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ON COMPLEX RADON MEASURES 11

T. V. PANCHAPAGESAN,* Mérida

(Received April 3, 1991)

Various types of regular extensions for complex and positive measures on 2(.%;)
are studied and are made use of to characterize g and My in terms of the restrictions
;tgl(_/’(./) and /tg|_(%(.1’0), where 0 € X'(X)*, (), D(X), H(X), g and My
being given as in [10]. Several characterizations for § € ¢ (X)* to be bounded are
given as well as a generalization of Theorem 54.2 of [9] to complex Radon measures is
obtained. Finally, #(X)*, X (X,R)* and X (.X'); are identified with certain spaces
of complex or real ineasures on Z(¥#) and #(¢") and is shown that the space of all
C-valued additive set functions of finite variation on a ring of sets is isomorphic to

X (XX)* for a properly chosen locally compact Hausdorff space X.

1. INTRODUCTION

The present paper is a continuation of [10]. We use the same notation and ter-
minology of [10]. The main purpose of the present work is to generalize Theorem
54.2 of McShane [9] to complex Radon measures on a locally compact Hausdorff
space X' and to characterize g and My in terins of the restrictions ;Lg]_@(]’g) and
/Lgl_’/(.)(’), where p19 and My are as in [10]. Also are included results concerning
regular extensions of positive and complex measures on Z(.#;) and the study of spa-
tial isomorphisms of ¥ (X')*, 2 (X,R)* and X (X); = {0 € ' (X)*: 0 bounded}.
Finally, we show that the space of all C-valued additive set functions of finite (resp.,
of bounded) variation on a ring of sets is isomorphic to ¢ (X)* (resp., isometrically
isomorphic to #(.X);) for a suitably chosen totally disconnected locally compact
Hausdorff space .X.

In this connection, we would like to point out that the isometric isomorphism of

H(X); to the Banach space of all regular complex measures on Z(.X) (vide [6]) was

* Supported by the C.D.C.H.T. Project C-409 of the Universidad de Los Andes, Mérida,
Venezucla



used by Thomas in [12] to deduce the Grothendieck’s weak compactness criterion
(given in [4]) of a subset H of J'(X); from the compactness criterion established
by Bartle, Dunford and Schwartz in [1]. Similarly, our representation theorem for
X (X)* might be useful to shed more light on the inter-relations between abstract
measures and Radon measures.

2. REGULAR EXTENSIONS OF POSITIVE AND COMPLEX MEASURES

Using the various notions of regularity given in [10] for positive and complex
measures defined on a é-ring #Z containing Z(X') or Z(H;), we study the regular
extensions of positive and complex measures defined on Z(¥5). The results of this
section play a key role in the rest of the paper.

Theorem 2.1. Let po be a finite (positive) measure on 2(X;). Then there
exist unique extensions p, v and w of po to (X)), B.(X) and HB(X), respectively,
such that p is P(X)-regular, v is B.(X)-regular and w is Radon-regular. Besides,
n=v|2(X) =w|2(X) and v = w|B.(X).

Proof. Let jo be the unique extension of yo to Bo(X) = S (2(X)) as

a measure. Then by Theorem 3.7 of [10] po has a unique extension v to %.(.X)
(resp., w to #(X)) such that v is B.(X)-regular (resp., w is Radon-regular) and
v= wl.‘fd’c(,\'). Take o = ul@(.)(,’). Then i, v and w are the extensions of p with
the required properties. The uniqueness of y follows by Theorems 3.9(i) and 3.7(1)
of [10], while » and w are unique by (i) and (ii) of Theorem 3.7 of [10], respectively.
a

Lemma 2.2. Let yuy, po be finite (positive) measures on (X)) (resp., I(X)-
regular measures on Y(.X')). Then there exist unique extensions w;, ws and ws of
i, p2 and gy + o, respectively, to 2( ) (resp., to #B(X)) as D( X )-regular (resp.,

Radon-regular) measures and ws = w; + ws.

Proof. Let g}, p4 and pf be the unique extensions of py, pe and iy + po,
respectively, to #o(X) (resp., to #.(X)) as measures. Clearly, py = pf + pb. Let

.9,-(f):/xfd,1;, feC(N), j=1,2,3.

Then 03 = 6; + 02 and by Proposition 15, §1, Chapter IV of [2], jig, = fie, + fts,
on #(X) (vide Theorem 2.2 of [10] for the notation). Let w; = fig, if yi; is Z(H)-
regular and let w; = /29)]9(.)(’) if g5 is defined on Z(.¥5). Then by Theorem 2.2
of [10] fig; is Radon-regular and [te]l?’(f) 1s (X )-regular by Lemma 3.5(i) of
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[10]. By Proposition 3.4(i) (resp., by Theorem 3.9(i)) of [10], x}, py and pf are
DBo(X)-regular (resp., B.(X)-regular). As shown in the proof of Theorem 3.7 (resp.,
of Theorem 3.8) of [10], w; extends u; and hence ;. The uniqueness of w; on
2(X) (resp., on #(.X)) follows from Theorem 2.1 (resp., from Theorem 2.2(vii) and
Proposition 3.4(iv) of [10]). Clearly, w3 = w; + w> in both the cases. O

Lemma 2.3. (i) If v is a real (X )-regular measure, let vy = Vl_@(.)é’o). Then
v = vH|2(H0) and vy = v™|2(H).

(ii) If vy and vy are Z(X)-regular complex measures on 2(X') and if v\ |2(H;) =
Vgl@(.)i’o), then vy = v,.

