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Czechoslovak Mathematical Journal , 43 (118) 1993, P raha 

ON COMPLEX RADON MEASURES II 

T . V. PANCHAPAGESAN,* Mérida 

(Received April 3, 1991) 

Various types of regular extensions for complex and positive measures on ^(Jto) 

are studied and are made use of to characterize fie and Me in terms of the restrictions 

fie\$(Jf) and fie\9(Xo), where 0 £ ^ ( K ) * , 0(J*6) , 0 p O , ^ ( K ) , fie and Me 

being given as in [10]. Several characterizations for 0 £ J^(X)* to be bounded are 

given as well as a generalization of Theorem 54.2 of [9] to complex Radon measures is 

obtained. Finally, J^(X)*, J€r(X) R)* and JT(X)l are identified with certain spaces 

of complex or real measures on 9)(J^o) and 9^(J^) and is shown that the space of all 

C-valued additive set functions of finite variation on a ring of sets is isomorphic to 

.JV(X)* f°r a properly chosen locally compact Hausdorff space X. 

1. INTRODUCTION 

The present paper is a continuation of [10]. We use the same notation and ter­

minology of [10]. The main purpose of the present work is to generalize Theorem 

54.2 of McShane [9] to complex Radon measures on a locally compact Hausdorff 

space A' and to characterize //# and Me in terms of the restrictions fie\^(J^0) and 

fie\fy(JC), where fie and Me are as in [10]. Also are included results concerning 

regular extensions of positive and complex measures on &(J?o) and the study of spa­

tial isomorphisms of J T ( K ) * , J f (K ,R)* and Jt(X)*b = {0 £ Jt(X)* : 0 bounded}. 

Finally, we show that the space of all C-valued additive set functions of finite (resp., 

of bounded) variation on a ring of sets is isomorphic to JC(X)* (resp., isometrically 

isomorphic to Jf(X)*b) for a suitably chosen totally disconnected locally compact 

Hausdorff space A". 

In this connection, we would like to point out that the isometric isomorphism of 

JC(X)*b to the Banach space of all regular complex measures on &(X) (vide [6]) was 

* Supported by the C D . C H . T . Project C-409 of the Universidad de Los Andes, Merida, 
Venezuela 
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used by Thomas in [12] to deduce the Grothendieck's weak compactness criterion 

(given in [4]) of a subset H of JV(X)\ from the compactness criterion established 

by Bartle, Dunford and Schwartz in [1]. Similarly, our representation theorem for 

Jf(X)* might be useful tb shed more light on the inter-relations between abstract 

measures and Radon measures. 

2. R E G U L A R EXTENSIONS OF POSITIVE AND COMPLEX MEASURES 

Using the various notions of regularity given in [10] for positive and complex 

measures defined on a 6-ring & containing £^(JT) or $(JCQ), we study the regular 

extensions of positive and complex measures defined on ^(Jto). The results of this 

section play a key role in the rest of the paper. 

T h e o r e m 2 .1 . Let po be a finite (positive) measure on Qi(Jto). Then there 

exist unique extensions p, v and w of po to @(JC), 88C(X) and 88(X), respectively, 

such that p is @(Jf)-regular, v is 88 C(X)-regular and w is Radon-regular. Besides, 

p = v\$(X) = w\9(X) and v = w\88c(X). 

P r o o f . Let //0 be the unique extension of /to to 38Q(X) = S^(Qf(J(f)) as 

a measure. Then by Theorem 3.7 of [10] po has a unique extension v to 88C(X) 

(resp., w to 88 (X)) such that v is ^ c (K ) - r egu l a r (resp., w is Radon-regular) and 

v = w\88c(X). Take p = v\$(JC). Then //, v and w are the extensions of po with 

the required properties. The uniqueness of p follows by Theorems 3.9(i) and 3.7(i) 

of [10], while v and w are unique by (i) and (ii) of Theorem 3.7 of [10], respectively. 

• 

L e m m a 2 .2 . Let p\, p2 be finite (positive) measures on Q^(JXfo) (resp., &(J(f)-

regular measures on Q}(JV)). Then there exist unique extensions w\, w2 and w% of 

p\, p2 and p\ + / t2 , respectively, to @(JC) (resp., to 88(X)) as Q}(Jf)-regular (resp., 

Radon-regular) measures and w$ = w\ + w2. 

P r o o f . Let p\, p2 and /t3 be the unique extensions of p\, p2 and p\ + p2, 

respectively, to 88o(X) (resp., to 88C(X)) as measures. Clearly, /t3 = p[ + p'2. Let 

* ; ( / ) = / /<*/';> / e C c ( . Y ) , j= 1,2,3. 
Jx 

Then 63 = 0\ + 02 and by Proposition 15, §1, Chapter IV of [2], pg3 = p$l + p$2 

on 88(X) (vide Theorem 2.2 of [10] for the notation). Let Wj = pg if pj is &(J^)-

regular and let Wj = pg\Q>(Jtfr) if pj is defined on &(Jto). Then by Theorem 2.2 

of [10] pBj is Radon-regular and pe3\ty(JC) is ^ (JT)- regular by Lemma 3.5(i) of 
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[10]. By Proposition 3.4(i) (resp., by Theorem 3.9(i)) of [10], //',, p!2 and ^L'3 are 

3d0(X)-regu\ar (resp., ^ c ( N ) - r e g u l a r ) . As shown in the proof of Theorem 3.7 (resp., 

of Theorem 3.8) of [10], Wj extends fij and hence fij. The uniqueness of Wj on 

Q)(J(?) (resp., on 3S(X)) follows from Theorem 2.1 (resp., from Theorem 2.2(vii) and 

Proposition 3.4(iv) of [10]). Clearly, w3 = w\ + w2 in both the cases. • 

L e m m a 2 .3 . (i) If v is a real ^(Jt)-regular measure, let v0 = v\^(Jt0). Then 

i/+ = v+\9(X0) and v~ = v~\®(X0). 

(ii) If v\ and v2 are ^(JC)-regular complex measures on Q>(JC) and ifv\ \@(JC0) = 

v2\Q>(J?0), then v\ = v2. 

