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In the theory of frames (or “pointless topologies”), several authors have tried to
find a suitable form of separation axioms. Our purpose is to describe a T-axiom
in the form usual in the case of regular frames. T,-frames coincide for topological
spaces with Hausdorff spaces but they are described independently on points. We
also investigate almost compact frames and H-closed extensions of T,-frames (see
[3], 6.1., h, for spaces).

All unexplained facts concerning frames can be found in Johnstone [10] or in [16].
Recall that a frame is a complete lattice L in which the infinite distributive law

a/\\/S:\/{a/\s:sES}

holds forallae L, SC L.

The known facts (see [10] or [16]) indicate the importance of the opposite category
Loc of locales to the category Frm of frames. We will work in the category Frm.
If Top is the category of topological spaces, then the set O(T) of all open sets of
T € Top is a frame. Frames isomorphic to some O(T) are called spatial (or a
topology).

In [16], frames in which primes (i.e. A-irreducible and # 1 elements) are dual
atoms (called T)-frames), are investigated. The category of all Ti-frames is the
smallest epireflective subcategory in Frmn containing all T)-spaces. Every Tj-frame
is a homomorphic image of a Ty-space and every spatial T-frame is a T}-space. We
will now investigate similar problems for T,-frames.

The category of T,-frames is an epireflective subcategory in Frm containing all
Hausdorff spaces but there exists a T>-frame which is not a homomorphic image of a
Hausdorff topology. Spatial To-frames are Hausdorff spaces. There exists a compact
T»-frame which is not regular. An almost compact frame which is a homomorphic
image of a Hausdorff topology is a topology. A compact Ty-frame exists which is not
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a homomorphic image of a Hausdorff topology. An H-closed extension of a T,-frame
is an almost compact Tp-frame. H-closed extension of a frame L is a topology iff L
is a topology. H-closed extension of a complete Boolean algebra, which is not dually
atomic, is dually atomic and not conjunctive.

1. T5-FRAMES

The main separation axiom for frames is regularity which is defined in the following
way:
A frame L is regular if

a=\/(beL:bxa)

holds for all a € L, where b 9 @ means b* Va = 1.

Dowker and Strauss [5], Simmons [17] (and Kerstan [12], as well) proposed to
define Np-frames as frames L satisfying the condition (N>):

For any a,b € L with aVb =1, a # 1 # b there are elements z,y € L such that
zAy=0,z£a,ygb.

Spatial Ny-frames coincide with Hausdorff spaces and every regular frame is N,.
However, it does not seem that these No-frames form an epireflective subcategory in
Frm.

Recall that a frame L is conjunctive if for any a,b € L with a £ b there is an
element ¢ € L such that aVe=1,bV c# 1 (see Simmons [17]). If we combine the
(N3)-condition and the conjunctivity then we obtain the following condition (.52):

For any a,b € L with 1 # a £ b there is an element ¢ € L such that ¢* £ a, ¢ £ b.

This approximation of the Hausdorff axiom on fraines fulfilling the condition (S3)
was investigated by P. T. Johnstone and Sun Shu-Hao in [11]. These frames, which
are called Hausdorff in [11], are Np-frames and need not be conjunctive. Hausdorff
frames form an epireflective subcategory in F'rm (equivalently, closed under arbitrary
homomorphic images and sumns), spatial Hausdorff frames coincide with Hausdorff
spaces.

The problem of Hausdorff frames was discussed also by Isbell [9] which introduced
strongly Hausdorff frames. In a latter paper [6], Dowker and Strauss proposed a
definition equivalent to Isbell’s strong Hausdorffness.

The following equivalent of Hausdorfl spaces for frames is in [16]. We say that an
element a € L, a # 1 of a frame L is semiprime if

zAy=0=>zr<a or y<a,

for any z,y € L.

386



If we denote D(L), P(L) resp., S(L) resp., the set of all dual atoms, points resp.,
semiprime elements resp., in L then D(L) C P(L) C S(L) and a < b, b # 1,
a € S(L) = b€ S(L). We say that L is an S-frame if S(L) = D(L). It is equivalent
to the fact that semiprime elements form an antichain. The category S of all S-
frames is a monocoreflective subcategory in Frm such that $ N Sob = Haus, where
Sob (Haus, resp.) is the category of all sober (Hausdorff, resp.) spaces. Every
Ny-frame is an S-frame.

A. Pultr in [15] defines Hausdorffness on a frame L with the following condition:
If a,b € L, a||b then elements k,! € L exist such that kAl =10, k,1<aVb k £ a,
146

We will describe our candidate for a T>-axiom on frames.

Definition. Let L be a frame and let a O b denote @ < band a* £ b fora,b€ L.
Then L is called a T,-frame if

a:V(zeL:zDa)

holds for any 1 # a € L.

L is a Ty-frame iff for any a,b € L with 1 # a £ b there is | € L such that | < a,
I* £ a, 1 £b. Itis evident that T,-frames form a subcategory in Frm which we
will denote by Frmy. Tp-frames are exactly Hausdorff frames introduced by P. T.
Johnstone and Sun Shu-Hao in [11].

If L is a frame then we will denote Oa = {t € L: z0a} fora€ L and S, = {l €
L:1* #0}.