Proof. (i) v (E) < vH(E), v5(E) < v=(E) for E € 2(X#). Let w, =
V+|@(%) and wy = u‘].@(l’o). Since wy + vy = we + Vg' on 2(X;), by Lemma
2.2 there exist unique (¥ )-regular extensions IJJ, vy, Wy, Wy of 1/(')", vy, wy and
wa, respectively, such that @, + oy = w2 + 195" and by Theorem 2.1 vt = w, and
v~ = y. Thus v = v} — 5, whence v+ < ot and v~ < ™. Hence (i) holds.

(i1) Clearly, it suffices to prove the result for v, and vy real. Let u1|9(1’0) =
uglfﬂ(l’o) = jio (say). By Theorem 2.1 there exist unique 2(.¥ )-regular extensions
id and gy of pf and pg to 2(X). Now, by hypothesis and (i), vi|2(H#) =
V;’lg(.)(’g) = puf so that by the uniqueness part of Theorem 2.1 we conclude that
VJ-+ = st for j = 1,2. Similarly, vy =g for j =1,2. Thus vy = vs. 0O

Theorem 2.4. Let pg, vo be complex measures on 2( ), po being of bounded
variation on 9(Xp). Then:

(1) vo has a unique extension v to Y(X') as a 2( X )-regular complex measure. v
is real (resp., positive) if vy is so.

(11) The unique extension fio to Bo(X) of po as a complex measure is Bo(X)-
regular.

(iii) pro has a unique extension p to B.(X) (resp., w to #(X)) as a B.(X)-regular
(resp., #(X)-regular) complex measure. y and w are real (resp., positive) if jio is so.

(iv) p = w|§€c(,\’) and fig = /t|§€g(l\’) = w|£’30(X)‘

(v) Let M = sup{v(po, 2(H0))(E): E € 2(H)}. Then

sup{v(n, Z)(E): E€ #} =M

for 1) = fig, p or w and X = Bo(X), B(X) or B(X), respectively.

Proof. (i) Let v; = Revp and vy = Imvg. By Theorem 2.1 there exist unique
9D (X )-regular extensions f/]-+ and v of 1/]'-F and vj for j=1,2and 9; = f/j+ — v is
well defined and a 2(¥')-regular real measure on 2(¥’). Let v = iy + iD5. Then v
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Y( X )-regular, Vl.?’(%) = v and is unique by Lemma 2.3(ii). The rest of (i) is
obvious.

Let |uo| = v(po, 2(H5)). By Theorem 17.26 of [11] there exists a unique extension
fto of p1g to Ho(XN') as a complex measure of bounded variation. Besides, o] =
v(jto, #Bo(X)) extends |po| to Ho(X) and

(1) sup{|fw|(E): £ € #4o(XN)} = M.
If 71 = Repp and 72 = Iy, then
fo = (0 = 7)) +i(n — 1)

on #Ay(X), where 7)J+ and 7); are the unique extensions of r;f and 7;" to Ao(.\') as
measures for j = [, 2.

(ii) By Proposition 3.4(i) of [10], f)j+ and 7); are #o(.X)-regular for j = 1,2 and
hence fig 1s Ho(.\)-regular.

(iii) By Theorem 3.7(ii) of [10] there exist unique extensions w; and w} of f/f and
1; , respectively, to Z(.\') as Radon-regular measures. For C'€ ', by Proposition
11, §14 of [3], there exists Co € J# with C' C Cp so that

w;i (C) < w;i(Co) = 1);(6'0) <M

by (1) and similarly, w;(C) < M. Consequently, w;(.X') < M, and wj(.\') < M for
J = 1,2. Then by Proposition 3.4(iv) of [10], w = (w; — w}) + (w2 — wh) is #A(.X)-
regular and extends fip and po. Besides, Re w|9’(%) = m and lmwl?’(l’o) =
n2; Rew and Imw are #(.X)-regular. Let w' and w” be also #(.X)-regular scalar
extensions of 7); and 19, respectively. Then, as Im w’lﬂo(,\') =0, we have

/ fd(lmw')t = / fd(Imw')™,  feC(X)
X X

and hence by Theorem 2.2(vii) of [10], (Imw’)* = (Imw’)~ so that w' is real.
Similarly, w” is real. Clearly, nf + w"l () =y + w’+| H5). Since w't
and w'~ are the unique Radon-regular extensions of their respective rebtrictions to
2(#5), by Lemna 2.3 we have w; +w'~ = w} +w't and hence Re w = w’. Similarly,
Imw = w” and hence w is unique.

Taking pt = wlﬂc(/\'), by Lemma 3.5(ii) of [10] we observe that y is a B.(.X)-
regular extension of i and besides, p is the unique extension of ;1|9(1’). As

| /) is D( X )-regular by Lemna 3.5(i) of [10], the uniqueness of u follows from
Lemma 2.3(i1). Clearly, from the above proof it follows that yz and w are real (resp.,

positive) if yg is so.
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(iv) Follows from the uniqueness of g and w and from their definition.
(v) By applying the above extensions of |fio] to #.(X) and LB(X) we deduce the
result from (1) and from Definition 3.2(iii) of [10]. a

The proof of the following theorem is similar to that of Theorem 2.4 and hence
omitted.

Theorem 2.5. Let yu be a 2( X )-regular complex measure of bounded variation
with sup{v(y, 2(X))(E): E € 2(X)} = M. Then:

(i) The unique extension fi of yu to #.(X) as a complex measure is B.(X)-regular
and is real (resp., positive) if p is so.