P r o o f . (i) v+(E) ^ v+(E), v~(E) ^ v~(E) for E G ®(Jt0). Let w\ = 

v+\£&(JC0) and w2 = v~\<&(JC0). Since w\ + i/~ = w2 + v0 on Q>(J^0), by Lemma 

2.2 there exist unique ^ ( J ^ ) - r e g u l a r extensions i>+, v~, w\, w2 of i/+, v0 , w\ and 

w2, respectively, such that w\ + v0 = w2 + v^ and by Theorem 2.1 *v+ = w\ and 

v~ = w2. Thus v = v0 — v~, whence t/+ <C J>+ and z/~ ^ v~. Hence (i) holds. 

(ii) Clearly, it suffices to prove the result for v\ and v2 real. Let V\\@(JC0) = 

v2\&(Jf0) = /to (say). By Theorem 2.1 there exist unique ^ ( J^ ) - r egu l a r extensions 

fiQ and fi~ of /t+ and L*~ to ^ ( J T ) . Now, by hypothesis and (i), v+\@(Jf0) = 

v2\&(JC0) = /t+ so that by the uniqueness part of Theorem 2.1 we conclude that 

i/f = fi+ for j = 1,2. Similarly, vj = fi0 for j = 1,2. Thus t/i = v2. D 

T h e o r e m 2 .4 . Let f.i0, v0 be complex measures on @(JC0), fi0 being of bounded 

variation on &(JC0). Then: 

(i) v0 has a unique extension v to $)(Jfc) as a @(Jf)-regular complex measure, v 

is real (resp., positive) if v0 is so. 

(ii) Tiie unique extension fi0 to 380(X) of /to as a complex measure is 380(X)-

regular. 

(iii) /to has a unique extension /t to 38C(X) (resp., w to 38(X)) as a 38C(X)-regular 

(resp., 3$(X)-regular) complex measure, /t and w are real (resp., positive) if /to is so. 

(iv) /t = w\39c(X) and fi0 = n\3*0(X) = w\390(X). 

(v) Let M = sup{v(^0,^(jeo))(E): E e 0 ( J T o ) } . Then 

sup{v(n, 3?)(E): E e3?} = M 

for 7/ = /t0 , /t or w and 3t = 380(X), 38C(X) or 3S(X), respectively. 

P r o o f , (i) Let v\ = Rev0 and v2 = Im.v0. By Theorem 2.1 there exist unique 

^ ( JT) - regu la r extensions i>+ and v~ of v+ and v~ for j = 1, 2 and Vj = i>+ — v~ is 

well defined and a ^ ( JT) - regu la r real measure on ! ? ( J f ) . Let v = v\+\v2. Then v 
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is ^ ( JT) - regu lar , v\&(J?0) = ^o and is unique by Lemma 2.3(h). The rest of (i) is 

obvious. 

Let |//0 | = v(/-io, @(J?Q)). By Theorem 17.26 of [11] there exists a unique extension 

fi0 of //o to 3SQ(X) as a complex measure of bounded variation. Besides, |//o| = 

v(fi0)M0(X)) extends |//0 | to &0(X) and 

(1) sup{ | / / 0 | (F ) : EeMo(X)} = M. 

If 7/j = Re//o and 7/2 = Irn/io, then 

fro = (fit ~ vT) + Kfit -fh) 

on £&Q(X), where 7/+ and i)J are the unique extensions of 7jj~ and 7/~ to &o(X) as 

measures for j ' = 1, 2. 

(ii) By Proposition 3.4(i) of [10], 7/+ and i)~ are /#0( A')-regular for j = 1,2 and 

hence //0 is i#0(A')-regular. 

(iii) By Theorem 3.7(ii) of [10] there exist unique extensions Wj and w'- of 7/+ and 

7/~, respectively, to 3$(X) as Radon-regular measures. For C G J ^ , by Proposition 

11, §14 of [3], there exists Co G Jf0 with C C Co so that 

iUj(C)^w3(Co)^iit(C0)^M 

by (1) and similarly, w'j(C) ^ M. Consequently, Wj(X) ^ M , and w'j(X) ^ M for 

j = 1,2. Then by Proposition 3.4(iv) of [10], w = ( 1 ^ - w[) + i(tv2 - w'2) is / # ( A > 

regular and extends (t0 and //Q. Besides, Re/v |£^(J^o) = 7/1 and I m i v l ^ ( J f o ) = 

7/9; Re w and Inviv are ^(A')- regular . Let w' and w" be also :^(Ar)-regular scalar 

extensions of 7/1 and 7/2, respectively. Then, as InMv'|^?o(N) = 0, we have 

/ / d ( Imu/ ) + = / / d ( I i W ) - , feCc(X) 
Jx Jx 

and hence by Theorem 2.2(vii) of [10], (Imiv ' ) + = ( lmi / / )~ so that w' is real. 

Similarly, w" is real. Clearly, if\ + w'-\9(X0) = i]~ + w'+\@(Jto). Since w'+ 

and w'~ are the unique Radon-regular extensions of their respective restrictions to 

£^(J^o), by Lemma 2.3 we have w\ +w'~ = w\ + iv '+ and hence Re iv = w'. Similarly, 

Im w — w" and hence w is unique. 

Taking // = w\j&c(X), by Lemma 3.5(h) of [10] we observe that // is a 38C(X)-

regular extension of //0 and besides, // is the unique extension of / / | £^(J^) . As 

ji\^(J^) is ^ ( J ^ ) - r e g u l a r by Lemma 3.5(i) of [10], the uniqueness of// follows from 

Lemma 2.3(ii). Clearly, from the above proof it follows that // and w are real (resp., 

positive) if //o is so. 
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(iv) Follows from the uniqueness of// and w and from their definition, 

(v) By applying the above extensions of \fi0\ to @IC(X) and 38(X) we deduce the 

result from (1) and from Definition 3.2(iii) of [10]. • 

The proof of the following theorem is similar to that of Theorem 2.4 and hence 

omitted. 

T h e o r e m 2 .5 . Let f.i be a Q}(JC)-regular complex measure of bounded variation 

with sup{t>(/., &(Jt))(E): E G &(#)} = M. Then: 

(i) The unique extension ft of /t to &C(X) as a complex measure is &c(X)-regular 

and is real (resp., positive) if /.i is so. 