Proposition 1.1. If L is a frame, a,b,¢,d, a;,b; € L (i € I) then it holds:
a) OaCla,be0a=>|bC0e;0a=|asxa* #£0

b) a<b,40c=2>a0¢;a0b,00c=>a0c¢

¢) a;Ob; (1 €l)=> Nai:i€e NAAWb;:i€])

d) 1#a=00a¢e; 1 non Oa

e) ag<baOb0 =a0b

f)aOb=>a"#0=>a0q,a0a™"

Definition. We say that a frame L is T3-frame if for any a € L, a # 1 there is
an ideal A in L such that a = \/ A and £ O a holds for any z € A.

It is clear that any Tj-frame is a T5-frame. T;-frames form a subcategory in Frm
which we will denote by Frmj.

Proposition 1.2. A T,-frame is an S-frame and also a T-frame.
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Proof. Ifa€ S(L) and b€ L exists such that 1 > b >athenbg£ a, b# 1 and
therefore | € L exists such that I < b, 1 £ a, [* £ b. These facts imply I* < a< b, a
contradiction. We have S(L) = D(L) and P(L) = D(L) evidently. 0

Proposition 1.3. For each Ty-space T the following are equivalent:

1. T is a Hausdorff topological space.
2. O(T) is a Tp-frame.
3. O(T) is a T}-frame.

Proof. 1= 3: If 1 # a € O(T) then there exists ¥ € T \ a and for any a € a
there exist u,v € O(T) such that uAv =0, a € u, ¥y €Ev. Wehave l, =uAa<a
and if I, < a then v < u* < I, < a, which is a contradiction with ¥ ¢ a. The ideal
A generated by the set {l,: o € a} has the properties a = \/ A and = O a for any
z € A. O(T) is a Ty-frame.

3 = 2is clear.

2 = 1: The implication follows from 1.2 and [11], Cor. 2.4. O

Remark. If L is a To-frame then d = \/(z € L: z 4 d) for any d € D(L).
Definition. Let L be aframe such that for any [ € L, ! # 1 there exists d € D(L),
d > l. Then L is called dually atomic.

Proposition 1.4. Let L be a dually atomic frame. Then the following are equi-
valent:

1. L is a To-frame.

[\

L is a Ty-frame.
d=\(z € L: z«d)for anyde D(L).
L is a Hausdorff frame.

bl

Proof. 1=>3:d=\/(z€L:z<ad)and z0Od implies z < d.

3=>21f1#£lel, l<deD(L)thenl=IAd=IA\/(z€L:zad)=V(lIAz:
z 4 d). Further, z"Vd = 1implies (z Al)*Vd=1,(zAl)* £d, (zA)* £ 1. We
have | = \/ A, A C O, where A is the ideal generated by the set {{Az: 2 < d}.

2= 1and 1 = 4 is clear.

4= 3: lfd;{_\/(zGL::rdd)thenl#d,{V(wEL:zqd)andthusleL
exists such that { £ \/(z € L: 2 < d), I" £d. Thenl adand I<\(z € L: T ad)
holds, a contradiction. a

Proposition 1.5. Any regular frame is a conjunctive Ty-frame.

Proof is evident.
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Theorem 1.6. The categories Frm, and Frm), are closed with respect to homo-
morphic images.

Proof. Let f: K — L be asurjective homomorphism of frames and K € Frm,.
We shall prove that L € Frmy: If a,b € L, 1 # a £ b then we consider elements
f°a) = V(z € K: f(z) < a) and fO(b) = \/(z € K: f(z) < b). Since 1 # fOa) £
fO(b) and z € K exists such that ¢ < f%(a), z £ f°(b) and z* £ f°(a). It means that
y= f(z) < aandif y* < athen f(z*) < f(z)* < q,ie., z* < fa), a contradiction.
Together y < a, y £ b, y* £ a holds and L is a Tp-frame. Moreover, if K € Frm}
then z; < f%(a), zi £ f°(b), } £ f°(a) for i = 1,2 and (21 V z2)* £ f°(a) implies
nVy<a, yiVy £ band (11 Vy)* £ afor yi = f(zi), t = 1,2. It means that
L € Frmj,. a

Now we shall investigate sums of a set (L, : v € I') of frames and we shall prove
that Th-frames are closed under sums. Sums of frames were studied by C. H. Dowker
and D. Strauss in [7], by P. T. Johnstone in [10] and by I. Kfiz [13]. We shall use
methods of C. H. Dowker and D. Strauss but results are similar to results of P. T.
Johnstone.

Let (L, : v € T) be aset of frames and write B for the set-theoretical product of the
L,. Clearly, B is a frame and the projections 7, : B — L., are frame homomorphisms.
Let us define L = {z € B: m,(z) = 1 for all but finitely many ¥ € T'}. Clearly, L
is a meet semilatice. We define Z =| L to be the frame of all lower sets of L. We
denote M = {z € L: (3y € T)(my(z) = 0)} and Q = {W C L: (Iy € [')(mp(z1) =
7(z2) for any z,,z2 € W and any 8 € '\ {7})}.We shall say that an element U € Z
is X-coherent if

() MCU,
(i) W € Q, W C U implies W C U.

