

(a\ V 6) A a 2 b = (ci\ A a 2 b) V (b A a 2 b). But ai ^ a 2b, b <£ a2b , a2 and b are oF 

height 1. Therefore a.\ Aa 2b = e, b Aa2b = e, and we have (a\ Vb) Aa2b = b Aa2b = c. 

But this sublattice cannot exist: This lattice is not modular! . . . 

Consequently a2b (and ba2) are of height 1 or 0. 

T h e o r e m 2. Let S be a finite weakly negative lattice ordered semigroup and let 

Fe be a spindle. If a, element of Fe is of height 2 and ifb, element of Fe, is of height I, 

there are two possibilities: 

either ab — ba is an element of height 1 or 0 

or ab ^ ba, and one of these two elements is of height 1, the other being of height 0. 

1°) If e < b < a, then, from lemma 2, we deduce ab = ba, and ab — ba — e or 

ab = ba — a2, which is of height 1. 

2°) Now, we suppose that a and b are incomparable; vve put a = a2, and of course 

we have a diagram of this type: 

a Vb 

height 2 

height 1 

e height 0 

From lemma 4, we know that a2b and ba2 are of height 1 or 0. 

If we suppose a2b ?- ba2, and if we suppose moreover that a26 and 6a2 are both of 

height 1, then we have the following properties: 
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a 2 6 and 6 2a are distinct of 6(a 26 = 6 => a 2 6 = 6 = e); therefore a 2 6 A 6 = 6a 2 A 6 = e, 

a 2 6 A 6a 2 = e too, since a 2 6 and 6a 2 are of height 1 and different. As the double 

equality a 2 6 V 6 = 6a 2 V 6, a 2 6 A 6 = 6a 2 A 6 implies a 2 6 = 6a 2 in a distributive lattice, 

we necessarily have a 2 6 V 6 ^ 6a 2 V 6. Moreover a 2 6 and 6 cover a 2 6 A 6 = e, then 

a 2 6 V 6 covers a 2 6 and 6; similarly 6a2 V 6 covers 6a 2 and 6. So, a 2 6 V 6 and 6a 2 V 6 

are of height 2. And we finally obtain the diagram 

anbV 6 6a 2 V 6 height 2 

height 1 

height 0 e 

Consequently, a 2 6 V 6 and 6a 2 V 6 being of the same height 2 and incomparable, 

a 2 6 V 6 V 6a 2 is of height ^ 3. 

But a 2 6 V 6 ^ a 2 V 6, 6a 2 V 6 <$ a 2 V 6[a26 ^ ( a 2 V 6) 2 ^ a 2 V 6] and a2 V 6 is of 

height 3. (In a finite distributive lattice, li[x] + It[y] = h[x \f y] + h(x Ay]). Therefore, 

a 2 6 V 6 V 6a 2 = a 2 V 6 = (a 2 6 V 6a 2 ) V 6. 

Elsewhere, (a 2 6 V 6a 2 ) A 6 = (a 2 6 A 6) V (6a2 A 6) = e = a 2 A 6. 

And finally, we obtain 
(a 2 6 Vбa 2 ) Vб = a2 Vб 

(a 2 6 V 6a 2 ) Л 6 = a2 Л 6 

and, as .S is a distributive lattice a2 = a 2 6 V 6a 2 . From 6a2 V a 2 6 = a 2 , we deduce 

6a26 V a 2 6 2 = a 2 6, and 6a 26 V e = a 2 6 = 6a26; now a 2 6 = 6a26 implies b2(a2b) = 

6a26 = a 2 6 = e, which is impossible. [a26 is of height 1). 

Therefore a 2 6 ^ 6a 2 implies that one of the two elements a 2 6, 6a 2 is of height 0, 

e.g. is e. 