(ii) /t iias a unique extension w to &8(X) as a &(X)-regular complex measure and 

w is real (resp., positive) if /i is* so. Besides, fi = w\&c(X). 

(iii) sup{v(fi,&c(X))(E): E G &C(X)} = sup{v(w,&(X))(E): E G &(X)} = 

M. 

Corol lary 2.6. Every complex measure f.i0 on &o(X) has a unique extension ft 

to &C(X) (resp., w to &(X)) as a &c(X)-regular (resp., 3lc(X)-regular) complex 

measure and // (resp., w) is real if/to is real and ft (resp., w) is positive if /to is 

p osi tive. Besi des, 

sup{v(i),&)(E): E G &} = sup{v( / i 0 , &0(X))(E): E e &0(X)} < oo 

wijere 7/ = /z or w and & = &C(X) or 3&(X), respectively. 

3. B O U N D E D COMPLEX R A D O N MEASURES 

In this section we give several characterizations for 6 G Jt(X)* to be bounded, in 

the sense that s u p { | 0 ( / ) | : / G .JT(K), | | / | |w <C 1} < oo. 

D e f i n i t i o n 3 . 1 . A complex Radon measure /.IQ on X is said to be bounded if 

sup{\ne(E)\: E G @(JT)} < oo. We define 

||/<*|| = sup{v(tie\@(Jr))(E): E G 9(X)} 

for e ejf(xy. 

L e m m a 3 .2 . Let 6 G Jt(X)* and E G @(Jf0). Then 

v(iie\®(Jeo), @(Jto\)(E) = v(fid,Me)(E) = m(E). 
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In particular, 

v(^\9(Xo), @(X0))(E) = v(u*\@(X\ 9(X))(E). 

P r o o f . Let v = u$\@(X0) and let \v\ = v(u,9(X0)). By Theorem 4.1 of 

[10] and by Theorem 2.1 there exist a unique extension |«v|~ of \v\ to :^(A') as a 

Radon-regular measure and a positive linear form ip on CC(X) such that |i/|~ = fi^,. 

Let / e CC(X) with supp / C K G J^o- Since / is integrable with respect to 

every Baire measure (vide p . 241 of [5]) and &o(X) VI K = &o(K), as in the proof 

of Theorem 4.7(ix) of [10] we have 

MЯI I / f d(n„\a0(K))\ ^ f |/|d/v = V'(l/l) 
1 JK JX 

so that \0\ <C V;- On the other hand, for F e &(XQ) we have 

| / . | ( F ) ^ u ( / t , , M , ) ( F ) = //,|,,(F) 

by Theorem 4.11 of [10], so that l^\9(X^) ^ n\9\\@(X0). If iv = (/q*| - / ^ ) | ^ ( J T 0 ) , 

then by Lemma 2.2 there exists a unique Radon-regular extension w of w to 3&(X) 

such that iv + /i^ = /iĵ j on &(X). Thus //</, ^ /q^j. Therefore, V' = |# | and then, by 

Theorem 4.11 of [10], we have 

\v\(E) = lH>(E) = m(E) = i,(/i,, M , ) ( E ) , F G ®(JT 0 ) . 

D 

T h e o r e m 3.3. Let /.i$ be a complex Radon measure on X. Then the following 

assertions are equivalent: 

(i) pe is bounded. 

(ii) 9 is bounded. 

(iii) & C Me, where & = &0(X) or &C(X) or 39(X). 

(iv) MQ is a a-algebra in X. 

(v) sup{\ue(E)\: E G &} < oo, where ^ = # 0 ( K ) or # C ( A ' ) or # ( A ' ) or AJ*. 

(vi) suv{v(ue\&,&)(E)\ E e &} < oo, where & = Me or 98(X) or 38C(X) or 

&o(X) or 9(X) or 9(Xo). 

(vii) sup{i;(^ |^( jr 0 ),^( jr 0 ))(K): K £ X0} < oo. 
(viii) \\ue\\ < oo. 

Besides, \\0\\ = \\u$\\ for 9 e X(X)*. The functional 9 is bounded if and only if 

Me = M^* and when 9 is bounded, \\p$\\ is given by the supremum in (vi) with & 
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being anyone of the 6-rings Me, &(X), @C(X), &o(X), @(X) or Q>(Jt0) and by the 

supremum in (vii) . In particular, 

\\^\\ = v(m\®(X),®(X))(x). 

P r o o f , (i) => (ii) Let / <E CC(X), with | | / | | u < 1 and let s u p p / = K. Then 

W)\= I fd(ne\®(K)) < / \f\dv(tie\^(K),^(K)) 
JK JK 

^v(p9\@(J<r),9{Jt)){K) 

^ 4sup{|/.,(£)| :£?€-?(JT)} 

and hence 0 is bounded if /t# is bounded . 

(ii) => (vii) Let K G JC0. By Proposition 11, §14 of [3] there exists U0 G ^ / O ^ ( J ^ ) 

such that K CU0. Let / G C+(X) with \K ^ / ^ Xcv T h e n ll/IU = - and by (ii) 

we have 

(i) v (^ |^ ( j r ) ,^ ( j f ) ) (A ' )^ / \f\dv(ne\®(j<r),®(j(rj) 
JU0 

< / l/l d/'|»| 

= l*l(/) ^ 11*11 

since v((ie\9(Jf),Q>(JC))(E) = n\g\(E) for E £ 9(X) by Theorems 4.7 and 4.11 

of [10] and since | |0| | = §6>| by Corollary 1 on p. 58 of [2]. If M0 is the supremum in 

(vii), then by (1), M0 ^ \\0\\. 

Since (1) holds also for K € Jf, by (iv) and (v) of Theorem 4.7 of [10] we have 

(2) IMKIMI. 

Let w = v(nB\@(Jf), ®(Jf)) and let M& = sup{i>(/£* \&, &)(E): E G &}, where 

& is one of the 6-rings in (vi). By Theorem 4.7 of [10] 

(3) w = v(ii$iM9)\@(Jr). 