Now, we have that L, M are X-coherent. Let us define a map j: Z — Z by
the prescription C — A{U > (': U is E-coherent}. Clearly, the intersection of
Y-coherent elements is again X-coherent. Now, we have C < j(C) = j(j(C)) for
all C € Z and j(C A D) < j(CYAj(D) for all C,D € Z and write E = {b € L:
bAd € j(C A D) for all d € D}. We shall show that E is E-coherent. Let b € M.
Then bAd € M C j(CA D) and we have M CE. f W C E, W € @, d € D then
wAd€ j(CAD),ie,VwAdEe€ j(CAD). Now, we have \/ W € E. If we define
F={beL:cAbe j(CAD) forall C € E} then F is again X-coherent. Now, we
have j(C) A j(D) < EAF < j(C A D). Hence jis a nucleus on Z and Z; together
with induced operations \/ and A is a frame.



Proposition 1.7. Let L, — K, v € T be a system of frame homomorphisms.
Then there exists a unique frame homomorphism f: Z; — K such that

fGlz)) = /\f‘y("’v(z))

ver
holds for all z € L.

Proof. We shall show that following definition of f is correct:

fGW) = Vf(](l z)) forany U € Z.

zeU

Let U,V € Z,j(U) = j(V). We define s(U) = {z € L: f(i(I z)) < f(G(U))}. Then
U C s(U), s(U) is X-coherent. Namely, M C s(U) from the fact that z € M implies
f(G(l z)) = 0. It is easy to verify that W € Q, W < s(U) implies \/ W € s(U).
Hence V < j(V) = j(U) < s(U), i, £(i(V)) < £(s(U)) < F(i(U)). The symetric
argument concludes the proof. a

For each ¥ € T, we now define a map i,: L, — Z; by the prescription z
J(1 74(z)), where 7,(z) € L, 77y (z) = z, 77y (z) = 1 for any B € T \ {7}.

Theorem 1.8. Z; is the sum of frames L., with injections i, .

Proof. Clearly, i, are frame homomorvphisms. Let fy,: L, - L,y €Tl bea
set of frame homomorphisms. Then there exists a unique frame homomorphism f:
Z; — K such that foi, = f,. O

Lemma 1.9. Let X # L, X € Z; hold. Then the following propositions hold:
(i) If {z:}ier is a chain, z; € X then \/ z; € X.
iel
(i) FN(X)={z€eX:y#z=>z £y forany y € X} then N(X) # 0 and
X=U{lz:z€ N(X)}
(iii) Ifz,y € N(X) then card {y € T: my(z) # 1 or m\(y) # 1} > 2.
(iv) Ifz € N(X), £ > 7,(0) for some v € T then m,(y) > ny(z) for ally € N(X).

Proof. (i) Let us define an ordering on I such that i < j iff z; < z; for all
i,j € I. Clearly, I is a chain. Since X # L, I # @ then there exists an index
i € I and an index yp € I’ such that m, (z;) # 1.Hence there exists a set I'; =
{71,---.¥} C T such that m,(z;) # 1 iff ¥ € T;. Let us define chains {zi}k>1 for
any | > i: m(z}) = my(z;) for ¥ # v and m,(z}) = 7, (zk). Clearly, 2z} < =z,
ie., z, € X forall k > 1> i. Obviously, we have \/z} € X since {z}}s31 € Q for

ISk
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any | > i. Let us consider a chain {w;}iy; defined by the prescription w; = \/ z.
E21
Then =, (wi,) = 7, (wi,) holds for all l;, l; > i. By induction we can see that the

proposition holds.
(i1) Clearly, J(l z: z € N(X)) C X. Let z € X. We define Iz = {y,...,7a}
to be the set of indices such that v € T, iff m,(z) # 1. Now, we put z° = =z,

=V{y >zt 'y e X,ms(y) = mp(z*~1) for B # 1} for 1 < k < n. Clearly,
z* € X for any 1 < k < n and z" € N(X). Namely, if there exists z € X such that
z > z" then there exists 9; € T such that =, (z) > 7, (z") > 7, (k*~1) because
" > z" 1 > ... > z! > z° Now, we can define an element y € r such that
75(y) = ”ﬁ(zi-l)’ 7y:(y) = my,(2). Then y < ', ie, Ty, (2) = my,(y) < 7"‘7.'(3‘)’ a
contradiction.

(iii) Let z,y € N(X), card {y: ny(z) # 1 or 7y(y) # 1} = 1. Then z,y € L and
my(z) = my(y) = Lfor v € T\ {10}, myo(z) # 1, Ty (y) # 1 and my(2)||7yo(y). It
implies zVy € X, zVy > z, a contradiction.

(iv) Let define 2z € L by the prescription mg(z) = m5(y) if 8 # v and 74(z) = 7, (z)
otherwise. Then z € X, i.e.,, zVy € X. Now, we have zVy £ y, i.e., 7y (z) < 7, (y).

O

Now, we give an explicit description of the sets S(Z;), P(Z;) and D(Z;).

Proposition 1.10. (i) Let X € S(Z;). Then x € N(X) implies z = 7\ Ty (Z4,),
i=1

where z., € S(L,,).
(i) XeP(Z;) o X= U (1 ™ (z4): 24 € P(L,y)).

(iii) X € D(Zj) & X = U (1 7y(2q: 24 € D(Lq)).

Proof. (i) Let z € N(X), z, = my(z) # 1 for some v € I'. If z,, ¢ S(L,) then
there exist elements u,,v, € L, such that v, Av, =0, uy,v, £ z,. Let us define
elements u, v € L by the prescription 7g(u) = ng(v) = wg(z), for B # v, 7y(u) = u,,
ny(v) = v,. Clearly, u,v € X. Now, we have j({ u) Aj(l v) = M, j(| u) £ X,
J(1 v) £ X, a contradiction.

