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1. INTRODUCTION

If ¥ is a right continuous complex function of finite variation in R™, then ¥ induces
a complex Lebesgue-Stieltjes measure mg on R", whose domain is a é-ring My
containing all the compact subsets of R". If Z = My N #(R"), it is well-known
(e.g. vide [6], [8]) that My (resp., my) is the Lebesgue completion of £ (resp., of
my lg) with respect to v(m\p|ﬂ,g) (resp., to #). Conversely, if 4 is a complex
measure on a é-ring 2 containing the compact subsets of R* and 2 is the Lebesgue
completion of the é-ring Z = 2 N B(R™) with respect to |u||#Z and {E € #(R"):
[u*(E) < 0o} = 2, then there is a right continuous function ¥ of finite variation on
R™ such that My = 2 and pu = myg. This result is essentially the same as Theorem
54.2 of [6], where McShane considers u to be real.

The object of the present paper and the succeeding one is to generalize the above
mentioned results to complex Radon measures on a locally compact Hausdorff space
X. Since ¥y # X in general, we are led to the study of various types of regular
extensions of positive and complex measures defined on 2(J%).

With each § € ¥/ (X)* we associate canonically a unique complex measure ug
defined on a é-ring My containing 2(¥¢') and in the present paper we study the
regularity properties of pg. Among other results, we show that My = Mje and
ta; = v(pe, Mg). In the succeeding paper [9] we obtain the generalization of the said
theorem of [6] and give some characterizations of bounded and unbounded complex
Radon measures.

* Supported by the C.D.C.H.T. project C-409 of the Universidad de Los Andes, Mérida,
Venezuela.
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2. PRELIMINARIES

In this section we fix the notation and terminology. Also we give some definitions
and results from the literature.

X denotes a locally compact Hausdorff space and C.(X) (resp., C7(X)) is the
vector space of all continuous complex (resp., real) valued functions with compact
support in X. ¥ (resp., X) is the family of all compact Gss (resp., compact
subseis) of X, while % is the class of all open subsets of X. For a class ¥ of subsets
of X, 2(€) (resp., #(¥)) is the 6-ring (resp., o-ring) generated by ¥. We denote
S (U) by #(X), S(X) by #.(X) and #(H) by #o(X). The members of #(X)
are called the Borel subsets of X; those of #9(X) the Baire subsets of X and finally,
those of #.(X) are called o-Borel (since E € #(X) belongs to #.(X) if and only if
E is o-bounded).

The locally convex spaces ¥#'(X) and ¥ (X, R) are as in Bourbaki [1] and ¢ (X)*
(resp., H(X,R)*) is the topological dual of #(X) (resp., of ¥ (X,R)). For a
functional § € ¥ (X)*, we refer to [1] for the concepts of Ref, Im#6, |8| and for those
of 6% and 6~ when 6 is real in the sense of [1].

In the following proposition is given the concept of Lebésgue completion of a
complex measure on a é-ring. As its proof is of routine nature (vide [3]) we omit it.

Proposition 2.1. Let v be a complex measure on a é-ring Z. Let Z* = {EUN :
Ee€Z NCMeR with |v|(M) = 0}, where |v| = v(v,%&). For such EUN € %*,
let "(EUN) = v(E). Then &* is a 6-ring, Z* D &, v is well defined, 7|2 = v and ¥
is a complex measure on #&*. We say that ¥ (resp., £*) is the Lebesgue completion
of v (resp., of &) relative to %2 (resp., tov).

By measure (on a ring) we mean a positive measure.
From Chapter IV of Bourbaki [1], we have the following theorem. The reader may
also refer to [5], [7], (8] and [10].

Theorem 2.2. Let 8 be a positive linear functional on C.(X). Let M*(X) = {f:
X — [0,00], f lower semi-continuous} and F(X) = {f: X — [0,00]}. Let

piE)= inf sup{0(¥): ¥ <99 €CH(X)}
for E C X. Then:
(i) up is an outer measure on P(X).
(i) Let M,; = {E C X: E is py-measurable}. Then M,; is a o-algebra and
contains #(X). We denote pug|My; by je.
(iii) py(K) < oo, K €X.
(iv) ps(E)=inf{ug(U): ECU €%}, ECX.
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(v) ws(E) =sup{ps(K): K C E,K € X'}, if p3(E) is o-finite and E € My; or
fEe%.

