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(Received November 19, 1990) 

1. I n t r o d u c t i o n . The theory of congruence lattices of universal algebras is one 

of the most rich and developed parts of contemporary algebra. Unfortunately, the 

rather special and purely internal definition of the congruence relation does not 

extend directly to structures other than sets with operations; in fact it even does 

not apply to the slightly more general models (sets with operations and relations). 

A way out is to simply omit the relations (cf. [8, p . 44]); however, this is not quite 

satisfactory: for example take the linearly ordered additive group Z of integers and 

note that the quotient modulo a non-trivial congruence is a finite group Zn which 

cannot be linearly ordered. 

The same difficulties typically occur in non-algebraic structures, e.g. what is a 

congruence on an ordered set, graph or topological space? A certain solution is 

provided by categories, where congruences are defined via kernel pairs of morphisms 

([2], [7, p . 154]). Of course, this definition is external and relative because the 

congruences depend not only on the structure but also on the choice of the category. 

This paper presents a compromise between the overly general, categorial approach 

and the quite special universal algebraic one. 

2. C o n v e n t i o n s . The set of finite cardinals is denoted u; and E(S) is the complete 

lattice of equivalence relations on a set .9, ordered by C. The kernel of a mapp ing 

/ : S —• T is the equivalence 

k e r / : = { ( * , y > e S 2 ; / ( * ) = /(2,)}. 

£ is a first-order language with identity determined by two disjoint sets O (of op­

eration symbols) and R (of relation symbols), and ar : ( O U R ) —• CJ (arity function) 
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where ar(r) > 0 for each r G R . An C-model A is given by 

a non-empty set A' (the universe of A), 
operations oA : (A')*r^ -+ A' (o G O), and 
relations rA C (,4')ar(r) (r G R). 

As usual, a nullary (or zero-ary) operations just fixes an element of A1. 

Let A} B be £-models. An C-homomorphism is a mapping f': A' —• B1 satisfying 

f(oA(x\, . . . , Xar(o))) = <>B (f(x\), . . . , / (* a r ( o ) ) ) , 

( * i , . - - , *«<r )}€ r i l => < / ( x 1 ) , . . . , / ( x a r < r ) ) ) € r B 

for all o 6 O, r 6 R and x\, X2,.. . € -4'. L is the category, corresponding to 
£, whose class L ° b (of L-objects) consists of all £-models, and whose class LM o 

(of L-morphisms) is the class of all £-homomorphism. In the sequel K denotes a 
subcategory of L and A a A'-object. 

3. Definition. An equivalence a G E(Af) is a K-congruence on a K-object v4 
if a = ker ft for some A'-morphism h: A —+ B. The set of all /C-congruences on A is 
denoted by Con# A. 

4. Remarks, a. Our definition is a special case of the categorial definition 
from [2, p. 385] and [7, p. 154]. V. A. Gorbunov and V. P. Tumanov [4, p. 17] define 
congruences on models in a different way. 

For an £-model A, the set ConL A is the set of all congruences of the alge­
bra (A ' , (oA ; o G O)) in the usual, universal-algebraic sense (or in the sense of [8, 
p. 44]). 

Let O = 0, R = {^} and ar(^) = 2. Further, let K be the full subcategory of 
L whose objects are the non-empty ordered sets. The corresponding Con*' A were 
studied by the second author [12]. Congruences on relational structures determined 
by abstract orthogonality were investigated by Z. Rozensky in [10]. See also Sec­
tion 16. 

b. The subset Con/c A of E(Af) is naturally ordered by inclusion. It has always 
a least element, the diagonal, 6^' := { (x,x) : x G A'}. Clearly b^' is the kernel of 
the identity map on A' which is always a /v-morphism. In fact, it is only general 
order property of Con# A. 

A subposet (S, $J) of a lattice A is a strong subposet of A if every existing supre-
mum (infimum) in (5, $) of a finite non-empty subset X of 5 is also the supremum 
(infimum) of X in A. Similarly, a subposet (.$', ^) of a complete meet-semilattice A 

is a complete strong subposet if every existing infimum in (.?,•$) is also the infimum 
in A. 
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5. Theorem. An ordered set P is isomorphic to Con/c A for some subcategory 

K of L and for some K-object A if and only if P has a least element. 

If P has least element then such K and A may be chosen so that either 

(a) Con# A is a strong subposet of the lattice E(A') where, moreover y A' is finite 

provided P' is finite; or 

(b) Con/c A is a complete strong subposet of (E(P'), fl). 

P r o o f . The part "only i f hods by Remark 4.b. Let P have a least element 0. 
We give the following two constructions: 

(a) Let a: P —• Q denote the McNeile completion of P (cf. [6, p. 98]). Here Q is 
a lattice which is finite if P is finite. It is well known that a preserves the existing 
suprema and infima and so im a is a strong subposet of Q. By the well-known 
Whitman's result, Q has a lattice embedding (3 into an equivalence lattice E(S') (cf. 
[6, p . 194]) where S' is finite if Q is finite (P. Pudlak and J. Tiima [9]). Put 7 := pa. 
It is easy to see that we may assume 7(0) = 6s> (if not, take S'/j(0)). 