(ii) Let X € P(Z;), ¢ € N(X). As in (i) we can verify that z, = m,(z) # 1
implies z, € P(L,). Let v1,72 € T such that =, (z) € P(L,,), 7,(z) € P(L,,),
71 # 72. Then we can define elements y, z € L by the prescription ms(y) = ng(z) for
B # 72, mp(z) = 7a(z) for B # 11 and 7, (y) = 7, (z) = 1. Clearly, y,2 € L. Now,
we have j(] y) AjJ(l 2) < X, j(l y) £ X, (I z) £ X, a contradiction. From 1.9,
(iv) the proposition follows.

Conversely, let X = | (| r(zy): 2, € P(Ly)) and I,J € Z;, INJ < X. Let
y€er

y & X,y € I. Then for any ¥ € T we have y, = m,(y) £ z,. If z € J then
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il yAJ(l 2) € X, i.e., there exists 4o € T such that y,, Az,, < z,,. Now, we have
Zyg € Tyg, 1€, 2 € Typ(24,). Clearly, J C X.

(i) Let £ € N(X), X € D(Z;). f o = m,(z) # 1, z ¢ D(L,) for some y € T
then there exists an element u, € L, such that u, # 1, u, > z.,. Let us define
an element u € L such that m3(u) = mg(z) for B # v and 7, (u) = u,. Clearly,
X<XVilu), X#XVi(lu), XVj(lu)#L,a contradiction.

Conversely, let X = |J (| 7 (zy): z, € D(Ly)) and let y ¢ X. Then for any

r
v € T we have y, = w:(ey) £ z,, ie. 2z, Vy, = 1. We define Iy C I such that
m(y) # 1 & v € Ty. Clearly, Ty is finite, Ty = {y1,...,72}. Then we have
illy) v (/j(l 7y (zi)) = 1. Now, I 2 X implies I V X = L. a
i=1

The preceding proposition has the following consequences:

Corollary 1.11. (i) A sum of T\-frames is a T)-frame.

(i1) A sum of S-frames is an S-frame.

Proof. (i) It follows immediately from 1.10, (ii) and (ii).
(ii) It follows from 1.10, (i) and (iii) and 1.9, (iv). o

Theorem 1.12. A sum of Ty-frames is a To-frame.

Proof. Let X € Z;, X # L. Then X = J{| z: z € N(X))}. For any z €
N(X) let us define R(| z) = —,QI‘K” where K, = L., if 7,(z) = 1 and K, = On,(z)
otherwise. Then\/ R(| z) =] z, R(| ) CO | z. Let us show that R(] ) C Oz. Let
y € R(| z), y ¢ Oz. Then there exists v € I' such that 7, (y) # 1 and we can define
an element | € L such that m (I) = m,(y)". 7y({) = 1 for all ¥ € T'\ {y0}. Since
y ¢ OX then | € X, i.e., there exists an element z € N(X) such that 2 > [. Now, we
have 7,(z) = 1 for all y € T'\ {70}, i.e., myy(2)||m,(2), because my,(l) £ 7 (z) and
z & z. Let us define an element z € L such that 7, (2) = m,(2), 7,(2) = 7, (z) for
all y € T\ {70} Clearly, 7 € X,ie,2Vz € X. But 2Vz > z, a contradiction. 0O

An alternative proof of this Theoremm may be given in the same way as in [11],
Th. 2.9.

We do not know whether T5-frames are closed under sums.

Corollary 1.13. T,-frames form a monocoreflective subcategory in frm.
Proof follows from 1.12, 1.6 and [8], 37.4.

Let us recall that for a frame L we put N = {(z,y) € L x L: r Ay =0}.
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Proposition 1.14. Let L be a Hausdorff frame, P € P(L+ L), P O N. Then
P =| (m,1)V | (1,m) for some m € D(L).

Proof. Clearly, P =| (m,1)Vv | (1,n) for some m,n € D(L). Let m # n.
Then there exists an element [ € L such that {* £ n, { £ m. Then (I,I*) € N, i.e,,
i1 (1,1*)) < P. Now, we have P 2| (m, 1)V | (1,n)v | (,I*) 21 (1,I*)v | (1,n) =
1 (1,1), a contradiction. O

An alternative proof of 1.14 follows [11], Proposition 1.8 and Definition 2.2.

2. ALMOST COMPACT FRAMES

A Hausdorff topological space which is not regular has no T;-compactification
because a compact Ty-space is normal. It is natural to ask if some Ty-extension of
the Hausdorff space exists with some properties of compactification. Of course, a
compact Hausdorff space is closed in any Ty-extension. Therefore, it is necessary to
restrict on non compact Hausdorff spaces and it is known (see cf. [3], 6.1.h, pp. 238-
241) that suitable spaces for this situation are exactly almost compact spaces. These
spaces are H-closed and T,-extensions with some properties of compactifications are
Katétov H-closed extensions. We shall consider these problems for frames.

Definition. We say that a frame L is almost compact if the following condition
is fulfilled:

If \/(zi: i € I) = | then a finite subset K C I exists such that (\/(z;: i € K))** =
1 where z; € Lforie I.