(vi) Given E € M,; with ug(E) o-finite, there exist A, B € #(X) such that
A C E C B, A o-compact and pg(B \ A) = 0. Consequently, puy(E) = pg(A).

(vii) Let jip = pj|2(X). Then

9(f)=/xfdp,, f € C(X).

Besides, if v is a measure on #(X) satisfying (iii)-(v) above and if 0(f) = [, fdv,
f € Ce(X), then v = fig.

3. REGULAR EXTENSIONS OF POSITIVE MEASURES

We introduce several notions of regularity for positive and complex measures de-
fined on certain é-rings or o-rings of subsets of X and study the existence of regular
extensions. These results play a key role in the next section.

Definition 3.1. A measure p on #(X) (resp., on #.(X), on #(X)) is a Baire
(resp., a o-Borel, a Borel) measure if y(K) < oo for k € ¥ (resp., for K € X').

Definition 3.2. Let & be a ring of sets in X with 2(¥) C Z or 2(X) C Z.
A measure y defined on % is said to be #-regular if

(1) m(K)< oo, K€ XN,

(ii)) u(E)=inf{u(U): ECU € % N} for E € &; and

(i) p(E)=sup{p(C):CCE, CeXNA}for EcX.

A complex measure v on Z is said to be #Z-regular if, given E € Z and € > o,
there exist C € X N % and U € % N Z such that C C E C U and |v(G)| < ¢ for
every GE Z withGCcU\C.

Definition 3.3. A Borel measure p on #(X) is said to be Radon-regular if
(i) u(E)=inf{u(U): ECU € %} for E € #(X)

and

(i1) u(U)=sup{p(C):CCU, CeX} forUe.

Proposition 3.4.

(i) A Baire measure is %o(X)-regular.

(i) A measure po on D(Xp) with po(K) < oo for K € Xy is D(Xp)-regular.

(ili) A complex measure vy on D(Xp) is 2(Xp)-regular.

(iv) If p is a Radon-regular measure on #(X), then (ii) of Definition 3.3 holds
for E € #(X) if p(E) is o-finite.
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Proof. By Proposition 13, §14of [2], ¥ N H(X) = ¥ N D(X,) = ¥, and
hence (i) holds by the first part of Theorem 52.G of [4]. Corollary 1 on p. 347 of [2]
implies (ii) and (iii) while (iv) is immediate from Theorem 10.30 of [5]. a

Lemma 3.5. Let u be a Radon-regular measure on #(X). Then:
(i) Ifv=p|2(X), then v is D(X)-regular.
(i) Ifw= plgc(X), then w is #.(X)-regular.
Proof. Because of Proposition 3.4 (iv) it suffices to verify (ii) of Definition 3.2
for v and w. If E € 2(X'), then by Proposition 11, §14 of [2] and by the Radon-
(o]
regularity of p, the result holds for v. If E € #.(X), then E C JCn, Cr, € X

1
and applying (i) to £ N C, for each n, it can be shown that w(F) satisfies (ii) of
Definition 3.2. O

Lemma 3.6. (i) Let yy and p; be #.(X)-regular measures. If

(1) ‘ANm=Afwmf€QWL

then py = pa.
(i1) If (1) holds for two Baire measures p, and ps, then py = po.

Proof. (i) This is immediate by Theorem 56.E of [4].

(1) For K € g, by Theorem 55.A of [4] there exists fn | Xk, fa € CH(X)
so that by the Lebesgue dominated convergence theorem and by the hypothesis,
p#1(K) = p2(K). Consequently, u; = pg by Proposition 3.4 (i). O

Theorem 3.7. Let o be a Baire measure on X. Then:
(1)  po has a unique extension p to B.(X) such that p is a B.(X)-regular measure.
(i1) po has a unique extension v to #(X) such that v is a Radon-regular measure.
(ii) If p and v are as in (i) and (ii), then p = v|B(X).

Proof.
(i) This is the same as Theorem 54.D of [4].
(1) Let
1) o) = [ fdm, fec).

Since @ is a positive linear functional on C.(X), by Theorem 2.2 there exists a unique
Radon-regular Borel measure v = jiy such that 6(f) is also given by the integral in
(1) with po replaced by v. If w = V|QO(X), then w is a Baire measure and 6(f)
is also given by the integral in (1) with po replaced by w. Thus, by Lemma 3.6
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(ii) we conclude that w = po and hence v is a Radon-regular extension of uo. The
uniqueness of v follows from Proposition 3.4 (iv) and Theorem 2.2.
(i) Follows from the uniqueness part of (i) and Lemma 3.5 (ii). a

Theorem 3.8. Every #.(X)-regular measure p has a unique extension i to #(X)
as a Radon-regular measure.