(i1) e has a unique extension w to #(.X) as a B(X)-regular complex measure and
w is real (resp., positive) if ju is so. Besides, ji = w|%.(X).

(iii) sup{v(i, Z(X))(E): E € B.(X)} = sup{v(w,B(X))(E): E € B(X)} =
M.

Corollary 2.6. Every complex measure po on #o(.X) has a unique extension g
to #B(X) (resp., w to B(X)) as a B(X)-regular (resp., B.(X)-regular) complex
measure and j (resp., w) is real if yig is real and j (resp., w) is positive if ug is
positive. Besides,

sup{v(n, Z)(E): E € #} = sup{v(po, Bo(X))(E): E € Bo(X)} < 0

where 1 = pt or w and X = HB.(X) or #(X), respectively.

3. BOUNDED COMPLEX RADON MEASURES

In this section we give several characterizations for § € ¢ (X)* to be bounded, in
the sense that sup{|0(f)|: f € ' (X),||fll« <1} < 0.

Definition 3.1. A complex Radon measure g on X is said to be bounded if
sup{|,ug(E')l: E e 9(X)} < co. We define

llell = sup{v(pe|2(H))(E): E € 2(X)}
for 0 € ' (X)".
Lemma 3.2. Let § € X(X)* and E € 9(H5). Then
V(1o 2(H0), 2(H03) (E) = v(pia, Mp)(E) = p6)(E).
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In particular,
v(ps| 2(H0), 2(H0))(E) = v(pe| 2(X), 2(X))(E).

Proof. Letwv = /t9|9(.1’g) and let |v] = v(v, 2(X)). By Theorem 4.1 of
[10] and by Theorem 2.1 there exist a unique extension |v|” of |v| to #(X) as a
Radon-regular measure and a positive linear form 1 on C.(X) such that |v|" = jiy.

Let f € C.(X) with supp f C K € . Since f is integrable with respect to
every Baire measure (vide p. 241 of [5]) and Ho(X) N K = Ho(K), as in the proof
of Theorem 4.7(ix) of [10] we have

0= [ £l k)] < [ 1107 = v(0)
so that |0] < . On the other hand, for E € 2(#;) we have

VI(E) < vlps, Mo)(E) = jyo)(E)

by Theorem 4.11 of [10], so that jiy| 2(#0) < pye)|2(Ho). 1f w = (p1e) — fiy )| 2(H5),
then by Lemnma 2.2 there exists a unique Radon-regular extension @ of w to #(X)
such that @ + jiy, = jije) on #(X). Thus jiy < jijg. Therefore, ¢ = |0] and then, by
Theorem 4.11 of [10], we have

WI(E) = fug(E) = mo)(E) = vipe, Mo)(E), E € 2(H5).
O

Theorem 3.3. Let pg be a complex Radon measure on X. Then the following
assertions are equivalent:

(1) pe is bounded.

(i1) @ is bounded.

(iii) 2 C My, where # = #Bo(X) or B.(X) or B(X).

(iv) My is a o-algebra in X.

(v) sup{|ue(E)|: E € #} < 0o, where Z = .96‘0(,\') or #:(X) or B(X) or M.

(vi) sup{v(;tg[J RA)(E): E € &} < 0o, where Z = My or B(X) or #..X) or
HBo(X) or D(X) or D(H).

(vii) sup{v(pe| 2(H), 2(H0))(K): K € Ay} < oo

(viii) flss]] < 0.

Besides, ||0]| = ||ps|| for @ € X (X)*. The functional 0 is bounded if and only if

My = M“fe| and when 6 is bounded, ||| is given by the supremum in (vi) with %
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being anyone of the §-rings Mg, B(X), B.(X), #Bo(X), D(H) or D(Hp) and by the

supremum in (vii). In particular,

sl = v(pe|B(X), B(X))(X).
Proof. (i) = (ii) Let f € C.(.X), with ||f|l« < 1 and let supp f = K. Then

10(N)| = ]/K fd(ua|§e9(1{))] < /K |fl dv(pe| B(K), B(K))
<v(pe|2(X), 2(X))(K)
< 4sup{|pe(E)|: E € 2(X)}

and hence 0 1s bounded if y4 1s bounded.
(ii) = (vii) Let K € J¢. By Proposition 11, §14 of [3] there exists Uy € Z N2( )
such that K C Up. Let f € CH(X) with xx < f < xv,- Then |||« = 1 and by (ii)

we have

(1) v(pe

), HANE) < [ 1f1do(0| 26), 9(0)
</le|dﬁ|e|
= 161() < ol

since v(pg|2(H), 2(H))(E) = pg)(E) for E € 2(X') by Theorems 4.7 and 4.11
of [10] and since ||8]| = ||0]] by Corollary 1 on p. 58 of [2]. If My is the supremum in
(vit), then by (1), Mo < ||9]|-

Since (1) holds also for I € ¢, by (iv) and (v) of Theorem 4.7 of [10] we have

(2) llreall < 1161]-

Let w= ‘U([lg‘@(f), (X)) and let Mg = sup{v(;tglﬂ,.ﬁ?)(E): E € #}, where
A is one of the 6-rings in (vi). By Theorem 4.7 of [10]

(3) w = v(pg, Mg)|2(F).