For E G &(Jf), by Proposition 11, §14 of [3] there exists A' G JC0 with ~E C K 

and hence, by Lemma 3.2, we have 

w(E) <C w(K) = v(fte,Me)(K) = v(n9\&{Jf0), ®(Jf0))(K) 
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whence it follows that M®^) coincides with the supremum in (vii). By Corollary 2.6, 

M#0(x) = Mmx) and by Theorem 4.7(vii) of [10], MMe = M&{x). By (3) and by the 

fact tha t v(/.i0, Me) is M^-regular by Theorem 4.7 of [10], we have MM6 = Mg,^). 

The proof of the equivalence of the remaining assertions is easy and hence omitted 

to the reader. 

From the proof of (i) => (ii) and from (2) it follows that ||0|| = \\fie\\ for 9 e X(X)* 

(even though 9 is not bounded). 

If 9 is bounded, by (iv), X G Me and hence by Theorem 4 .H of [10], Me = M\e\ = 

Mu* . The condition is also sufficient since Mu* is a cr-algebra in X. • 
»\e\ »\e\ & 

4 . CHARACTERIZATIONS OF COMPLEX RADON MEASURES 

Using the properties of complex Radon measures established in [10], we charac­

terize these measures in terms of complex measures on $(XQ) and those on &(X), 

which are besides £#(J^)-regular. Also we include another characterization of these 

measures in terms of f^-regular complex measures // defined on a 6-ring Qt containing 

&(X) and this result precisely generalizes the result of McShane [9], mentioned in 

the introduction, to complex Radon measures. 

L e m m a 4 . 1 . Let 9 G X(X)*, 9X = Re.9 and 92 = Im0. Let v = v(fiB\9(X), 

9)(X)). Then: 

(i) v is &(X)-regular and ifis is the unique Radon-regular extension of is to 38 (X), 

then v = fi\e\. 

(ii) &(X)r\Me = {E e&(X): 0(E) < oc}. 
(iii) Me = {E C X: there exist A, B G @(X) H Me with A C E C B and 

u(B\A) = 0}. 

(iv) If Hj = fie3\$(X) and / i t and fij are the unique Radon-regular extensions 

to &8(X) of fit and fij, respectively, for j' = 1, 2, then 

fie(E) = (^ -{ij)(E) + \(;4-;q)(E) 

for E e &(X)f\M0. 

(v) If & = {E e 38 (X): 0(E) < oo}, then fig is the Lebesgue completion of fid\^ 

with respect to &. 

In short, Me and fie are uniquely determined by fie\$(X). 

P r o o f , (i) Follows from (v), (viii) and (ix) of Theorem 4.7 and from Theorem 

4.11 of [10]. 
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(ii) Let tf be as in (v) . Then by (i), St = M\0\ O &(X) and therefore, S? = 

M9n&{X) by Theorem 4.11 of [10]. 

(iii) By Theorem 4.7 (iv), v = \fie\\&(Jf). Since | / ^ | is A/0-regular by Theorem 

4.7(iii) of [10] 

I//0KF) = sup{ | / / , | (N ) : K CE,K C J f } 

= sup{i / (K ) : K C E,K CJt) 

for E G S9(X) H A/#, since .v is Radon-regular and u(E) < 00 so that Proposition 

3.4(iv) of [10] applies here. Now (iii) is immediate from Theorem 4.7 (vii) of [10]. 

(iv) By (i) and (v) of Theorem 4.6 of [10], fif = //.+ and fi~ = / / , - in S?(X)C)Mo 

for j — 1 ,2. Since Me = AUX H A/#2, /*t and /7~ are Radon-regular in S8(X) and 

fid+\Msj and /7^- |A/^ are A/^-regu lar, by Proposition 3.4(iv) of [10] we have 

/ i+(E) = s u p { / i t ( / v ) : K C F, K G J T } 

= sup{/i tf+( A'): K C E, K G J T } 

= ."* + (-") 

for j = 1,2. Similarly, /*~(F) = fi0-(E) for F G Sf(X) H A/* and for j = 1,2. 

(v) By (iv) and (vi) of Theorem 4.7 of [10] we have 

v(fL6\tf,&)(E) = v(iie,Me)(E), E G St 

and consequently, by (i) and by Theorem 4.11 of [10] 

v(ne\^^)(E) = 0(E), Ec@. 

Now the result is immediate from (iii) and (iv). • 

The following lemma is an easy consequence of Lemma 2.2. 

L e m m a 4 .2 . If 0\ and 02 are positive linear functional on CC(X), then ft(ex-92) — 

fiex - ftd2 on ^ ( J T ) . 

L e m m a 4 .3 . Let ft be a real measure on 9)(J^) and let /t be &(JC)-regular. Let 

|/t| = r(fi, (/(JCf). If\n\ is the unique extension of |/z| to S&(X) as a Radon-regular 

measure, let tf = {E G S9(X): |//| (F7) < 00}. Then: 

(i) There exists a unique 0 G Jf(X)*, 0 real, such that [i0\^(Jr) = /*. Besides, 
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/,+ = n9+\&(jf) and ft~ = fte-\Q!(X). 

(ii) \ft\ = m\&(JT). 

(iii) | / tp = ft\6\-

(iv) @ = &(X)nMB. 

(v) Me is the Lehesgue completion of & with respect to \ft\~\jf. 

(vi) If v\ and v-> are the unique Radon-regular extensions to J&(X) of //+ and //~, 

respectively, then 

fte(E) = v\(E)-v,(E), Ee&. 

Consequently, given F G Me, fte(F) = fte(A) = (v\ — v2)(A) where AC F C B. 

A,B £& with \ft\ (B\A) = 0. 

P r o o f . Since ft is ^(JT)-regular , by the inequality mentioned in the proof of 

Theorem 4.7(iii) of [10] obviously \ft\ and hence //+ and ft' are ^ (JT) - regula r . Thus 

by Theorem 3.9(ii) of [10] such extensions \fi\ , v\ and *v2 exist uniquely on &6(X). 