Proof. Apply the proof of Theorem 3.7 (ii) considering

o) = [ fam fecx)
and using Lemma 3.6 (i) in the place of Lemma 3.6 (ii). a

Theorem 3.9. Let p be a D(X')-regular measure. Then:

(1) The unique extension fi of p to #.(X) as a measure is #.(X)-regular.

(i) p admits a unique extension w to #(X) as a Radon-regular measure and
wIQC(X) = f1, where i is as in (i).

Proof.
(i) Since p is finite on 2(X), p admits a unique extension i to #(2(X¥)) =
#.(X) as a measure. Clearly, 4(K) < oo for K € X. Let E € #.(X). Then

EC GC,,, Cn € X. Since ENC, € 9(X) and p is 2(X )-regular, given ¢ > o,
there :axists Un € % N9(X) such that ENC, C Uyn and p(Un) - p(ENCy) < /27,
U = (JUn, then U € % N #(X) and E C U. If 4(E) = oo, then a(U) = oo.
If 4(E) l< 0o, then a(U) — 4(E) € Y7 (#(Us) — p(E N Cp)) < €. Thus j satisfies
(i1) of Definition 3.2 with Z = H#.(X). Again, letting E, = 0 (E N Cy) we have
En € 9(X) and E, 1 E so that =

i(E) = sup p(E,) = supsup {s(C): C C En, C € X}

<sup{p(C):CCE, Cex}
A(E)

/

N

and hence i is #.(X)-regular.

(i1) Taking j as in (i) and applying Theorem 3.8 to fi, we obtain a Radon-regular
extension w of i and, hence of y, to #(X). Besides, w is unique by the uniqueness
part of Theorem 3.8. a
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4. COMPLEX RADON MEASURES AND THEIR PROPERTIES

With each 6 € ¥ (X)* we associate a unique complex measure pg (vide Definition
4.3) defined canonically on a é-ring My which contains 2(¢") and call yg the complex
Radon measure induced by . The object of this section is to study the properties
of pg and My when 6 is real and when is arbitrary.

We use the notation of pj, M; and fig as in Theorem 2.2. We denote pg|M,; by
it and call fig (resp., fig) the Radon (resp., the Borel-Radon) measure induced by
the positive linear functional § on C.(X).

Theorem 4.1. A measure p on #(X) is Borel-Radon if and only if u is Radon-
regular.

Proof. By Theorem 2.2 the condition is necessary. Conversely, if u4 is Radon-
regular, let

0(f) = /X fdu, feCX).

Then 6 is a positive linear functional and by the uniqueness part of Theorem 2.2
(vii) and by Proposition 3.4 (iv) we conclude that g = f,. o

Proposition 4.2. Let 6 € X (X)* and let 6, = Ref; 0; = Im@. Then:

(i) IfFMyg={ACX: ﬂ,j(A) < o0, fig; — (A) < 00,j = 1,2}, then My is a §-ring
and contains 9(X).

(i) Let M(8) = M‘,;+ N M#;_ N M,,;+ N M,,;_. Then M(0) is a o-algebra and

contains #(X). The members oflM(O) are called 0-measurable sets.
(iii) Let
ne(E) = {(/]914' - ﬁol-) + i(ﬂo; - ﬁo;)}(E)y E € M,.

Then pg is a complex measure on M.
(iv) If0 is real, then pg is real.
(v) If6 is positive, then pg is positive and finite.

Proof. This is immediate from Theorem 2.2. . O

Definition 4.3. Let § € ¢ (X)*. The complex measure py in Proposition 4.2
(ii1) is called the complez Radon measure induced by 6 and the -ring My is called
the domain of p,.

Notation 4.4. Let ug be the complex Radon measure induced by 8, § € ¢ (X)*.
We denote v(ug, Mg) by |ug|. If v is a real measure on a §-ring %2, and %, is another
6-ring such that %, O %, then

(v, %,,2,)* (E) :sup{u(F): FCE, Fe;ﬂl}
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and
(v,%,,%)"(E)= —inf{v(F): FCE, Fe%}

for £ € %,. If v is real or complex on %5, then
v(v, 21, B)(E) = sup { S W(E): {E); C 2, EinE; =0, i#j,
i=1
and | JEi C E}
1

for E € %,.