For E € (), by Proposition 11, §14 of [3] there exists K € ¥, with E C K
and hence, by Lemma 3.2, we have

w(L) < w(K) = v(pe, My)(N) = u(/lg|9(.)t/0), 2(H)) (K)
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whence it follows that Mg ) coincides with the supremum in (vii). By Corollary 2.6,
Mg, (x) = Mg(x) and by Theorem 4.7(vii) of [10], Mar, = Mg(x). By (3) and by the
fact that v(yg, Mg) is Mg-regular by Theorem 4.7 of [10], we have Mps, = Mo x).

The proof of the equivalence of the remaining assertions is easy and hence omitted
to the reader.

Froin the proof of (i) = (ii) and from (2) it follows that ||8]| = ||ste]| for 8§ € ' (X)*
(even though 6 is not bounded). )

If 6 is bounded, by (iv), X € My and hence by Theorem 4.11 of [10], Mgy = Mg =
M“l'er The condition is also sufficient since M“fa| is a o-algebra in X. O

4. CHARACTERIZATIONS OF COMPLEX RADON MEASURES

Using the properties of complex Radon measures established in [10], we charac-
terize these measures in terms of complex measures on 2(.%;) and those on Z(.¥),
which are besides (¢ )-regular. Also we include another characterization of these
measures in terms of Z-regular complex measures y defined on a é-ring 2 containing
Z2(X) and this result precisely generalizes the result of McShane [9], mentioned in
the introduction, to complex Radon measures.

Lemma 4.1. Let 0 € X'(X)*, 6, = Ref and 0, = Im0. Let v = U(pglf/‘(l’),
P(X)). Then:

(1) v is 2( X )-regular and if U is the unique Radon-regular extension of v to #(X),
then U = jiq).

(i) BZ(N)N My ={E € A(X): i(E) < oo}.

(i) Mg = {E C X: there exist A,B € #(XN)N My with A C E C B and
v(B\ A)=0}.

(iv) If ptj = pe, l.(/(.)() and [t;- and yi; are the unique Radon-regular extensions
to B(X) of,uf and yi;°, respectively, for j = 1,2, then

ne(E) = (if — /7)) (E) +i(id — 15 )(E)

for E€ #(N)N M.
(v) If # = {E € #(X): v(F) < oo}, then py is the Lebesgue completion of jig|#
with respect to 2.

In short, Mg and jg are uniquely determined by /19'9(.1’).

Proof. (i) Follows from (v), (viii) and (ix) of Theorem 4.7 and from Theorem
4.11 of [10].
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(i1) Let 4 be as in (v). Then by (i), Z = Mgy 0 #A(X) and therefore, Z =
Mg N #(X) by Theorem 4.11 of [10].

(111) By Theorem 4.7 (iv), v = |/lg||.(/’(./)4 Since |pg| is Mg-regular by Theorem
4.7(iii) of [10]

lte|(E) = sup{|pe|(N): K CE,K € X'}
=sup{v(N): K CE,K € X}
=v(E)

for £ € A(N)N My, since v i1s Radon-regular and #(E) < oo so that Proposition
3.4(iv) of [10] applies here. Now (iii) is immediate from Theorem 4.7 (vii) of [10].
(iv) By (i) and (v) of Theorem 4.6 of [10], [tf = Hgt and ji; = Mo~ in Z(X)N M,
for j = 1,2. Since My = My, N My, [L}L and ji; are Radon-regular in #(.X') and
ﬁg;,|MgJ and ﬂe;— | My, are Mg -regular, by Proposition 3.4(iv) of [10] we have

/ﬂlf(E) = sup{[t?‘(l\'): KCEKNeX}
= sup{jiy+(K): K C E,K € X}

]

= /.‘9;*(E)

for j = 1,2. Similarly, i (F) = fiy- (E) for £ € #(X) N My and for j = 1, 2.
(v) By (iv) and (vi) of Theorem 4.7 of [10] we have

v(pg |2, #)(E) = v(pg, Mp)(E), Ee€X

and consequently, by (i) and by Theorem 4.11 of [10]

v(pe |2, 2)(F)=v(F), Ee€Z.

Now the result is immediate from (i) and (iv). O

The following lemima is an easy consequence of Lemma 2.2.

Lemma 4.2. If0, and 0, are positive linear functionals on Ce(X), then pg, _g,) =
Ho, — flg, on A (X).

Lemma 4.3, Let 1 be a real measure on (X)) and let ju be P( ¥ )-regular. Let
lpt) = v(pe, 2(H)). If |i|" is the unique extension of |u| to B(X) as a Radon-regular
measure, let # = {E£ € A(XN): || (F) < oco}. Then:

(1) There exists a unique § € X (XN)*, 0 real, such that /13'.@(%’) = u. Besides,

73



ut = ,u@+|_(ﬂ(‘)(/) and pu= = jig- ‘.‘/(Jf’)
(ii) el = | 2(H).
(i) ™ = fija)-
(iv) Z = A(X) N My.
(v) My is the Lebesgue completion of £ with respect to |u| |2.

(vi) If vy and vy are the unique Radon-regular extensions to #(.X) of ut and j—,

respectively, then
we(F) = v (E)—vao(E), E€eR.

Consequently, given I' € My, j19(F) = pg(A) = (v1 — v2)(A) where A C FF C B.
A, B e X2 with || (B\ A) =0.

Proof. Since pis %(H# )-regular, by the inequality mentioned in the proof of
Theorem 4.7(iii) of [10] obviously |x| and hence ;i and j= are Z(¥ )-regular. Thus
by Theorem 3.9(ii) of [10] such extensions |jt|", v| and vs exist uniquely on #(.\).