(i) Since v\ and V2 are Radon-regular, by Theorem 4.1 of [10] we have positive 

linear functionals 0i on CC(X) such that V{ = ftot, i = 1,2. Let 0 = 0\ — 0o- Then, 

by Lemma 4.2, / / J ^ ( J T ) = //. Consequently, by Theorems 4.5(v) and 4.6(v) of [10] 

we have ft+ = / /^+|f?(JT) and ft~ = fte-\fy(.JC). 

To prove the uniqueness of 0, if possible, let w G JT(A')* such that ft = ftw\(/(JC). 

Let w\ = Kew and w<2 = \mw. Since ftW2\
cJ(Jf) = 0, ftw+\&(J^) = fiw-\fy(.Y). 

Then by the uniqueness part of Theorem 3.9(ii) of [10], we have ftw+ = (tw- so that 

w+(f) = fx fdf\v+ = Jxfdftw- = nq(f) for / G CC(X). Thus w\ = 0. ' i lence w 

is real and 

n = nw\Q{Jtr) = (//,„+ - tiw-)\s{jf) = (,.,+ - , . , - )\&{jf). 

Tlierefore, 

(/<„,+ + n„-)\Q>(Jf) = (,.,+ + flw-)\9(jr) 

and consequently, by Proposition 15, §1, Chapter IV of [2] we have 

fLu, ++e-\n-*) = (Le++w-\n-*)-

Thus, by the uniqueness part of Theorem 3.9(ii) of [10] we have that ftw + +e- — 

fte++iu- so that (w+ +0~)(f) = (0+ + w~)(f) for / G CC(X). Hence 0 = w and thus 

0 is unique. 

Since |/*| = L > ( / t J ^ ( j r ) , @(Jf)) by (i), (ii) and (iii) hold by Lemma 4.1(i), whereas 

(iv) follows from Lemma 4.1 (ii). Similarly, (v) is immediate from Lemma 4.1 (iii). 

Finally, (vi) follows from (iv) and (v) of Lemma 4.L D 
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As a consequence of the above lemmas we shall give the following theorem, which, 

among other things, characterizes a complex Radon measure in terms of its restriction 

to &(JT). 

T h t . o r o m 4 .4 . (i) A comj)lex measure ft on &(JC) is the restriction of a, complex 

Radon measure //<? if and only if p is fy(JC)-regular. In such case, 0 is unique and is 

called the functional determined by //. 

(ii) Let ft be a &(JT)-regular complex measure on &(J(f) and let |//| = 

v(ft, &(JC)). Let |//.|~ be the unique extension of |//| to (J8(X) as a Radon-regular 

measure and let yf = { K G y$(X)\ |//| (E) < 00}. Let fi\ = Re// , //2 = Im// , and 

pf and / /" be the Radon-regular extensions to J8(X) of pf and fi~, respectively. 

Besides, by (i) let 0 be the functional determined by ft. Then: 

(a) tf = &(X)C\M9. 

(b) Me is the Lehesgue completion of 3? with respect to \fi\"\&?. 

(c) Given E G MB, there exist A,B G & with A C E C B and \p\"(B \ A) = 0. 

/ f e u / e s , ft9(E) = {(// + - ft~) + i(// + - ft^)}(A). 

(d) |//| = ft\e\\r-/(JC), so that |//| determines \0\. 

(e) 0 is real if and only if ft is real; 0 is positive if and only if p is positive. When 

// is real, / /+ and / / " determine 0+ and 0~, respectively. 

P r o o f , (i) By Theorem 4.7(v) of [10] the condition in necessary. Conversely, 

let // be (/(JC)-regular, with fi\ = Re// and / j 2 = Im// . Since @(Jf) is a <5-ring, 

ftj — fif — ftj and / / j " and ftj are f/?(Jr^)-regular for j = 1,2. Consequently, by 

Lemma 4.3 there exist 0j G J ^ ( N ) * , 02 real, such that ftj = ftBj\fy(X) for j = 1,2. 

Let 0 = 0 ! + i02. Then 0 G JT(X)* and // = ft0\&(Jf). Clearly, 0 is unique by the 

uniqueness part of Lemma 4.3(i). 

(ii) (a) As // = / /^ | f?(JT), the result holds by Lemma 4.1(ii). 

(b) This is the same as Lemma 4.1 (iii). 

(c) Follows from (iv) and (v) of Lemma 4.1. 

(d) By Theorems 4.7(iv) and 4.11 of [10], |//| = v(fte, Me)\&(JT) = fim\&(JT) 

and hence (d) holds. 

(e) This is immediate from Lemma 4.3(i). • 

The following result generalizes Theorem 54.2 of [9] to complex Radon measures. 

The hypothesis that &(X) D & = {E G . # ( R " ) : W\(E) < 00} is the same as 

M(X) C\& = {E G yrf(Rn): \v\*(E) < 00} in the case of Rn and ^-regulari ty of// is 

redundant in this case. 

T h e o r e m 4 . 5 . Let & be a S-ring containing ^(Jf) and let // be a ^-regular 

complex measure on f?. Let v = fi\&(.3C) and \i/\ = v(i/,&(Jf)). Suppose & = 



@{X) C\ & - {E e 38{X)\ \v\~(E) < oo), where |//|" is the unique Radon-regular 

extension of \v\ to £6(X). If p and Q) are the Lehesgue completions of p\yt and jf, 

respectively, with respect to & and p\jf, then there exists a unique 0 6 J(f(X)m such 

that p — pe an J 9 — M$. Besides, 0 is real (respectively, 0 is positive) if p is real 

(respectively, p is positive). 

P r o o f . Let |//| = v(p, 9). Then, by the inequality mentioned in the proof of 

Theorem 4.7(iii) of [10], |//| is ^-regular and as &(Jf) C 9, the argument given in the 

proof of Theorem 4.5(vi) of [10] holds here verbatim to show that | / / | | ^ ( J T ) is f?(JT)-

regular, if we replace there |//#| by |//| and M$ by fy. Consequently, v = / / | f?(JT) is 

also £?(JfT)-regular. 

Again, since // is ^-regular , by an argument similar to that given in the proof 

of Theorem 4.5(vii) (c) of [10] one can show that v(p,9(X),9)(E) = \p\(E) for 

E E @. Consequently, 

(i) \„\ = vU,\&(jr),9{jc)) = \,tp(jr). 