Theorem 4.5. Let 6 € X (X)*, 0 real. Then the following assertions hold:

(1) pe is Mg-regular.

(i1) pe is of finite variation on M.

(i) pf < pe+ and py < py- in My, where pg = uf - kg is the Jordan decom-
position of pg in My.

(iv) |uel, ug and py are My-regular.

V) #E|2(H) = (1e|2(X)*; 47 |2() = (4| D(H))” and v(us|2(),
D(X)) = |pel|2(X).

(vi) Iygli@(.l’), p}'l@(x’), By IQ(J’) and pgl@(l’) are 9(X)-regular.

(vii) (a) (uo, D(X), Ms)*(E) = pj (E), E € Ms.

(b) (wo, 2(X), Mg)~ (E) = g (E), E € M,.
(c) v(pe, 2(X), Mg)(E) = |us|(E), E € M,.

(viii) Given E € My, there exist A, B in #(X) N My such that AC EC B
and pg+(B\ A) = py- (B \ A) = 0. Then pg+(E) = pg+(A), po- (E) = pg-(A), and
pe (resp., My) is the Lebesgue completion of pgl.?? (resp., of 2) with respect to 2
(resp., to pg| ), where & = B(X) N M.

Proof. (i) Since pp+ and py- are My-regular by Theorem 2.2, the assertion
(1) holds.

(i) This is immediate from the fact that My is a é-ring. (Vide Corollary 2 on
p. 48 of [2]).

(1i1) Since pg = pg+ — pg- in My and My is a é-ring, (iii) follows from the proof
of Proposition 16, §3 of [2].

(iv) Since jig+ and py- are My-regular by Theorem 2.2, the result follows from
(iii).

(v) As in the proof of (iii) we have (pgl@(.l’))+ < ;tﬂ@(.l’). Let E€ 2(X)
and € > 0. By (iv), given F € My, there exists Cr € X such that Cr C F and
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|us|(F \ Cr) < €. Consequently, we have

(46| 2()) " (E) = sup {ue(F): F C B, F € 2(X¥)}
> sup {ue(Cr): FCE, F € Mg}
>sup{ue(F)—¢e: FCE, F€ M}

i (E) —e.

Thus (ue|D(H))t > pF|D(H) so that (us|D(X))* = pf|2(X). Similarly, it
follows that (us|2(X))™ = py ]9(.1’) and consequently,

luol|2() = (uf + g )| 2(H) = v(pe|D(X ), D(X)).

(vi) Let E € 2(X) and € > 0. By (iv) there exist U € Z N My and K € X
. such that K C E C U and |u|(U\ K) < €. As E € ¥, by Proposition 11,
§14 of [2] there exists Uy € % N D(X) such that E C Uy. If V = U N Uy, then
ECV,Veun2X)and |p|(V\ K) < €. Thus |ue||2(X) is D(X)-regular
and consequently, (vi) holds.

(vii) Let E € My. By (iv) and (v) we have

pf(E) =sup {pf(C):CC E,Ce X}

sup sup {ps(F): FC C,F € 2(X)}
CCE

Cex

<sup {ps(F): FCE,Fe 2(X)}
<sup {pe(F): FC E,F € My}

= g (E)

and thus (a) holds. Similarly, (b) is proved.
For E € Mpy, given £ > 0, there exists a partition {E;}} of E in My such that

n

> " lue(Ed)| > |usl(E) — Le.

i=1

By (i), for each i there exists C; € ¥ such that C; C E; and |ue(G)| < 5 for
G € My with G C E; \ C;. Then Zf; |o(Ci)| > E? |po(Ei)| — €/2 > |ps|(E) — €.
Thus v(pe, 2(X), Mg)(E) > |pe|(E). Since the reverse inequality is obvious, (c)
holds.

(viil) Since E € My C My:, N M- and pg+(E) and py_(E) are finite, by
Theorem 2.2 (vi) there exist A, B € #(X) with A C E C B and pg+(B \ A) =
pe-(B\ A) = 0. Now, by (vii) (c), for F € Z we have

lus|(F) = v(pe, 2(X), Ms)(F) < v(ps| 2, Z)(F) < v(po, Mo)(F) = {psg|(F)
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and hence from (iii) it follows that

V(o |2, 2)(B\ A) = |ual(B\ A) < (o+ + po-)(B\ A) = 0.
This proves (viii). O

Theorem 4.6. Let § € ¥ (X)*, 0 real. Let uj and p; be as in Theorem 4.5 (iii).
Then:

(i) uf|2(X) and py|2(X) admit unique extensions if and iy, respectively,
to #(X) as Radon-regular measures and i} (E) = p}(E), j; (E) = p; (E) for
E € #.(X)N M.