Remark. Recall that L is a compact frame if the facts X C L, VX =1
imply the existence of a finite set K C L with properties K C X, \/ K = 1. Every
compact conjunctive frame is spatial ([9], 2.11). Stone-Cech compactification for
frames is investigated by Banaschewski and Mulvey in [2].

Proposition 2.1. 1. A compact frame is almost compact.
2. A frame L is not almost compact iff an ideal Q in L exists such that Q C St
and \/Q = 1.

Proof. 1. follows from Definition immediately.

2. If L is not almost compact then a set {z;: i € I} exists such that \/(z;:
i€ I) =1 and thus [\/(z;: i € K)]** # 1 for any finite subset K C I. If we put
Q =< {zi:i €I} > then Q is an ideal in L such that Q C S, and \/Q = 1.

If Qis anidealin L, Q C Sp, VQ =1 and L is almost compact then ¢ € Q exists
such that ¢** = 1, a contradiction. a
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Proposition 2.2. For a Hausdorff frame L the following are equivalent:

1. L is almost compact and regular.
2. L is compact and conjunctive.

Proof. 1= 2: Clearly, any regular frame is conjunctive. If \/(z;: i€ I) =1
then V/(y;,: yj; < zi,4i € Ji,i € I) = 1 where z; = \/(yj,: yj; < zi,ji € J;) for
any i € I, Ji[1J; # 0 = i = j. These facts imply that a finite set K C |J(J;:
i € I) exists such that 1 = [\/(y: k € K)]**. Clearly, [V(y: k € K)]** < V(z;:
ke Jiforke K),ie,\/(zi: k€ J; for ke K)=1.

2 = 1: If L is compact and conjunctive then L is spatial, i.e., L is a Hausdorff
topology. Hence L is regular and almost compact (see 2.1). o

Proposition 2.3. Let L be a frame, L, be a Boolean algebra of regular elements
inL (L, = {a**:a € L}). Then K(L) = {(u,v): u€ L, v € L,, u < v} is a frame
with the following properties:

1. L is dually atomic iff K(L) is dually atomic.

2. L is compact iff K(L) is compact.

3. K(L) is a Tp-frame iff L is a T-frame and L fulfils the condition:
de D(L) =d*=0.

4. K(L) is not conjunctive.

5. L is almost compact iff K(L) is almost compact.

Proof. 1. de€ D(L) <« (d,1) € D(K(L)).

2. Let \/((zs,%): i € I) = (1,1). Then \/(zi: i € I) =1, i.e., there exists a finite
subset K C I such that \/((z;,y:) = (1,1). Conversely, if \/(z;:i€l)=1,z; € L
then \/((zi,1): i € I) = (1,1), i.e., there exists a finite subset K C I such that
V((zi,1): i€ K)=(1,1),ie, (zi: i€ K)=1.

3. =: Clearly, L is a homomorphic image of K(L). Let d € D(L), d* # 0, i.e.,
d=d**. Then (1,1) # (d,1) £ (d,d). If there exist z,y € K(L) such that zAy =0,
z = (21,22) £ (d,1), y = (v1,32) £ (d,d) then y < (d,1), ie, y2 £ d, y1 < d,
z2 £ d. Now, 22 Ays =0, i.e., 2 < d, a contradiction.

<: Let L be a Hausdorff frame. If (uy,v1), (u2,v2) € K(L), (1,1) # (u1,vn1) £.
(u2, v2) then we have the following cases:

a) If 1 # u; £ uy thenl € L exists such that | £ us, I* £ u;. Hence (/,{*") € K(L),
(I*,1*) € K(L) and (I,1°*) £ (uz,v2), (I, ") £ (w1, v1).

b) If 1 # uy < uz, 1 # v £ vy then [ € L exists such that | £ vy, I* £ v;. Hence
(0,1) € K(L), (", 1) € K(L) and (0,1°*) £ (uz,v2), (1", ") £ (u1, v3).

) If1 # u Supl =v £ vy thenuy up <vg #1 holds. If v £ uy
then 1 # v2 £ u; and (0,v3) € K(L), (v2,v2) € K(L). Now, we have (0,v3) £
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(uz, v2), (v2,v2) £ (u1,v1). If v2 = u;y then u; = uz = vz # 1. Clearly, v; #0, i.e.,
vy € D(L) = S(L) and thus we can find z € L such that z £ vy, 3" £ v;. Therefore
we have (0,z*) € K(L), (z**,z**) € K(L) and (0,2°) £ (u2,v2),(z*,z*) £ (u1,v1).
Finally, K(L) is a Hausdorff frame.

The same way we can verify the property 3.

4. We have (0,0), (0,1) € K(L), (0,1) £ (0,0) and (0,1) V (u,v) = (1,1) for
(u,v) € K(L) implies u = 1 = v, i.e., (4,v) = (1,1). Finally, K(L) is not conjunc-
tive.

5. Let L be almost compact, \/((zi,¥):i € I) = (1,1), (zi,¥i € K(L) for
i € I). Then \/(zi:i € I) = 1, i.e., there exists a finite set K C I such that
[V(zi: i € K)]** = 1. Now, we have [\(zi,%):1 € K]** 2> [V(zi: i € K), (V(z::
i€ K))**]** =(1,1).