(i) Since v) and vy are Radon-regular, by Theorem 4.1 of [10] we have positive
linear functionals 8; on C.(.X') such that v; = fip,, 1 = 1,2. Let § = 0, — 0. Then,
by Lemma 4.2, ;lglf/(./) = p. Consequently, by Theorems 4.5(v) and 4.6(v) of [10]
we have pt = g4 | 2(X) and p= = jig- |2(X).

To prove the uniqueness of 4, if possible, let w € J#(.X)* such that y = j If/(J(/).

DH) =0, j 3| 2(H) = p, - | 2(H).

w;

Let w; = Rew and wa = Imw. Since j,

Then by the uniqueness part of Theorem 3.9(ii) of [10], we have ji_+ = ji, - so that
2 2

wl(f) = f/\. fdj,+ = 4[/\. fdji,- = w5 (f) for f € C(XN). Thus wy = 0. Mence w

1s real and
1= | 2(H) = (ot — pw-)|2(H) = (jg+ — pg-)| 2(H).
Therefore,
(ll‘ul+ +,“(i‘)[-(/(‘1/) = (/1‘0"‘ +/‘w')|g(‘1/)

and consequently, by Proposition 15, §1, Chapter IV of [2] we have
flw+46- |—(/5"(1/) = flg+ 4w~ ‘7(1/)

Thus, by the uniqueness part of Theorem 3.9(i1) of [10] we have that ji,+,4- =
flg+ 4w so that (wt +07)(f) = (0% +w™)(f) for f € Ce(X). Hence § = w and thus
0 1s unique.
Since |p| = v(;tgl_?’(l’), 2(X)) by (i), (i) and (iii) hold by Lemma 4.1(i), whereas
(iv) follows from Lemma 4.1(ii). Similarly, (v) is immediate from Lemma 4.1(iii).
Finally, (vi) follows from (iv) and (v) of Lemma 4.1. a
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As a consequence of the above lemmas we shall give the following theorem, which,
among other things, characterizes a complex Radon measure in terms of its restriction

o I(X).

Theorem 4.4. (i) A complex measure j on Z(X) is the restriction of a complex
Radon measure pg if and only if i is P( ¥ )-regular. In such case, 8 is unique and is
called the functional determined by pu.

(ii) Let yo be a 9(X)-regular complex measure on Z(X) and let |p| =
v(p, 2(X)). Let |u|” be the unique extension of |u| to #(X) as a Radon-regular
measure and let £ = {E € #(X): |u] (E) < oo}. Let py = Reyp, pa = Imyp, and
pf and p7 be the Radon-regular extensions to #(X) of uf and p, respectively.
Besides, by (1) let 0 be the functional determined by ji. Then:

(a) 2 = A(XN)N M.

(b) My 1s the Lebesgue completion of 2 with respect to |/1|Al£&?.

(¢) Given I2 € My, there exist A, B € # with A C E C B and |u| (B\ A) =
Besides, po(E) = {(pF — /7)) +ilpd — p3)}(A).

(d) | = /llg”_(/’(f), so that || determines |0].

(e) 0 is real if and only if yu is real; 0 1s positive if and only if yu is positive. When
jtis real, it and p= determine 0% and 07, respectively.

Proof. (i) By Theorem 4.7(v) of [10] the condition in necessary. Conversely,
let y¢ be (¥ )-regular, with yr; = Regp and jio = Iimpe. Since Z( ) is a é-ring,
o= /l+ — 1 and /1+ and puj are (. )-regular for j = 1,2. Consequently, by
Lemma 4.3 there exist 0; € #(XN)*, 0; real, such that u; = /lg]’rf(l/) for j=1,2.
Let 0 = 0, +10s. Then 0 € ' (\N)* and p = /191 /(X). Clearly, 0 1s unique by the
uniqueness part of Lemma 4.3(1)

(1) (a) As = /19|5/(J{’), the result holds by Lemma 4.1(i1).

(b) This is the same as Lemma 4.1(iii).

(c¢) Follows from (iv) and (v) of Lemma 4.1.

(d) By Theorems 4.7(iv) and 4.11 of [10], |g| = L!(/tg,]\[g)'f//'(/) = /1,|9||9'(){/
and hence (d) holds.

(¢) This is tmmediate from Lemma 4.3(i). O

The following result generalizes Theorem 54.2 of [9] to complex Radon measures.
The hypothoqis Lhat u)ﬁ’( N)nZ = {F € AR"): |v| (F) < co} is the same as
ABN)NY ={E € #AR"): [v]*(F) < 0o} in the case of R® and Z-regularity of yu is

rmlumlant in this case.

Theorem 4.5. Let & be a 6-ring containing () and let p be a Z-regular
complex measure on &. Let v = ,ul.(/'(.)f.’) and |v| = v(v, 2(X)). Suppose @ =

=~
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BX)NY ={E € #(X): |z/|(E') < oo}, where |v|" is the unique Radon-regular
extension of |v| to B(X). If j and & are the Lebesgue completions of ;ll%’ and A,

respectively, with respect to 2 and p Sf, then there exists a unique @ € ¥ (.X')™ such

that p = pg and @ = My. Besides, 0 is real (respectively, 0 is positive) if ju is real
(respectively, yu is positive).

Proof. Let |u| = v(y, ?). Then, by the inequality mentioned in the proof of
Theorem 4.7(iii) of [10], |pt] is Z-regular and as Z(.¥) C 2, the argunient given in the
proof of Theorem 4.5(vi) of [10] holds here verbatim to show that |/1|I9 H)is P(A)-
regular, if we replace there |pg| by |p| and Mg by &7. Consequently, v = /4] G(X) is
also (X )-regular.