(i) Ifv = |us||2(X), then v has a unique extension i to B(X) as a Radon-
regular measure and ¥(E) = |ug|(E) for E € B.(X) N Mp.

(i) There exists a positive linear functional ¥ on C.(X) such that ¥ = iy,
where U is as in (ii).

(iv) |8] < ¥, where V¥ is as in (iii).

(v) po+ = pf and py- = My in My.

(vi) Mg = Mg and || = pyg)-

Proof. (i) By Theorems 4.5 (vi) and 3.9 (ii), p“@(f) has a unique exten-
sion if to #(X) as a Radon-regular measure. Then by Lemma 3.5 (ii), ﬁ;IQC(X)
is #.(X)-regular and hence by Theorem 4.5 we have

A (E) =sup {if (C):CCE, Ce X}
=sup{pf(C):CCE, CexX}
=y (E)
for £ € #.(X) N My. Similarly, the other result holds.

(ii) By Theorems 4.5 (vi) and 3.9 (ii) such an extension & of |ug||2(X) exists
uniquely. An argument similar to that in the proof of (i) shows that &(E) = |us|(E)
for E € #.(X) N M,.

(i11) This is immediate from Theorem 4.1.

(iv) Let f € C¢(X) with suppf = K. Then #(K) C 2(X). As 0(f) =
6%(f) — 0~ (f), by Theorem 2.2 we have

o) = [ faier = [ 1ai- = [ 1a(ul@)

since f(z) =0forz € X\ K, #(K) = #(X)NK and py is a real measure on #(K).
Thus,

0(f)] < /K |1 dv(ue| B(K), B(K))
< /X \fldo = /X |l dive = ¥(If))
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since v(pglﬂ(l(), RB(K)) < v(pe|2(X), 2(X)) = lus||2(X') by Theorem 4.5 (v).
Thus |6] < V.
(v) By (iv) and by Proposition 15, §1, Chapter [V of [1]

(1) ol < K3

By the same proposition of [1] we have

(2) o) = Po+ + pg- in B(X) N M.

Consequently, from Theorem 4.5 (iii) and from (ii), (1) and (2) it follows that
lol(E) = (uF + 15 )(E) < (tto+ + o-)(E) = pio|(E) < 4 (E) = |uol(E)

for E € #.(X)N My. Thus

(3) lusl(E) = poy(E), E € Be(X) N M.

Since p} < pg+ and py < pg- by Theorem 4.5 (iii), we conclude from (2) that

(4) #i (E) = po+(E) and pg (E) = po-(E)

for E € #.(X)N M,.

Now, let E € My. By Theorem 4.5 (viii) there exist A, B € #(X)N M, such that
A C E C B with pg+(B\ A) = py-(B\ A) = 0. Since E € My, by Theorem 2.2 (vi)
we can assume A to be o-compact so that A € #.(X) N My. Then, by Proposition
15, §1, Chapter IV of [1] we have pg(B \ A) = (pg+ + pg-)(B \ A) = 0 and hence
Hig (B \ A) = 0. Consequently, E'\ A € Mjg|. Besides, by the same proposition of
(1] we have jig(A) = (f1g+ + f1o- )(A) < o0 and as A € #(X), we conclude that
A € Myg). Therefore, E = AU(E \ A) € My and thus we have shown that

(5) My C M.
Besides, by (4)
o) (E) = pyo(A) = (pto+ + po-)(A) = (#F + 17 )(A) = (uF + 115 )(E) = |po|(E)
so that by (5) we have
(6) wol| Mo = |psl-

Also, from (4) it follows that pg+(E) = pge+(A) = u;(A) = pH(E); pe-(E) =
po-(A) = pg (A) = py (E) and hence pp+ = pf and pg- = py in M.