E x a in p i e . We built a finite weakly negative lattice ordered semigroup, which 

is a nilsemigroup (e.g. it is reduced to an unique spindle). The diagram of the order 

relation is the following: 
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a2 Vб 

a, Vб 

If we put a 2 6 = a\, ba2 = e, we obtain the following multiplication table, which is 

effectively the one of a semigroup 

e «1 a 2 6 ai Vб a 2 Vб 

e e e e e e e 

«1 e e e e e e 

« 2 e e e «1 «1 «1 

6 e e e e e e 

ai Vб e e e e e e 

a 2 Vб e e e «1 «1 «1 

L e m m a 5. Let 5 be a lattice ordered periodic semigroup. If e is a maximal 

idempotent among the idempotents, then e is the greatest of idempotents. 

Let e be a maximal idempotent and let / be in S so that / = / 2 ; e V / £ 5 and 

e ^ e V / . A s e " — e for all integers n, e <J ( e V / ) n too. As 5 is a periodic semigroup, 

there exists p £ N* so that (e V / ) p is idempotent and e = (e V f)p. If we develop 

the product (e V f)p we find an expression of the type e V / V x and consequently 

e V / V x ' - e ) / . 

Corol lary 1. Let S be a lattice ordered periodic semigroup. If e is a maximal 

idempotent, among the idempotents, then ef and fe are idempotents, for any idem-

potent f of S. 

From lemma 5, we deduce / ^ e for every idempotent / . And it is well known 

that if two idempotents are comparable, their product is an idempotent . 

N o t a t i o n . In the following we say that 6 covers a (and we note 6 >- a (or 

a -< 6)) if there is no such element c that a < c < 6. 
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L e m m a 6. Let S be a finite weakly negative lattice ordered semigroup and let e 

be the greatest idempotent of S. 

If f = / 2 and if f -< e (in the ordered subset of idempotents), then for all integers 

k, k zfi 0, and for all b in Fj be <: e, eb <C e, and (e V b)k = e V b*. 

P r o o f . For some integer ?i E N*, (eV b)Tl = e; from this equality we deduce 

e = e V bn V eb V be V y, y G 5 , and we obtain eb <C e, be <C e and (e V b)* = e V 6*. 

D 

N o t a t i o n . If Fe and F/ are two spindles, we put Fj < Fe if: Vx G F/, 

Vye Fe=> x < y. 

T h e o r e m 3 . Let S be a weakly negative lattice ordered periodic semigroup. Let e 

and f be two idempotents such that e covers f in the ordered subset of idempotents, 

Fj < Fe, and {Fjf - . { / } . 

Then ef = e if and only if fe = e and in this case, FeFj = F/Fe = e. 

P r o o f . Suppose for example that ef = e. If a G F/, and if 6 G Fe, from the 

hypothesis and from Lemma 1, we deduce / <C a < e <C b. Consequently, we obtain 

ef = e <C ba <C be = e and ba = e. 

And we have FeF/ = e. Moreover, as / < e, / e is an idempotent between e and 

/ and as e covers / , fe = e or / e = / . 

We suppose now that fe = e. Let be x G F/; / ^ x < e. Then / <C x2 <C xe <C e, 

/ <̂  (xe)fc <C e for each integer k. 

As / -< e (in the ordered subset of idempotents) and as Fj < Fe, xe G Fe or 

xe G Fj. If xe = a £ Fe) we have xe2 = ae = xe = e. But, from xe = e, it 

results / e = e, which is not. Therefore, xe = y G F/ and we obtain (xe)(xe) = y2 = 

x(ex)e = xe = g since FeF/ = e. But / is the idempotent of Fj and u = / , and 

finally we obtain Fj • e = / . As we have supposed (F / ) 2 ?- { /} , there exists two 

elements 7- and s of Fj so that / < r < e , / < . s < e with / ^- r s . By isotony, we 

obtain 

/ — fs <C rs <C re = / . Contradiction. 

So e / = e implies / e = e, and FeF/ = F/Fe = e. Conversely, if / e = e we obtain 

e / = e by symmetry. D 

T h e o r e m 4 . Let S be a vveak/y negative lattice ordered periodic semigroup. Let e 

and f be two such idempotents that e covers f (in the ordered subset of idempotents) 

and Fj < Fe. 

Then, Fj is a nilsemigroup, with f as zero. 