Conversely, let K(L) be almost compact, \/(z;: i € I) = 1, z; € L for i € I. Then
V((zi,zf*): i € I) = (1,1), i.e., there exists a finite set K C I such that [\/(z;, z7*):
i€ K)]* =(1,1),ie,(V z*)* = A z! =0. Now, we have [\/(z;: i € K)]** = 1.

ieK i€k

o

Remark. Proposition 2.3 is motivated by the paper of Murchiston and Stanley <
([14], example 2).

Proposition 2.4. There exists a compact Hausdorff frame which is not regular.

Proof. Let L be the closed interval [0,1] with usual topology. Clearly, O(I) is
a compact Hausdorff frame and d € D(O(I)) implies d* = 0. Now, we have from 2.3
that K(O(I)) is a compact Hausdorff frame, which is not regular. o

Corollary 2.5. There exists a compact Hausdorff frame which is not spatial.

Definition. Let f: K — L be a surjective homomorphism of frames, f°(0) =
V(z € K: f(z) = 0) and let f(a) = f(b) = aV f°(0) = bV f°(0) hold for any
a,b € K. Then f is called a closed homomorphism.

Remarks. 1. If f: K — L is a closed homomorphism of frames then an
isomorphism i: 1 f°(0) — L exists such that f(k) = i(k Vv f°(0)) for any k € K.
2. The composition of closed homomorphisms is a closed homomorphism.

Definition. A homomorphism f: K — L of frames is called_ dense (codense,
resp.) if f(k) =0=>k =0 (f(k) =1= k=1, resp.) holds for any k € K.

Proposition 2.6. Let f: K — L be a surjective homomorphism of Tj-frames and
R =1 f°(0). If L is almost compact then R is almost compact and f(D(R)) = D(L).
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Proof. Risa Tj-frame because R is a homomorphic image of K.

Now, let f: R — L be a map such that f = f|g. Evidently, f is a dense homo-
morphism and we shall prove that f is also codense.If f(r) = 1, r # 1 then r = VA,
where A C Or is an ideal, A C Sg. Because L is almost compact there exists a € A
such that [f(a)]** = 1, a < r, a* £ r. Namely, a* # 0 holds. We can prove that
f(z)* for any z € R and therefore f(a*) = [f(a)]** A f(a*) = [f(a)]** A f(a)* =0,
which is in a contradiction with density of f.

Immediately, we get that R is almost compact because \/(z;: i € I) = 1 implies
V(f(z;):i€I)=1,i.e.,afinite set H C I exists such that [\/(f(z;):i € H)]*" = 1.
Hence f((\/(zi: i € H))**) = | and from codensity of f we get [\/(:;:i € H)]"* = 1.

If m € D(R) and f(m) ¢ D(L) then f(m) # 1 holds and an element y € L, y € 1
exists such that f(m) < y. Since y = f(z) for suitable z € R we have z £ m and
also y = f(z) V f(m) = f(z Vm) = f(1) = 1, a contradiction. 0

Proposition 2.7. Let T be a T)-space, f: O(T) — L be a codense surjective
homomorphism of frames. Then L is spatial.

Proof. Clearly, f(D(O(T))) = D(L) and thus L is dually atomic. Let us
show that is conjunctive. Now, let a £ b, a,b € L. Then there exist elements
c,d € O(T) such that ¢ £ d, f(c) = a, f(d) = b. Since O(T) is spatial and
P(O(T)) = D(O(T)) we have an element m € (D(O(T)) such that mVv ¢ = 1,
m > d. Evidently, n = f(m) € D(L),nVa=1,1#n2>b.

Finally, L is conjunctive and dually atomic, i.e., L is spatial. O

Proposition 2.8. An almost compact frame which is a homomorphic image of a
Hausdorff topology is a topology.

Proof. Let T be a Ty-space, L a frame and f: O(T) — L be a surjective
homomorphism. Clearly, L is a Tj-frame and R =1 f°(0) is a Hausdorff topology.
If we put f = f|g then we have from 2.6 that f is codense. Now, by 2.7 L is a
topology. O

The preceding results (2.5 and 2.8) establish the following.

Corollary 2.9. A compact Hausdorff frame exists which is not a homomorphic
image of a HausdorfF topology.

Corollary 2.10. Frames which are homomorphic images of Hausdorff topologies

are either Hausdorff topologies or Ty-frames which are not almost compact.
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Proposition 2.11. Let L be a frame. Then a subframe T(L) = {(u,v) € L x L:
u < v} has following properties:
1. L is compact iff T(L) is compact
2. L is almost compact iff T(L) is almost compact.

3. T(L) is not conjunctive.
4. T(L) is a Tp-frame iff L is a T-frame and D(L) = 0.

Proof. The proof is similar to the proof of 2.3. a

Proposition 2.12. If L is an almost compact frame then S(L) # 0.

Proof. Let F be a maximal filter in L. We put a = \/{z*: z € F}. Clearly,
a#l. lfz,yeL,zAy=0,z£athenz* ¢ F,ie, z** € F and it implies z* < a
and y < a. We have a € S(L). 0

Corollary 2.13. If L is an almost compact Hausdorff frame then D(L) # 0.

3. H-CLOSED EXTENSIONS

Finally, we investigate some properties of the Katétov H-closed extension for
frames. The construction of the H-closed extension for a given Hausdorff topological
space is described for example in [4].