Since &(X) D & = {E: \v\(E) < oo}, |// | ' is Radon-regular and |//| is ^-regular , 

by (1) and by Proposition 3.4(iv) of [10] 

M ' ( F ) = sup{ | / / | (N ) : A 'C EJ< e.JT) 

= sup{|//|(N): A'c EJ<eJT] 

= \»\(E) 

for Ee£t(X)n®. That is, \v\* \& = |//||/#. 

Since v is ^(JT)-regular , by (i) of Theorem 4.4 there exists a unique 0 £ Jr^(A')* 

such that // = pA$(JC) and by (ii) (e) of the same theorem, the functional 0 is 

real (resp., positive) if// is real (resp., v is positive). Besides, by (ii) (d) of the said 

theorem, \v\ — p\y\\fy(JC). Thus by hypothesis, by (a) and (b) of Theorem 4.4.(ii) 

and by the fact that \v\ \<# = | / / | | .^ , we conclude that 9 = Me. 

Since Re// and Ini/z are ^-regular , by following an argument similar to that 

in the proof of (v) of Theorem 4.5 of [10] we note that ( R e / / ) + | # ( J T ) = (Re/ / )+, 

(Kep)-\9(.r) = ( R e / / ) " , (Im//)+ \(/(.T) = (Im//)+ and ( I m / / ) - | £ / ( J T ) = ( I n l ­

and (Re//) + , ( R e / / ) - , (Im/y)+ and (\mv)~ are £/( JT)-regular. Thus, if vx = Re// 

and v>> — \i\\ v and //+ and / /" are the unique Radon-regular extensions to tftf(X) of 

//+ and / /" , respectively, for j = 1, 2, then by Proposition 3.4(iv) of [10] we have 

'•>V v;\E) = sup{í/+(/v'): K C E, K 6 Jť} 

= sup{/ í+(/v'): /v'C L\K eJť} 

= /</(!?) 
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for E £ ?# and for j - 1,2, where /.i = Re/< and /«2 = hrifi. Similarly, i)J (E) = 

fiJ(E) for E £ & and for j = 1, 2. 

Consequently, hy Theorem 4.4(ii) (c), given E £ & = Mg there exist A,B £ £1 

with A C E C B, \/i\(B\ A) = 0 and 

fle(E) = (/>,+ - ^)(A) + i(i>+ - K)(A) 

= (/'+-/'D(^) + i(/4-/'2)(^) 
= /,(A) 

= /'(£) 

since by hypothesis // is the Lebesgue completion of fi\& with respect to 31. Hence 

M9 = (/ and fie = //. D 

In the next theorem we consider the restriction of //# in &(Jt0) and study its 

properties. 

T h e o r e m 4.6 . (i) A complex measure v on &(Jf0) is the restriction of a complex 

Radon measure //# and such 0 is unique. We say that 6 is determined by v if 

i/ — fie\{/(.Jf/
0); 0 is real (resj)., positive) if v is real (resp., positive). 

(ii) If v is a complex measure on &(Jf0) and // is the unique extension ofv to &(Jf/r) 

as a (/(Jf)-regular complex measure (vide Theorem 2A(\)), then fi and v determine 

the same functional 0 E J T ( N ) * . That is, v = fie\&(je0) and ft = fie\9)(X). 

In the following, let v, ft, 0 he as in (ii). Let v\ = Rev, i/2 — hnv, ft\ = Re/ / , 

fi[> = 1 m / / . 

(iii) The unicpie (/(.Jf)-regular extensions vf and v~ of vf and v~, respectively, 

to (/(.Y) (vide Theorem 2A), are given hy v^ = //* and v~ = //~, j = 1, 2. 

(iv) If v is real and \v\ = v(v,cS(X0)), then v+ = / / + | 0 ( J f o ) , v~ = fi~\®(X0) 

and \v\ = \fi\\(/(Jf0), where |//| = v(fi,9(X)). Consequently, v+ = fid+\$(Jf0), 

v~ = pe-\^/(Jf0) and \v\ = //|#| |£/( Jfo). Thus v+, v~ and \v\ determine 0+, 9~ and 

\0\, respectively. 

(v) If v is complex, then \v\ = \ft\\{/(Jfr
0) = //|#| |^(Jr*o) so that \v\ determines \0\. 

P r o o f . By Theorem 2.4(i) there exists a unique £?(JT)-regular complex mea­

sure // on (/(JC) such that ft\(/(Jt) = // and such // is real (resp., positive) if v is 

real (resp., v is positive). Then by Theorem 1.4(i) there exists a unique 0 ~ Jf(X)* 

such that // = fie\(/(Jf) and hence, v = fio\{/(.J^0). This functional is real (resp., 

positive) if v (and hence //) is real (resp., v is positive) by Theorem 4.4(ii) (e). Since 

v determines // uniquely, it follows that v determines 6 uniquely. Thus we have 

proved (i) and (ii). 
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(iii) By Lemma 2.3(i) vj~ = /«:+|f^(Jfo) and v- = \i- \ty(Jfo) and as //+ and // ; 

are ^ ( J ^ ) - r e g u l a r , by the uniqueness part of Theorem 2.1 we conclude that /> = //"*" 

and vj = f.ij for f = 1,2. 

(iv) Since /t is real when v is real, by Lemma 2.3(i) v+ = / i+ | f?(Jfo) and v~ = 

f.i~\@(J?o). Consequently, by Theorem 4 . 4 ( H ) (e) the result holds. 