608



(vi) In view of (5) and (6), it suffices to show that Mg C My. Let E € Mjy).
Then by Theorem 2.2 (vi) there exist A, B € #.(X) N Mjy such that A C E C B,
mo(B\ A) = 0 and pg(E) = pg|(A). Since jigz < fij9) on #(X) by proposition 15,
§1, Chapter IV of [1], it follows that A € #.(X) N My. Besides, as p9(B\ A) = 0,
by the same proposition of [1], g+ (B \ A) = jig- (B \ A) = 0 so that pg,(E\ A) =
pg-(E\ A) =0. Thus E\ A € My and hence E € Mp. a

Now we pass on to the study of the properties of ug when 8 is arbitrary in ¢ (X)*.

Theorem 4.7. Let § € X (X)*. Then the following assertions hold:

(1) pe is My-regular.

(i1) pe is of finite variation in M,.

(iii) |pg| is Mp-regular.

(i) (k| 2(X), D)) = |uel| D).

(v) |uel|2(X) is D(XK)-regular and hence pg|D(X) is D(X )-regular.

(Vi) v(s, D), M) = lpa].

(vil) Given E € My, there exist A, B € #(X) N My such that AC E C B
and |ug|(B \ A) = 0. Consequently, pg(E) = pg(A) and pg (resp., My) is the
Lebesgue completion of pglﬂ (resp., of Z) with respect to & (resp., to pg [ﬂ),
where Z = #(X) N My.

(vii) Ifv = |ya”9(.1’), then v has a unique extension i to #(X) as a Radon-
regular measure and V(E) = |ug|(E) for E € #.(X) N Mj.

(ix) There exists a positive linear functional ¥ on Cc(X) such that v = jiy,, where
v is as in (viii). Besides |0] < ¢

Proof. Let#; = Ref and 6, = Im@.

(i) As Mg = My, N My, and Uy NU; € My for U; E%ﬂMa.,tzl 2, (i) is
immediate from Theorem 4.5 (i).

(i) The proof is similar to that of Theorem 4.5 (ii).

(1i1)) This is an immediate consequence of (i) and the inequality

lus|(E) < 4sup {|ue(F)|: F C E, F € My}

(vi) The proof of Theorem 4.5 (vii) (c) holds here verbatim.

(iv) This is immediate from (vi).

(v) The proof of the P(X¥)-regularity of |us||2(X’) in Theorem 4.5 (vi) holds
here verbatim.

(vii) Let E € My. Since py+(E) < o0 and py-(E) < oo for j = 1, 2, by Theorem
2.2 there exist A, B € @.(X) N My such that A C E C B, A o-compact and
p,;u(B\A) = l‘a;(B\A) =0 for j =1, 2. Thus |ug¢|(B\ A) = 0. As by (vi)
lns|(F) = v(pe |2, Z)(F) for F € 2, the result holds.
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(viii) The proof is the same as that of Theorem 4.6 (ii).
(ix) The first part is due to Theorem 4.1. As in the proof of Theorem 4.6 (iv)
we have

00 = | [ 1 aGue, | #Y) + [ £, B0
< /K 11 du (e | B(K), B(K))
< /X \fldo = /X |l ditg = w(111)

for f € C.(X) with supp f = K since v(polg(K),Q(K)) < v(pe|2(X), 2(X))
lus||2(A) by (iv). Therefore, |6] < ¥.

aon

Lemma 4.8. If§ € X(X)*, then |us(K)| < p9)(K), K € X .

Proof. Let 8§ = Ref and 8, = Imé. Then, by Theorem 2.2, y0?|M9
and l‘o;|M9 are My-regular for j = 1, 2. Therefore, given n € N, there exists
U, € % N My such that K C Uy, u,?(Un \ K) < %, /‘o;(Un \ K) < ;11- for
j=1,2 Let Wo = (\Us and W = (Wa. Then W € Mp, as M is a 6-
ring. Besides, K C Wk:rlld poj(W\K) 1: pa;(W\K) =0forj =1 2. By
Urysohn’s lemma there exists f, € CH(X) with xxk < fo < xw,.. If gn = /n\f;,
then g, | xx a.e. with respect to Moy and Hor forj=1 2 If K; = suppl)gl,
then by the Lebesgue dominated convergence Theorem we have li'{n Jx 9n d[laj. =
li,l,ann gn dﬁo;} = l‘oj(K) and li'{nfx gn df‘o; = ]i,{an. gn di‘o; = M (K) for j =
1,2, where we consider the restriction ﬂof‘Q(Kl) = po;,|g(K1) and ;29; lg?(Kl) =
Ho- ’Q(Kl). Then as g, — xk py9)-a-¢., by the same theorem