(b) Define 7: P' — E(P') by setting y(x) := {y e P'; y ^p x}2 U 6P> for all 
x e P' (cf. J. Adamek [1, Ex. lH.h, p. 56]). It is easy to see that 7 is an embedding of 
P into E(P') preserving the existing infima such that 7(0) = 6p>. Put N := {7(x); 
x e P '} . Clearly P is isomorphic to the complete strong subposet (N, C) of E(S') 
where 5' := P'. 

Recall the following standard notation, see e.g. [3, pp. 15 and 17]. For a non-empty 
set M and <r e E(M) the natural surjection nata: M —• M/<r assigns to x e M the 
equivalence class of <r containing x. For Q, <r e E(M), Q C <T, put 

<T/Q:= {(X,Y) ; K , Y G M/Q and X xY Ca}. 

Clearly <T/Q e E(M/Q). 

Now we construct a subcategory K of L and its K-object A such that N = Con# A. 

For <r e N define S/<r as the £-model with the universe S'/<r, whose operations and 
relations are defined as follows. Fix an element a e S' and for all o e O, r G R and 

*i, *2, • •• e S'/a put 

o5/<T(a:1,...,xar(o)):=nat(T(a) and rs'a := (S/<r)^rl 

For £, <r e N with Q C <T the map nat(<r/Q): S/Q —• S/<r is an L-morphism with 
kernel <T/Q. The category K is given by 

K°b :={S/<T; <reN} and 

{nat(o-/^)} if Q} <r e N and Q C <T, 
UomK(S/Q}S/<r) := 

I W else. 
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Since we have ker nat(<r/6s') = <T/6S' for all a £ N, the set N ordered by inclusion 

is isomorphic to the congruence poset ConK(S/Ss'). D 

Sections 6-13 give conditions for congruence posets to be complete and algebraic 

latt ices . 

6. L e m m a . Let K be a full subcategory of L. If K is closed under the formation 

of cartesian products, then for each object A of K the poset C o n # A is a closure 

system on E(A'), and as such a complete lattice. 

P r o o f . Take a non-empty subset E of Con# A. For every a £ E we have 

<r = ker/o- for some A'-morphism fa : A —• Ba. Since the cartesian product B := 

Y\ (Ba ; a £ E) belongs to A ' ° b , there exists a unique £-homomorphism f': A —• B 

such tha t for all <r £ E we have naf = fa where na: B —* Ba denotes the <r-th 

projection. As for all x, y £ A we have f(x) = f(y) if and only if icaf(x) = naf(y) 

holds for all <r £ E, we have p | E = k e r / . Since A is a full subcategory of L and 

A, B £ A ° b , we have f: A —> B £ A'M o and therefore Con# 4̂ is closed under the 

set-theoretical intersection of its non-empty subsets. 

We have also the trivial terminal object (the product over the empty set) in A', 

and so A' x A' is a A-congruence on A. • 

7. T h e o r e m . Let K be a full subcategory of L. The following conditions are 

equivalent: 

(i) For every A £ A ' ° b the set Cori# A is a closure system on the complete lattice 

E(A'). 

(ii) K is a subcategory of a full subcategory N of L closed under the formation of 

cartesian products, and such that Con/*; A = Conjv A for every A £ A ' ° b . 

P r o o f . (i) = > (ii): Let N be the least full subcategory of L closed under 

cartesian products and such that A ' ° b C N°b. Then K is a subcategory of N, hence 

Con * A C Conyv A for every A £ A 0 b . 

To prove the converse inclusion, take A £ A ' ° b and g £ Con/v A. Note that 

A' x A' £ ConK A because Con# A is a closure system on E(A'). Thus assume 

Q ^ A' x A'. Then Q = k e r / for some N-morphism / : A —• C. By the definition' of 

N, there is an ^-isomorphism <p of C onto B := J~[ (B0 ; <J £ E) for some non-void 

family (Ba ; a £ J2) of A'-objects. As A is a full subcategory of L, for every *r £ E 

the £-homomorphism fa := na<pf: A —• I?<- is A'-morphisrn. In particular, {ker /^ ; 

a £ E} is a subset of C o n # A As in the proof of Lemma 6, we have g = p | {k e r fo \ 

cr £ E } . Consequently ,o £ Con^- A because Con# A is closed under intersection of 

its non-empty subsets. 

(ii) = > (i) is a consequence of Lemma (5. • 
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8. T h e o r e m . Let K be a full subcategory of L and A be a K object. If K is 

closed under ultraproducts ^ then C o n # A is closed under the set-theoretical unions 

of non-empty chains (i.e., under their suprema in E(A')). 

P r o o f . Let E be a non-empty chain in Con# A. For every a G E we have a K-

morphism fa: A —> Ba such that a = ker fa. Take an ultrafilter F over E containing 

{Q G E ; <T C Q} for every <r G E (it exists because (E, C) is a non-empty chain). Put 

B := J ] {Ba ; <r G E) and C := B/F (the ultraproduct m o d / ) , (cf. [5, p . 145]). As it 

is well known, the elements of C are the equivalence classes of « where for 6, c G B 

we put 6 « c whenever {<r; 6(<r) = c(c)} G F. By assumption, C is a A'-object. For 

x G A' denote by f(x) the element of B satisfying f(x)(<r) := f<?(x) for all <T G E . 