(v) This is immediate from Lemma 3.2. • 

5. I S O M O R P H I C REPRESENTATIONS OF JT(A')*, J T ( A , R ) * , Jf(X)*b 

AND J T ( A , R ) ; 

Making use of the results of the earlier section we show that JT(X)* is isomorphic 

to the space of all complex measures on C/(JCQ) and to the space of all f / (JT)-

regular complex measures on Q(JC). The same isomorphism, when restricted to 

JT(A r ,R)*, is order preserving and maps Jf(X,R)* onto the real vector space of 

all real measures on ^(.JCQ) and the space of all ! / (J f ) - regular real measures on 

(/(JC). Also we show that .JC(X)*b (resp., JT(A',R)£) is isometrically isomorphic to 

the Banach space of all bounded complex (resp., real) measures on (/(.Jfo) and to 

the Banach space of all bounded ^(JT)-regular complex (resp., real) measures on 

fy(JC). Finally, the vector space of all C-valued additive set functions of finite (resp., 

of bounded) variation on a ring of sets is shown to be isomorphic (resp., isometrically 

isomorphic) to .JC(X)* (resp., to Jf(X)*b) for a suitably chosen totally disconnected 

locally compact, HausdorfF space A\ 

Before stat ing the relevant theorems we fix the notation for various spaces of real 

and complex measures. 

N o t a t i o n 6.1. .//o(X) (resp., „//c(X)) denotes the vector space of all complex 

(resp., £^(J^)-regular complex) measures on (/(Jfo) (resp., on cj(Jf)), with opera­

tions of addition and scalar multiplication being defined setwise. Let „ / / (A) (resp., 

.//C(X)) be the vector space of all complex measures on 39 (X) (resp., on J9C(X)), 

which are .^(A')-regular (resp., .<#c(A')-regular) and lot .//)(X) be that of all com­

plex measures on &9Q(X). Let .//^(X)b (resp., .//c(X)b) he the vector space of all 

bounded complex measures on (/(.JCQ) (resp., ^?(JT)-regular complex measures on 

f?(JT)) . The spaces .//0
r(A), . / / ; ( N ) , . / / ( A , R ) , V / ( N , R ) , . / / 0 ( N , R ) , . / / ( <

r , (N ) 6 

and .//c (X)b are the spaces of corresponding real measures in ^//Q(X), *//c(X), 

etc., respectively. 

T h e o r e m 5.2. Let T: .//C(X) -> JT(A')* he given hy Tfi = 0 if fi = ^\(/(X) 

and T0 : V / 0 (A) -» .Jf'(X)* given hy T0v = 0 if v = ft0\&(jro). Then: 

(i) T cind To are well defined and are linear isomorphisms onto J(r(X)* . 
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(ii) IfT/i = 0 (To* = 0, resp.) then T(v(p, &(Jt))) = |0| (TQ(v(u, @(Jto))) = \0\, 

resp.). 

(iii) Let T ( r ) = T | . / / ( r ) ( N ) and T0
(r) = T0 |V/0

( r )(A') . Then T ( r ) ( resp , T0
(r)J 

is a/j order preserving linear isomorphism of ./// (X) (resp., of ^//0 (X)) onto 

J f ( N . R ) * , where px <C //2 i / > i ( F ) $ //2(F) for all E G 0 ( J f ) (resp., E G ®(#*)), 

/ / ! , / / 2 G V / i r ) ( N ) ( resp , / / , , / / 2 G . / / 0
( r ) (A ' ) j . //i particular, i f T ( r ) / / ; = 0;, i = 1,2, 

t/ien T ( r ) ( / / i V //2) = 0! V 02, where 

fi9lve2(E)= sup {//,1(/0 + / / * 2 ( F \ F ) } 
EcL; 

F£Q>{JL') 

and T ( r ) ( / / i A //2) = 0i A 02, where 

/ / , l A , 2 ( F ) = inf {//*-(F)+ /£ , , (£ \ F ) } 
TC# 

Fe^(OT) 

for F G -/*( J ^ ) - 4̂ simj/ar result holds if //, a/jd p 2 he/o/jg to . / / 0
( r ) (N ) . 

(iv) .//(N) (resp., .//o(X)) is the dual of.JT(X) and 

(1) 0(f) = ( fd(p0\&(K)) 
J K 

for f G CC(X) with supp / = K, where Tfi = 0 (resp., Top = 0J. 

(v) ^//c (X) (resp., .-//(/ (-V)J is the dual of J f (X, R) and a/j expression similar 

to (I) holds jF7?( r)// = 0 ( r e sp , T0
(r)// = 0j. 

P r o o f , (i) By Theorems 4.4(i) and 4.6(i), T and T0 are well defined. If T//i = 

T//2 = 0, then //j = p9\(/(Jf) = //2 and hence T and similarly, To are injective. 

Making use of Proposition 15, §1, Chapter IV of [2], it can be shown that T and 

7 0 are linear. The details are left to the reader. T is an onto mapping by Theorem 

4.7(v) of [10], while T0 is evidently an onto mapping. 

(ii) Follows from Theorem 4.4(ii) (d) for T and from Theorem 4.6(v) for To. 

(iii) 7 ' ( r ) is order preserving by Theorem 4.4(H) (e) and T0 is order preserving by 

Theorem 4.6(i). The rest of (iii) is an immediate consequence of the order preserving 

property of these isomorphisms 7n(r) and T0 . 

(iv) As in the proof of Theorem 4.6(iv) of [10] we have 

o(f) = / /!.(/.,,|;*(A'))+ i / fd(ti9,\a(i<)) 
J K J K 

= / / d ( / . , | # ( A ' ) ) 
JK 
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for / G CC(X) with supp / = K. Since T (resp., T0) is an isomorphism, the result 

follows. 

(v) The proof is similar to that of (iv). D 

T h e o r e m 5.3 . Let y = &C(X) (resp., <0(X), ^ o ( N ) , 9(X), &(JTQ)) anc/ let 

y/(y) = JC(X) (resp., J/(X), y/0(X), y/c(X)b, y/Q(X)b). For // G y/(y), let 

||//|| = s u p { O ( / / , ^ ) ( F ) : E G y). Then: 

(i) The map <$>y. .//(y) — Jf(X)*b given by <\>y/i = 0 if ft = /te\y is well 

defined, and is an isomorphism onto Jtr(X)*b and ||4>^//.|| = ||//|| for // G .//(S/) so 

that $c/ is an isometric isomorphism. 

(ii) Each one of the spaces (~//(y),\\.\\) is the dual of (CC(X),\\.\\U) and conse­

quently, (.//(y), 11.11) are Banach spaces. 