Again, since g is .(Z’—regulzlr, by an argument similar to that given in the proof

of Theorem 4.5(vii) (¢) of [10] one can show that v(pu, Z(), Z)(E) = |;|(E) for
Feo (onsequu]tly,
(1) vl = o] 2(H), HH)) = |ul| 7(H
Since Z(X)N 2 = {E: |v] (F) < oo}, |v| is Radon-regular and |u| is Z-regular,
by (1) and by Proposition 3.4(iv) of [10]
v (E) =sup{|v|(N): K C E,N € ¥}
sup{|p|(N): N C E,N € X}
|1l(E)
for L' € #A(X)N 2. That s, [ul[%’ = I/tll.’%’.

Since v is Z(# )-regular, by (i) of Theorem 4.4 there exists a unique 0 € ¢ (.\\')*
such that v = /lgl.(/(f) and by (i1) (e) of the same theorem, the functional ¢ is
real (resp., positive) if v is real (resp., v is positive). Besides, by (ii) (d) of the said
theorem, |v| = /1|9||9'(/). Thus by hypothesis, by (a) and (b) of Theorem 4.4.(ii)
and by the fact that |v| |.‘¢? = |u||2, we conclude that & = M,.

Since Rep and Imyp are Z-regular, by following an argument similar to that
in the proof of (v) of Theoremn 4.5 of [10] we note that (Re ) +[(' ) = (Rev)t,
(I{C/t)‘[.(/’(./) = (Rev)™, (In|/1)+|f/(,){/ (Tm )t and (Impe)~ |_/ X)) =(Imv)~
and (Rev)t, (Rev)™, (lmv)t and (Imv)™ are (4 )-regular. Thus, if v, = Rew
and vy = limv and 1/]7L and v are the unigue Radon-regular extensions to #4(.X) of

uj+ and v;7, respectively, for j =1, 2, then by Proposition 3.4(iv) of [10] we have

vi(E)

1

su]){uf(l\'): NCENeX)
.‘\'up{/tf([\'): NCENeXNY
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for £ € # and for j = 1, 2, where jy; = Rey and pz = Imy. Similarly, ;7 (E) =
#; (E) for E€ # and for j =1, 2.

Conscquently, by Theorem 4.4(ii) (c), given E € @ = Mg there exist A,B € #Z
with AC £ C B, |p|(B\A) =0 and

ne(E) = (0 — o7 )(A) +i(0f — 05)(A)
= (1uF — 17 )(A) + i = p3)(A)
= n(A)
= n(E)

since by hypothesis yu is the Lebesgue completion of yt|2 with respect to 2. Hence
My = @ and pp = . O

In the next theorem we consider the restriction of yg in 2(J¢) and study its

propertics.

Theorem 4.6. (i) A complex measure v on P( ) is the restriction of a complex
Radon measure jiy and such 0 is unique. We say that 0 is determined by v if
v = /19|_(/(.)f’0); 0 is real (resp., positive) if v is real (resp., positive).

(ii) If v is a complex measure on Z(¥;) and ju is the unique extension of v to 2(X)
as a P(H)-regular complex measure (vide Theorem 2.4(1)), then p and v determine
the same functional 0 € ¥ (X)*. That is, v = /1(;]9(.1’0) and = ;tolg(.)(’).

In the following, let v, pi, 0 be as in (ii). Let vy = Rev, vo = Imv, iy = Rey,
Jto = Ty

(ii1) The unique (. X)-regular extensions 1/j+ and vj” of uj+ and vy, respectively,
to 2(.¥") (vide Theorem 2.1), are given by 1)]-+ = /1‘;+ and vy =p;,j=1,2

(iv) If v is real and |v| = v(v, 2(H)), then vt = /t+|9(%), v- = ,u‘|9(.1’0)
and |v| = |/1||9’(J[/0), where || = v(p, 2(X)). Consequently, vt = /19+|.{27(Jf’0),
v = pg- |7(H) and |v| = pe|2(H0). Thus vt, v= and |v| determine 0%, 0~ and
|0], respectively.

(v) Ifv is complex, then |v| = [/1”?(]@) = /1|9||.‘/(.)(’0) so that |v| determines |0].

Proof. By Theorem 2.4(i) there exists a unique (¥ )-regular complex mea-
sure gt on Z(X¥) such that /1,(/(1’) = v and such p is real (resp., positive) if v is
real (resp., v is positive). Then by Theorem 4.4(i) there exists a unique 6 € ¢ (.\)*
such that p = /:919‘(.){’) and hence, v = /1g|_’/'(.1’0). This functional is real (resp.,
positive) if v (and hence p) is real (resp., v is positive) by Theorem 4.4(ii) (e). Since
v determines y uniquely, it follows that v determines € uniquely. Thus we have
proved (i) and (ii).

7



(ii1) By Lemma 2.3(1) uj+ = /t?’]?’(tl/o) and v = /1J7|f/(.1’0) and as /tf and p;
are Z(¥ )-regular, by the uniquencss part of ‘Theorein 2.1 we conclude that [/]-+ = ,u;'
and vi = py for j = 1,2.

(iv) Since g is real when v is real, by Lenuna 2.3(i) vt = /¢+|9’(%) and v~ =
p'l.‘ﬁ(l’o). Consequently, by Theorem 4.4(i1) (¢) the result holds.