Definition. Let L be a frame. We say that aset F C L, F # 0 is an a-filter if
(i) 0¢F,
(1) a,b€ F=>AbEF,
(i) a€ F,b>2a=>beF,
(iv) V(a*: € F) =1 hold.
A maximal a-filter is called a g-filter. Evidently, A F = 0 for any a-filter F.

Proposition 3.1. A frame L is not almost compact iff there exists a -filter in L.

Proof. If L isnot almost compact then 2.1.2 implies that an ideal 0 in L exists
such that Q C S, and \/Q = 1. If F is a filter in L generated by {a*: a € Q) then
1=\(a*":a€ Q) and F is an a-filter in L.

If L is almost compact and F is a B-filter in L then \/(a*: a € F) = 1 and there
exists a finite set K C F such that 1 = [\/(¢*:a € K)]** = [A(a:a € K)]". 1t
means that 0 = A K € F, a contradiction. a
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Lemma 3.2. If L is a frame and Fy, Fy are (-filters in L, Fo # F\ then for all
z € Fy \ F; there exists y € Fy such that z Ay = 0.

Proof. Letz € F\ F;. Weput U ={b€ L:bAz > aAz for a suitable
element @ € F1}. The set U fulfils (ii), (iii) and (iv) from the Definition of a-filters
and = € U holds. These facts imply that U D Fy, U # F; and thus 0 € U because
U is not a S-filter. It means that £ A y = 0 for a suitable element y € F. a

Definition. Let L be a frame and {Fj: j € J} be the set of all g-filters in L.
The frame Lg C L x 27, generated by {({,0):! € L} U {(a,{j}): a € Fj} with
operations (al, 11) A (az, 12) = (a. Aag, 1N 12), (a, , 11) \} (a;, 12) == (a1 Vay, [ U 12)
is an H-closed extension of L.

Let us remark that z € Lg iff z = (a,]) wherea € N(Fj: je€ l)and I C J.

Let a € L. Then we shall denote I, = {j € J: a € F}}.

Lemma 3.3. If L is a frame then (I,1)* = (I*, I;-) holds in Lg.

Proof. We have (I,I) A (I*,I1s) =(0,0) because 0 =IAl* € Fiforie IN I..
If (I, 1)* = (k, K) then k < !* and now we have K C I C I;.. a

Remark. Let L be a frame, g1 : Lg — L be a map such that g.((a, I)) = a for
any (a,I) € Lg. Then g is a dense surjective homomorphism of frames.

Proposition 3.4. An H-closed extension of a Ty-frame is a T>-frame.

Proof. Let L be a Hausdorff frame, (1,J) # (a1, 1) £ (a2, [2). Then we have
the following cases:

(i) If 1 # ay £ by then there exists an element | € L such that I* £ a;, [ £ as.
Clearly, (I*,0) A ({,0) = (0,0), (I*,0) £ (a1, 1), (1,0) £ (a2, I2).

(ii) If 1 = a; £ a3 then there exists jo € J\ J;. Now, there exists an element s €
Fj, such that s* £ az. Clearly, (s, {jo}) A(s*,0) = (0,0), (s, {jo}) £ (a1, ),
(s',@) f (az, 12).

(iii) Let @y < a2, J # Ji £ I2. Then there exist j; € I, \ I, jo ¢ I\, i.e,
there exist elements z € Fj,, y € Fj, such that z Ay = 0. Now, we have

(.’L‘, {Jl}) A (yv {]2}) = (O,G), (zv {Jl}) é (a2v 12)1 (ya {]2}) ﬁ (alv 11)

(iv) Let @y < a2, J = I £ I,. Then a; # 1 and there exists an index jo €
J \ I,. Now, there exists an element s € Fj, such that s* £ a;,. Clearly,

(8, {do}) A (s*,0) = (0,0), (s, {jo}) £ (a2. I2), (5*,0) £ (a1, ).
If L is a T,-frame then by the same arguments as in the first part we can verify
that Lg is a Te-frame. O
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Theorem 3.5. If L is a frame then Lg is an almost compact frame.

Proof. If L isalmost compact then J = @ and thus L = Lg is almost compact.
Let L be not almost compact. Then J # @ and let us suppose that Lg is not almost
compact. Then an ideal Q in L exists such that Q C Sp,, VQ = (1,J). Namely,
V(a: (a,1)eQ =1, ie., @={a€ L:(a,I) € Q}isanideal in L such that Q@ C Sp,
V@ = 1. If we consider an a-filter F generated by {a*: a € Q} then a S-filter
Fj, 2 F exists. There exists an element a € Fj, such that (a,I) € Q, jo € I. But
a* Aa =0, which is in a contradiction with the fact that Fj, is a G-filter. a

Remark. It is well known (see [3] or [4] that if L is a spatial Ty-frame then Lg
is a spatial almost compact T>-frame.

Definition. A frame L is called T3-closed, if L is a T,-frame, and any surjective
homomorphism f: K — L is closed, where K is a T,-frame.

Proposition 3.6. An T,-closed frame L is almost compact.

Proof. If L is not almost compact then g.: Lg — L is a dense surjective
homomorphism, i.e., g1, is an isomorphism and Lg is almost compact, a contradiction.
a

Lemma 3.7. If L is a frame then it holds:

1. Ifle L,1* =0 thenl € F for any B-filter F in L.
2. L is Boolean algebra iff I* # 0 holds for any 1 £ l € L.

Proof. 1. Ifl ¢ Fthenl (IAF) 2 F holds and it means that there exists
fo € F such that [ A fo =0, i.e.,, 0 # fo < !*, a contradiction.

