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TWO THEOREMS ON MEASURABLE SETS AND SETS 

HAVING THE BAIRE PROPERTY 

MALGORZATA FILIPCZAK, Lodz 

(Received April 29, 1991) 

J. C. Oxtoby in his monograph "Measure and category" [2] presents a lot of 
analogies between measurable sets and sets having the Baire property. In our paper, 
another such analogy is shown. 

Let N be the set of positive integers, R+—the set of positive reals and R—the real 
line. If A C R, B C R, then AAB denotes the symmetric difference of A and B\ 
xA = {xy: y G A}. For any Lebesgue measurable set A, \A\ denotes its Lebesgue 
measure. 

A point x G R is said to be a density point of a measurable set A C R if 

d{A,*)= lim |Лn(x-Ax-f/Q| = 1 ; 
л—>o+ 2Л 

a right density point if 

d+{A,x) = iim l*n(«,« + ft)|=L 
/i—0+ h 

If d(A, x) = 0(d+(A, x) == 0), then we say that x is a dispersion point (right dispersion 
point) of A. &(A) denotes the set of all density points of A. 

The terminology and definitions concerning topology and measure come from 
"Measure and category" by J. C. Oxtoby. 

Lemma 1. Let A C R+ be a measurable set such that \A H (0,6)| > 0 and 
|(0, S) — A\ > 0 for any 6 > 0, and (An)n€N—a one-to-one sequence converging to 1. 
There exists a natural number no such that 

*(Ano • A) - *(A) # 0. 

P r o o f . Suppose that $(A) D Q(\„A) for any natural number n. The sequence 
(A„)ngN contains a monotone subsequence. We can assume that (An)ne..j is an 
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increasing or a decreasing sequence. In the first part of the proof we assume that 
this sequence is increasing. 

Let x be an arbitrary density point of A and let a = iAn^'x>\. Obviously, 0 < a < 1 
and, if we take any /? £ (a, 1) and put 

I = \j{(b,x):]A^C^^0 for any c 6 (6,x)} = (60,x), 

then 0 < 60 < x. 
There exists a natural number no such that Anox £ (60, x). Let c be an arbitrary 

point from (Ano60,60). Since $(A H (c, Anox)) D *(Ano_4 n (c, Anox)), therefore 

|_4 fl (c, Anox)| ^ |Ano,4 H (c, Anos)|. 

Moreover, 
c 

ÃГ e (б0,л---)c(*o,*), 
^Tlo x ' "Ho 

thus 
|ytn(c,Anox)| |Ano^n(c,Anox)| _\An(xt;>x)\>„ 

|(c,An ox)| ^ |(c,An ox)| - | ( j£ - f «) | " ^ 

On the other hand, 
|>tn(Anox,x)| 

|A„.«,«)| ^ ' 
so ' ?}Cg\" ^ /? for any c £ (Ano6o, 60). For c £ (60, x), the same inequality is obvious 
by the definition of 60. Finally, 60 = inf I ^ Ano6o, which gives a contradiction 
because Ano6o < 60. 

If the sequence (An)n€N is decreasing, the proof is analogous to the argument 
presented above. This time, we consider a dispersion point y of A and a density 
point x such that 0 < x < y. Then we put a = '^Jfyi take any /? £ (a, 1), set 

I = U { ( x ' 6 ) : ^ ^ p ^ l 5 forany c€(x,b)} = (x,b0) 

and choose no such that Anox £ (z,6o). It is not difficult to show that 60 = sup I ^ 
Ano6o, which is impossible. 

In fact, we have proved that if A C R is a measurable set, x is a density point 
of A, y is a dispersion point of this set and x > y (x < y), then, for any increasing 
(decreasing) sequence (An)n6N with lim An = 1, there exists a natural number n0 

n—*oo 

such that 
* (A . . 0 .4) -* ( .4) - -» . 
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Theorem 1. Let A C R+ be a measurable set such that \A 0 (0,6)| > 0 and 
|(0,6) - A\ > 0 for any6>0. Then the set 

A = { A > 0 : \(XAAA)n (0,6)| = 0 for some 6 > 0} 

has cardinality less or equal to \o-

P r o o f . Suppose that the set A is uncountable. For any AG A one can find the 
smallest natural number n\ for which 

(\AňA)n(o,—)\ = o 

Let An = {A G A: n\ = n} for any n £ N. There exists no such that Ano is 
uncountable. The set Ano has a condensation point A0 € Ano ([1], p. 140). We have 

no 

therefore 

IfA,4A_4) n fa, 
no 

(X0AAA)n(o,— ) | = 0, 

|(AЛДЛ)n(o,— ) | = 0 

if and only if 

0 = |(A^AAô ) n (0, -L) | = A0| (±A*A) O (o, - J - ) |. 

The above shows that there is a set A' = ;J-Ano such that 

D 

(AMA^n(° 'AÍ)l = ° Aono> 

for any A' G A', and 1 is a point of condensation of A'. 
The set A' = A f) (0, |x"n~) anc* a n ar^itrary one-to-one sequence (An)n6N such 

that lim An = 1, An G A' and An < 2 for n € N satisfy the conditions of Lemma 1, 
n—>oo 

and 
AnЛ'c(0,-i-) 

V Annn/ Aono> 

for any natural number n. 
Hence there exists a natural number n\ such that $(A n i • A') — $(A') -̂  0. It is 

easy to see that |Ani A' — A'\ > 0. On the other hand, 

(.X...Í4A.4) n (O, - A - ) D (A„./ť - A'), 
АоПо> 
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and since Ani G A', therefore 

\^AAA^{°'xk)\ = °-
This contradiction completes the proof. 

Now, let us make an attempt to prove the same theorem for sets having the Baire 
property. 

L e m m a 2. Let A C R+ be a set having he Baire property, (An)n6N—a one-to-one 
sequence converging to 1. If A H (0, 6) and (0,6) - A are sets of the second category 
for any 6 > 0, then there exists a natural no such that (XnoA — A) is a set of the 
second category. 

P r o o f . .A is a set of the second category and has the Baire property, thus ([2], 
p. 20, Theorem 4.6) there are a nonempty regular open set U and a first category 
set P such that A = UAP. 

Without loss of generality, like in the proof of Lemma 1, we may assume that the 
sequence (An)ngN is monotone. Assume first that it is increasing. 

Let x be an arbitrary point of U. We denote by (y, z) the component of U which 
contains x. Obviously, y > 0. 

There exists a natural number no such that Xnox G (y, z). Thus (Anox,x) C 
(y, z) C U. As the set (y, x) — A is of the first category, therefore Ano(y, x) — XnQA is 
of the first category, too, but (Anoy, Anox) — A is a set of the second category (since 
(Anoy, y) — U is a nonempty open set). 

Finally, ((Anoy, Xnox) C\ XnoA) — A and XnoA — A are sets of the second category. 
If the sequence (An)nEN is decreasing, we choose a point x from a bounded com­

ponent of U and a natural number no with Anox G (x, z) and repeat the first part of 
the proof. 

Without substantial changes (taking sets of the first category instead of sets of 
measure zero and Lemma 2 instead of Lemma 1), the proof of Theorem 1 can be 
used to establish the following result: • 

T h e o r e m 2. Let A C R+ be a set having the Baire property and such that, for 
any 6 > 0, both A D (0, 6) and (0, 6) — A are of the second category. Then the set 
A = {A < 0: (XAAA) C\ (0, S) is of the first category for some S > 0} has cardinality 
less or equal to xo-
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