(v) This is immediate from Lemma 3.2. O

I

5. ISOMORPHIC REPRESENTATIONS oF J(N)*, ¥ (\\|R)", X (\N);
AND X (N R);

Making use of the results of the earlier section we show that J#(.\X')* is isomorphic
to the space of all complex measures on 7(.¥5) and to the space of all ¥(.¥)-
regular complex measures on (). The same isomorphism, when restricted to
H(X,R)*, is order preserving and maps J#(\X,R)* onto the real vector space of
all real measures on Z(.%5) and the space of all (.4 )-regular real measures on
9(X'). Also we show that (X))} (resp., (N, R);) is isometrically isomorphic to
the Banach space of all bounded complex (resp., real) measures on (%)) and to
the Banach space of all bounded Z(.%)-regular complex (resp., real) measures on
2(X). Finally, the vector space of all C-valued additive set functions of finite (resp.,
of bounded) variation on a ring of sets is shown to be isomorphic (resp., isometrically
isotnorphic) to 7 (\\')* (resp., to H(.\');) for a suitably chosen totally disconnected
locally compact, Hausdorff space X.

Before stating the relevant theoreis we fix the notation for various spaces of real

and complex measures.

Notation G.1. .#Z,(.N) (resp., .Z.(.N)) denotes the vector space of all complex
(resp., Z(A )-regular complex) measures on () (resp., on Z(X¥7)), with opera-
tions of addition and scalar multiplication being defined setwise. Let .#(X) (resp.,
(X)) be the vector space of all complex measures on A(.X) (resp., on A.(.\N)),
which are A(.X)-regular (resp., A.(X)-regular) and let o(X) be that of all com-
plex measures on Ao(\N). Let Zy(X)y (resp., . Z.(.X)y) be the vector space of all
bounded complex measures on Z(.¥#;) (resp., 7 (X )-regular complex measures on
F(H)). The spaces .#5(N), .A7(N), . #(X,R), . #.(X,R), .Z7,(XN,R), .2 (XY,
and .,//(fr)(l\')b are the spaces of corresponding real measures in Zy(\N), .7 (\N),

etc., respectively.

Theorem 5.2. Let T: . /#.(XN) — X (XN)" be given by Ty = 0 if p = /19}_’/(.){’)
and Ty: (X)) — H(X) given by Tyv =0 if v = /19l9’(%). Then:

(1) T and Ty arc well defined and are linear isomorphisms onto J(\N')™.
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(i) If Ty =0 (Tov = 0, resp.) then T'(v(e, 2(X))) = |0] (To(v(v, 2())) = 10|,
resp.).

(ii)) Let T = T.#7(X) and T = Tol.4(X). Then TC) (resp., Ty")
is an order preserving linear isomorphism of .//jr)(,\') (resp., of .//ér)(X)) onto
H(N,R)*, where ji1 < po if ji (E) < o) for all E € (X)) (resp., E € 9()),
M, fy € ‘//f”(,\') (resp., py, jta € l//(gr)(,\')). In particular, if T p; = 0;,1 = 1,2,
then TU)(juy V pin) = 0, V 0s, where

fove,(I2) = sup {pa, (I") + p1p,(E\ F)}
FCE
FED(X)

and T (g A pia) = 0y A 0, where

1191/\52(E) = inf {IIHI(F) +:“97(E \ F)}
FCE
FeZ(.x)

for I € &(.X). A similar result holds if ji; and po belong to .///0“)(‘\').
(iv) (X)) (resp., A#y(.X)) is the dual of ¥ (.\\') and

(1) 0(f) = [ fd(ue|B(I))
K
for f € C.(X) with supp f = K, where Ty = 0 (resp., Tope = 0).
(v) .} N (resp., .//(gr)(,\')) is the dual of ¥ (X,R) and an expression similar
to (1) holds if T = 0 (resp., Té”/z =9).

Proof. (i) By Theorems 4.4(i) and 4.6(1), 7" and Ty are well defined. If Ty, =
Tya = 0, then py = ;19|9(/) = jto and hence T and similarly, Ty are injective.
Making use of Proposition 15, §1, Chapter IV of [2], it can be shown that T and
Ty are linear. The details are left to the reader. T 1s an onto mapping by Theorem
4.7(v) of [10], while T} is evidently an onto mapping.

(11) Follows from Theoremn 4.4(i1) (d) for 7" and from Theorem 4.6(v) for Tp.

(iii) T is order preserving by Theorem 4.4(ii) (e) and T(;r) is order preserving by
Theorem 4.6(1). The rest of (ii1) is an immediate consequence of the order preserving
property of these isomorphisins 70" and Tér).

(iv) As in the proof of Theorem 4.6(iv) of [10] we have

o) = [ 1l
= [ f(l(/t”.@(l\’))

HA(K)) +i/de(uo219€(1\”))
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for f € Cc(X) with supp f = K. Since T (resp., Tp) is an isomorphisin, the result
follows.
(v) The proof is similar to that of (iv). a

Theorem 5.3. Let & = A.(X) (resp., B(N), Bo(X), 2(X), 2(X)) and let
M(S) = MX) (resp., M (X), Mo(X), //(,\ )b, //0(\);,) For j € . #(), let
lleel] = sup{v(p, S)NE): E €.7}. Then:

(i) The map 5 : . #(S) — KX (X); given by dgpp = 0 if p = /lgly is well
defined, and is an isomorphism onto ¥ (X); and ||®s | = ||| for p € A (F) so
that ® s is an isometric isomorphisin.