(iii) Results similar to (i) and (ii) 1jo1c/ if JC(X)*b and ~//(y) are replaced by 

J T ( K , R ) J and ^ / T ( J ^ ) , respect/ve/y, where J/r(y) = {// G J/(y)\ // rea/}. 

P r o o f , (i) Let / / i , / / 2 G ^-/?(^) and a,/? G C. Clearly, api+/3fi2 G -/ /( .y1) and 

(cv//i -f /3fi2)\S}(Jto) = a • //i (ty(Jf'o)) + (3 • fi2\&(J(o). Thus, by the uniqueness part 

of the various assertions in Theorem 2.4 we conclude that .//(&(J?o)) is the image 

under a linear onto isomorphism V^y : y/(.9°) —> .// (^(J^Q)) given by 

r ^ ( / / ) = / / | ^ ( j r 0 ) , fiey/(y). 

Let ^ ^ ( / z ) = (To ° I \y)(/ /) for // G ~//(y), where F0 is as in Theorem 5.2. Clearly, 

<l>y is a linear isomorphism of .//(y) onto its image in Jf(X)*. If <b^r(p) = #, then 

To(//|^(Jr^o)) = 0 and by hypothesis, 

sup{ | / / (F ) | : FG^(JTo)} < o o . 

Consequently, by the equivalence of (ii) and (vi) of Theorem 3.3 we have 0 bounded 

and hence <^^(.//(y)) C Jf(X)*b. Conversely, if 0 G J(r(X)*b then by Theorem 3.3, 

pe is bounded in Me and Me D 3I(X). Consequently, fi$\y belongs to .//(y) and 

$^(pe) = 0, so that <t>(y/(y)) = JT(N )* . 

(ii) This is immediate from (i) and from the last part of Theorem 3.3. 

(iii) The proof is similar to the earlier parts. • 

The following theorem can be compared with Theorem 7 of [7] and Theorem 14 

of [8]. 

T h e o r e m 5.4. Let Q be a non-void set and let y? be a ring of subsets of Q. 

Let y/ (resp., .//b) be the vector space of all complex valued finitely additive set 

functions of finite (resp., of bounded) variation on 3? and let ||//|| = sup{O(//, X?)(E): 
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E E &} for p E .//b Let ^//^ (resp., .//[ ) be the space of corresponding real 

valued set functions in ~// (resp., in ~//b). Then there exists a totally disconnected 

locally compact IIausdorff space X such that *//. is isomorphic to Jf(X)*; ~//(r) 

is order isomorphic to Jt(X, R)* and Mb (resp., ~//b ) is isomctrically isomorphic 

(resp., isometrically order isomorphic) to JC(X)*b (resp., to Jt(X,R)*b). When & is 

an algebra, the space X can further be assumed to be compact. 

P r o o f . By Stone's representation theorem for Boolean rings (vide Theorem 1, 

§18 of [3]), there exists a totally disconnected locally compact Hausdorff space A' 

such that J? is ring-isomorphic to the ring */> of all compact-open subsets of Ar. Let 

<I> be such an isomorphism from &t onto %?. 

Let A' E Jfo of A . Then by Proposition 1, §14 of [3] there exists Un E f n 0 ( J o ) 
oo 

with A' = f]Un. Since the members of **f form a base for the topology of A', each 
l 

Un is of the form Un — \J^(Anj)} Anj E &. As A' is compact, there exist Anjt, 
j 

k k oo 
/ = 1 , 2 , . . . , .4- in & such that A C \J®(Anjt). If An - IJ Anjt, then A = f)Q(An) 

l i = i l 

so that A E 9>(V). Since <& C JT0, it follows that 9\X0) = &(<£). 

For // E .//, let ^(p)(E) = fi(<$>~x(E)) for E E K. Since $ - ! ( 0 ) = 0 and since 
oo 

eacli countable disjoint union {En}^ in (6 with IJ En — E E ^f has Kn = 0 for 
l 

all but a finite number of n, it follows that v — V'OO *s a complex measure on *£. 

Besides, as // is of finite variation, v is also of finite variation on % and hence admits 

a unique extension v to ^(c6) — &(J^0) as a complex measure. Conversely, given a 

complex measure v on ^(Jf0), let fi(<P~l(E)) = v(E) for E E */>. Clearly, p is well 

defined on & and is a complex valued finitely additive set function. Since v\c/> is of 

finite variation, // E .//. Besides, V'(/0 = vfe- Also the mapping p —> {V'(//)} ' s 

linear and bijective so that .// is isomorphic to ^//Q(X). Consequently, by Theorem 

5.2(iv) .// is isomorphic to Jf'(X)*. The other results follow on similar lines. • 

Since every non-void open set in the space A" of Theorem 5.4 contains a compact-

open subset whose characteristic function belongs to C+(A') and since as complex 

valued additive set function // on the ring . ^ is a complex measure if and only if 

l im/ / (A n ) = 0 whenever En j 0, Fn E ^?, the following corollary is immediate from 

the above theorem. 

Corol lary 5.5. Let E (resp., G) be the isomorphism from .// onto ~//0(X) (resp., 

onto Jf(X)*) in Theorem 5.4. Let ~//0
s(X) = {v E ~//0(X): v(K) = 0 for A E Jf0 

with hit A = 0} amU/£(X) = .//b(X)C\.//0
s; Jf(X)*s = {0 E J T ( A ) * : YnnO(fn) = 0 

n 
OO 

whenever / „ | \ K , / „ € C+{X), K £ Jt0 and A /» = 0 in CC+(.Y)} and J f ( A % = 
1 



JҐ(X)*b П J ŕ Ҷ N ) * . Let .//ca - {// Є .//: // couniЉly ndditive} ćind J/hra = J/ca Гì 

~//h. TlìЄll F\.//ca äІKІ (тl//ca (rЄSp., F^/Ąca <lIÌ(l ('\^Һra) a г e ІsOШOГpҺІC OІìto 

.//ц(X) cind .JҐ(X)* (resp., isoinetricнlly isomorphic onto .//Ь

S(X) cind .JҐ(XУЬs) 

respectively. The гestrictions oť these isomorphisms on the corresponding suì)sp;ices 

oť гećil mensures nre ťuгtheг order prescrving. 
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