2. We have (I VI*)* =0 and thus I V{* = 1. Hence I* is a complement of | and L
is a Boolean algebra. a

Proposition 3.8. Let L be a frame which is not almost compact. Then it holds:

1. If d is a dual atom in L then (d,J) is a dual atom in Lg.

2. If (a,1) is a dual atom in Lg then (a,I) = (1,J \ {j}) for a suitable element
j€Jor(a,I)=(d,J) whered € D(L).

Proof. 1. Let us suppose that a g-filter F; exists such that d ¢ Fj. Namely,
d} zforanyz € Fj,ie.,dVz =1. Since z* = z* A(dVz) < d holds for any z € F;
we have 1 = \/(z*: z € Fj) < d, a contradiction.

2. If (a,I) € D(Lg) and a = 1 then j € J \ I exists such that (a,I) = (1,J\ {7}).
In the case @ # 1 it holds a = d € D(L) and (a,I) = (d,J).

Now we give an explicit description of the sets S(Lg) and P(Lg). O
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Proposition 3.9. Let L be a frame which is not almost compact. Then the
following propositions hold:

1. (a,1) € S(Lg) iffa=1,1=J\{j} forsomeje€ Jora€e S(L),I=J.

2. (a,I) € P(Lg) iffa=1,I=J\{j} forsomej€Jora€ P(L),I=J.

Proof. 1. =: Let (a,) € S(Lg). Then a € S(L) U {1}. Namely, if a # 1,
a ¢ S(L) then there exist elements z,y € L such that tAy =0,z £ a, y £ a.
Clearly, (z,0) A (v,0) = (0,0), (z,0) £ (a,I), y,0) £ (a,I), a contradiction.

(i) Let a = 1. If I # J\ {j} for any j € J then there exist j;, j2 € J, j1 # Jjo
such that jy ¢ U, jz ¢ I. Clearly, (z, {j1} A (v, {j2)) = (0,0), (=, {i1}) £ (a.]),
(v, {s2}) £ (a,I) for suitable elements z € Fj,, y € Fj, such that : Ay =0.

(ii) Let a # 1, a € S(L). If I € J then there exists j € J \ I. Now, there exists an
element z € Fj such that z* £ a. Clearly, (z, {j})A(z*,0) = (0,0), (=, {7}) £ (a,]),
(z*,0) £ (a,I), a contradiction.

<: Clearly, (1,J\ {j}) € D(Lg) C S(Lg). Consider (a, J) for some a € S(L). If
(z1, 1) A (z2,12) = (0,0) then £, Az; = 0, ie,, 2 < a or z2 < a. Now, we have
LCI,CJorl,ClI;,CJ, ie,(a,j) € S(Lg).

2. The proof for P(Lg) is similar. O

Corollary 3.10. (i) An H-closed extension of a Ty-frame is a Ty-frame.
(i) An H-closed extension of an S-frame is an S-frame.
(iii) L is dually atomic implies Ly is dually atomic.

Proof follows from 3.8 and 3.9.

Proposition 3.11. Let L be a frame. Then the following conditions are equiva-
lent:

1. L is spatial.

2. Lg is spatial.

Proof. If L is almost compact we are ready. Let L be not almost compact.

1 = 2: Let (1,J) # (a,1) € Lg. Then we have the following cases:

(1) If a = 1 then we have (a,1) = A{(1,J\{s}): 7 ¢ I}.

(ii) If a # 1 then (a,1) = A{(p.[}): p > @, p € P(L}AA((LI\{GD): 5 ¢ U}.
2= 1: Let 1 # a € L. Then we have (a,0) = A{(p, ;) € P(Lg): (p. I,) 2

(a,) AL I\ {):jeJ}. a
Proposition 3.12. Let L be a complete Boolean algebra. Then Lg is dually
atomic.
Proof. Let {(z;,J): z; # 1 for i € I} be a chain in Lg, \ (xi.J) = (1,J).

i€l
Since Lg is almost compact there exists a finite set X C [ such that (1.J) =
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V{(zi,J): i € K}]** = (z&,J)** = (2}*,J) = (z&,J) for a suitable k € K, a
contradiction. The rest follows from 3.8. )

Corollary 3.13. Let L be a complete Boolean algebra which is not dually atomic.
"Then K(L)g is an almost compact T,-frame which is not dually atomic.

Proof. IfaeL,tanD(L) =0 then (a,1) € K(L), T (a,1)N D(K(L)) = (see
2.3) and ((a,1),J) € K(L)g. The rest follows from 3.8. O

Corollary 3.14. Let L be a complete Boolean algebra which is not dually atomic.
Then Lg is not conjunctive.

Proof follows immediately from 3.11 and from the fact that L is not a topology.

Corollary 3.15. Homomorphic images of Hausdorff topologies form a subcate-
gory in Frm which is not closed under H -extensions.

Proof. Let L be a complete Boolean algebra which is not dually atomic. Then
from 2.8 we have that Lg is not a homomorphic image of a Hausdorff topology. O

We do not know whether our class of To-frames is the monocoreflective hull of
HausdorfT spatial frames. This problem for regular frames was solved negatively by
I. K#iz.
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