(i) Each one of the spaces (.4 (), ||.||) is the dual of (Ce(.X),|||lu) and conse-
quently, (.Z(5),||.]|]) are Banach spaces.

(ii1) Results similar to (i) and (ii) hold if X' (X); and .# () are replaced by
X (X,R); and A7 (), respectively, where M7 (") = {p € M(F): jt real}.

Proof. (i) Let puy,ps € M() and o, B € C. Clearly, ap; + s € M (.F) and
(ceper + Bpea) |9 (o) = a1 (2(X0)) + 8- /tv[‘ (#0). Thus, by the uniqueness part
of the various assertions in Theorem 2.4 we conclude that .7 (Z()) is the image
under a linear onto isomorphism 'y : . #(S) — 4 (Z(X)) given by

Cor(p0) —;tl X)), pEMY).

Let &5 (1) = (To o ') () for pp € A (.F), where Tj is as in Theorem 5.2. Clearly,
® 5 is a linear isomorphism of .#Z (%) onto its iinage in #(X)*. If d o () = 0, then
To (;t|9(%)) = 6 and by hypotlesis,

sup{|u(E)|: E € 2(0)} < .

Consequently, by the equivalence of (it) and (vi) of Theorem 3.3 we have 6 bhounded
and hence ¢ (A (7)) C H(X);. Conversely, if 0 € #(.X); then by Theorem 3.3,
1tg 1s bounded in My and My D #(X). Consequently, ,ug|.7 belongs to .Z (") and
() = 0, so that &(.Z(.S)) = H(N);.

(1) This is immediate fromn (i) and from the last part of Theorem 3.3.

(111) The proof is sinilar to the earlier parts. O

The following theorem can be compared with Theorem 7 of [7] and Theorem 14

of [8].

Theorem 5.4. Let Q@ be a non-void set and let # be a ring of subsets of Q.
Let A (resp., ./,) be the vector space of all complex valued finitely additive set

functions of finite (resp., of bounded) variation on 2 and let |jj|| = sup{v(p, 2)(E):
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E € #) for p € .My. Let .7 (resp., ‘///b(r)) be the space of corresponding real
valued set functions in & (resp., in ). Then there exists a totally disconnected
locally compact Hausdorfl space X such that .# is isomorphic to ¢ (X)*; 4
is order isomorphic to X (X,R)* and ./, (resp., ,//b(r)) is isometrically isomorphic
(resp., isometrically order isomorphic) to X (X); (resp., to X (X,R);). When Z is

an algebra, the space X can further be assumed to be compact.

Proof. By Stone’s representation theorem for Boolean rings (vide Theorem 1,
§18 of [3]), there exists a totally disconnected locally compact Hausdorff space .X
such that 2 is ring-isomorphic to the ring 4" of all compact-open subsets of X. Let
® be such an isomorphism from % onto €.

Let K € ¢ of X. Then by Proposition 1, §14 of [3] there exists U,, € % N (X))

o0
with ' = (U,. Since the members of € form a base for the topology of .X', each

|
U, is of the formu U, = |J®(A,j), Anj € Z. As K is compact, there exist Ay,;,,
J

k
i=1,2,... kin & such that N C JP(A,;,). If A, = U Anj,, then K = ﬂ(D(A”)
1

so that N € 2(%"). Since € C X, it follows that & (1’0 2(%).
For y € .4, let ¥(j)(E) = p(®~1(E)) for B € €. Since ®~1(B) = 0 and since

(o V]
each countable disjoint union {£,} in ¢ with JE, = F € € has E,, = § for
1

all but a finite number of n, it follows that v = (y) is a complex measure on %
Besides, as ¢ is of finite variation, v is also of finite variation on 4 and hence admits
a unique extension v to (%) = Z(Xy) as a complex measure. Conversely, given a
complex measure v on Z(#5), let j(¢~1(E)) = v(E) for £ € €. Clearly, p is well
defined on 2 and is a complex valued finitely additive set function. Since 1/[‘6’ is of
finite variation, yt € .#Z. Besides, () =

4. Also the mapping p — {¢(p)} is
linear and l)l_](’LtIV(’ so that ./ is isomorphic to .#Zy(X). Consequently, by Theorem

5.2(iv) . # is isomorphic to #(.X)*. The other results follow on similar lines. O

Since every non-void open set in the space .\ of Theorem 5.4 contains a compact-
open subset whose characteristic function belougs to CF(.X) and since as complex
valued additive set function ¢ on the ring 2 is a complex measure if and only if
“’l'll/I(En) = 0 whenever E,, | 0§, E, € 4, the following corollary is iimediate from

the above theorem.

Corollary 5.5. Let I (resp., () be the Jsomorplnsm from ./ onto #,(X) (resp.,
onto X (\N')*) in Theorem 5.4. Let /#§(N) = {v € M (X): v(K) =0 for K € ¥

withint K = 0} and /47 (X) = ,//b(,‘()ﬂu/lo, (X)y={0e X (X)*: im(f,)=0

whenever f,, | Xk, fu € CH(X), K € X, and /\fn =0in CH(X)} and X (X);, =
1

oo
—



H(N) N (N Let Moy = {p0 € ./ e countably additive} and  My.q = M0 0
Ay Then l'"'.//m and (/. W, (resp.. I'|.Meq and @/
AG(N) and (X)) (resp., isometrically isomorphic onto /5 (X) and ¥ (N);,)

bs

Myeq) are isomorphic onto

respectively. The restrictions of these isomorphisms on the corresponding subspaces

of real measures are further order preserving.
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