P r o o f . If {Fj)}2 = / , it is trivial. 
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If {F / } 2 9-- / , we can apply Theorem 3. 

Let x and y be two elements of Fj : f ^ x < e, / ^ y < e. D 

Therefore / ^ xu ^ e, / ^ (£t/)n ^ e for any integer n, and xy G Fj U Fe. 

If xy G Fe, #2/ = e, because e is the least element of Fe. If xn — yn = / , we 

have / = x n + 1 y n + 1 = xne • url = / e / . Consequently, e / = e = fe is impossible 

and necessarily, e / = / = / e . But from x < e, y < e, we deduce, by isotony, 

^21 ^ ey ^ e ? — ei a n d x,y — e implies ey = e, e / = e (= / e ) . Contradiction . 

So, xi/ belongs to F/, which is a subsemigroup of 5 , and of course a nilsemigroup 

of zero / . 

R e m a r k . With the same hypothesis, as in theorem 4, if (F / ) 2 = {/} it is 

possible to have ef ^ fe. We can give an example. 

S f Ь b' e a- a 

f f f f f f f 

b f f f f f f 

V f f f f f f 

e e e e e e e 

a~ e e e e e e 

a e e e e e a-

ordered by / < b < b' < e < a2 < a. 

3. C O N S T R U C T I O N O F P E R I O D I C WEAKLY N E G A T I V E 

L A T T I C E O R D E R E D S E M I G R O U P S 

Let Fi, F2, . . ., Fn be n nilsernigroups whose zeros are respectively ei, e2, . . ., en. 

Suppose each Ft- is a weakly negative lattice, ordered by order relation <C and e t is 
n 

the least element of each F,-. We put S — [J Fi and we define in S the product Xi yj 
i=i 

where x{ G Ft, % G Fj by 

Xi • yj = Xiijj — product of Xi and yj in Ft- if i — j 

— ej if i < j 

= ei if j < i. 
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In particular, e^Cj = e ;ez = ej if i < j 

= e.i if j < i. 
Then we define on S an order relation by 

Xi ^ Uj <=> i - j and x{ ^ \jj in F,- or i < j 

(,$', ., ^ ) becomes an ordered semigroup. It is easy to see that Xi-(yj-Zk) = (xi-yj)-Zk = 

Xig;zfc if i - j - k and that art- • (%• • z,) = a:,- • (%• • zk) = esup(IJ)A.) if the cardinality 

of {i,j, k} is greater that 2. In each F,-, e,- ^ £ and xf <J :r2- by hypothesis. So 5 is a 

weakly negative lattice ordered periodic semigroup, 

Conversely, suppose that S is a periodic weakly negative lattice ordered semi-group 

and that moreover, if Fei, Fe,2, . . . . F6n design the spindles of S, Fei < Fe2 < 

Fe3 . . . < Fen. We also suppose that e;+iez- = ez+iez- = e,-+i for z = 1. 2, . . ., n — 1. 

Then Fe% • F6j = ej if a < ej for all (ij), i ?- j 

= e.i if ej < e{ for all (i,j), i ?- j . 

In Theorem 3, we see that e; -< e z + i , Fet < Fe,+1, and e2ez+i = ez + i = ei+ie t-

implies Fe,FeI+1 = Fe,+1 = Fel+1Fe.-

Now we calculate FetFek with i < k: 

Fe,Fe, ^F c . . e f c = Fei-(e,)*-*'+1 

^ Fe, • et-e,-+i . . .ek 

= e.-ef+i . .. ejt = e*.. 

But Fe.Fe,. ^ ejb • Fe*; = ek. 

So FetF€k = ejt, and similarly FekFet — ek if « < fc. So, we have 

T h e o r e m 5. Let 5' be the union of n weakly negative lattice ordered nilsemi-

groups Fet; S becomes a weakly negative ordered periodic semigroup with the prop­

erties Fei < Fe2 < . . . < Fen, e ;e i + i = ei+iei = e,-+i for i = 1, 2, . .., n — 1, if and 

only if FC| Fej = ej for i < j and F6i • Fej = e, for j < i. 
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