(k)| = [tim [ gn dp] = 1im(an)] < Lm0l
n Kl n n
= lim/ gn dityo = e (K).
" Jx
a

Lemma 4.9. For § € X (X)* and A € #(X) N Mg, |ug|(A) = 0 if and only if
|us|(A) = 0. Consequently, Mg C M)q).
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Proof. Suppose pjgi(A) =0. Let 6; = Ref and 82 = Im#@. Thus, by Theorem
4.6 (vi) and by proposition 15, §1, Chapter IV of [1] we have

181 (A) < (Bios| + p1og))(A) = v(pe,, Mo, )(A) + v(pe,, Mo, )(A)
= sup {v(ps,, Ms,)(C): CC A, C € X}
+ sup {v(pe,, Ms,)(C): C C A, C€ X'}
= sup {v(us, |2(), 2())(C): C C A,C € X}
+ sup {v(po,lﬁ(l’), 2(X))(C):CCACeX}
< 2sup {v(ps|2(X), 2(X))(C): CC A,Ce X'} = 2|ue|(A) =0
since v(po,, Ms,) is My;-regular and v(us,|2(X), 2(X)) = v(ps;, Ms;)|2(X) by
(iv) and (v) of Theorem 4.5 for j = 1, 2 and v(pg|2(X), (X)) = |us||2(X¥) and
|ug| is Mp-regular by (iv) and (iii) of Theorem 4.7.
Conversely, let |ug|(A) = 0. Then pp,i(A) < pjg(A) for j = 1, 2 by the said
proposition of [1] and consequently, by Theorem 4.6 (vi) we have

l1o|(A) < v(pe,, My, )(A) + v(pe,, Mo, )(A) = pe,)(A) + pye,(A) = 0

and hence |ug|(A) = 0.

Now, let E € My. Then, by Theorem 4.7 (vii), E = AU(E\ A) with AC E C B,
A, B € #(X)N My and |pug|(B \ A) = 0. Consequently, p (B \ A) = 0 and thus
Hs|(E\ A) = 0. This shows that E\ A € Mjp| and hence E € Mjy| since A € #(X)
and l‘aj(A) < oo and p,j-(A) <ooforj=1,2. a

Lemma 4.10. For § € X' (X)*, My = M.

Proof. In fact, in the light of Lemma 4.9 it suffices to show that M) C M.
Let E € Mjg. Then by Theorem 2.2 there exist A, B € #(X) such that AC E C B
and pp,|(B \ A) = 0. Thus pg(E) = pg(A). If 6, = Ref and 6 = Im6, then by
Proposition 15, §1, Chapter IV of [1], pjg;/(B \ A) =0, pe,1(A) < p8)(A) < o0 and

Thus pg+(B\ A) = py-(B\ A) = 0 for j = 1,2. Consequently, py+(E \ A)
J J J
pe-(E\ A) =0 for j =1, 2 and hence E € M,.

a

Theorem 4.11. If§ € X' (X)*, then My = Mg and |pg| = p)g).
Proof. Let E € My and € > 0. By Theorem 4.7 (vi) there exists {E;}7 C
2(X') with E;NE; =0 for i # j and | E; C E such that
i

> lua(E)| > lusl(E) - $e.
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As pgl@(l’) is 9( X )-regular by Theorem 4.7 (v), there exists C; € X such that
Ci C E; and |pe(E;) — pe(Ci)| < 5> fori=1, ..., n. Consequently, by Lemma 4.8
we have

Mo (E) 2 ﬂlvl(UC-') = EI‘IGI(C") 2 Z lne(Ci)
1 1 1

> lus(E)l - Le > |pol(E) - e.
1

Thus
1 msi(E) > |pel(E) for E € M.

If 4 is as in Theorem 4.7 (ix), then as |6| < ¥, from (viii) and (ix) of Theorem 4.7
we have
P161(E) < By (E) = |usl(E)
for E € #.(X) N My. Consequently, by (1)

(2) Ho|(E) = |ue|(E)

for £ € #.(X) N M.

If E € My, then by Theorem 2.2 there exist A, B € #(X) with AC EC B, A
o-compact, |ug|(B\ A) = 0 and |ue|(E) = |ps|(A) (vide the proof of Theorem 4.7
(vii)). Hence by (2) and by Lemma 4.9 we have

lel(E) = luol(A) = pis|(A) = mia)(A) + po)(E'\ A) = pyo)(E).
Since My = Mjp by Lemma 4.10, the theorem is established. a
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