Next put y(x) := {y G 5 ; y « f(x)}- It - s a well-known fact that g(x) G C" and 

that g: A —• C is an £-homomorphism (cf. [5, §39] or [8, Chap . IV . 8]). Because K 

is full in L, we have g: A — C G KMo. 

We prove | J E = ker</. Indeed, for ar, y G -4, we have 

</(*) = (/(y) ^=> / (x) = f(y) 

<==> {<TGE;/<7(x) = /<T(y)}GF 

<=^ (x ,y)€ |J E 

by our choice of F. Hence, ( JE G Conx A because g: A —»> C G A'Mo and IJE = 

kery. D 

9. Corol lary, /f K is a full subcategory of L closed under cartesian products and 

ultraproducts, then Con/c A is an algebraic closure system on the complete lattice 

E(A'), and hence C o n # A is an algebraic lattice. 

P r o o f . The first part follows from Lemma 6 and Theorem 8. An algebraic 

closure system on the algebraic lattice E(A') is also an algebraic lattice (cf. [5, p. 25, 

Theorem 5] or [14, Theorem 4.3]). D 

10 . R e m a r k s , a. None of the conditions of Lemma 6, Theorem 8 and Corol­

lary 9 is neccesary. Take C with O = R = 0, and the category K with K°b = {u>} 

(where u> is the set of finite cardinals) and K'Mo = {f \ f: u —• u;}. Then K is a 

full subcategory of L (the objects of L are all the sets and the L-morphisms are all 

the mappings between them) . We have COIIA' U = E(u). Nevertheless, K is closed 

neither under cartesian products nor under ultraproducts (as UJ is an infinite set, its 

cartesian powers and ultrapowers can be uncountable: in the case of ultrapowers, it 

is a consequence of Frayne, Morel and Scott's theorem, cf. [5, p. 246, Theorem 2] or 

[8, p. 176]). 
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b. Let 0 be a set of .C-sentences. Denote by Mod$ the full subcategory of L 

whose objects are all models of $ . References for some well-known relevant notions 
are: Horn formulae: [5, p. 285], [8, p. 145]; universal formulae: [5, p. 233], [8, p. 130]; 
positive formulae: [5, p. 280], [8, p. 143]; and qua si-identities: [5, p. 339 and §63], 
[8, p. 149]. 

For a set $ of £-quasiidentities the category Mod<& is called an C-quasivariety (cf. 

[5, p. 339] or [8, Chap. V]). 

11. Corollary. Let 4> be a set of C-sentences preserved under the formation of 

arbitrary non-empty cartesian products (cf. [5, §§46, 47]). If A is a model of $ then 

{A' x A'} U ConMod* A is an algebraic closure system on E(A'). 

P r o o f . By our assumption about $ the category Mod$ is closed under carte­

sian products of non-empty families and by Los'theorem (cf. [5, p. 241 Theorem 1]) 

it is also closed under ultraproducts. D 

12. Corollary. Let T = <&U*P whre <J> is a set of universal Horn C-sentences, and 
ty is a set of positive C-sentences. If A is a model o/T, then {A' x A'} U ConModr A 
is an algebraic closure system on E(A'). 

P r o o f . Mod <I> and Mod T are full subcategories of L, and Mod T is a subcat­
egory of Mod<I>. Since elements of $ are Horn £-senteces, Mod$ is closed under 
cartesian products of non-empty families (cf. [5, p . 285, Corollary 1] or [8, pp. 146 
and 148]). Let A G (Mod T)°b and let f: A -> B be a Mod$-morphism. Then 
f(A') is the universe of a $-model because sentences of <t> are universal ones (cf. 
[8, p. 130]). Denote this model by f(A). As sentences of ^ are positive and A is 
a ty-model, clearly f(A) is a model of ^ also (because of Lyndon's theorem cf. [5, 
p. 281] or [8, p. 143]). Therefore / : A —• f(A) is an Mod T-morphism. Now apply 
Theorem 7. Note that the category Mod T is closed under ultraproducts in view of 
Los' Theorem. Now apply Corollary 9. D 

13. Corollary. If K is a quasi variety then Con/f A is an algebraic closure system 
on E(A'). 

P r o o f . By [8, p. 214, Corollary 3] K is closed under ultraproducts and cartesian 
products (and contains trivial terminal objects). D 

14. Remark. In the last part of the paper we study a possibility of internal 
characterisation of K congruences. 

Our definition of K-congruences on A depends both on internal properties of A 
and on the chosen category A'. In some special cases we can internally characterize 
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Conjc A. For example, we show that <r G E(A') is an L-congruence on A if and 
only if it is compatible with the operations oA for all o G O of positive arity. Other 
examples will be given below. 

Let <r G Con/, A. For o € O with ar(o) = m define the operation oAfa : (A'/<r)m —• 
A/tr 

< / ' * ( * ! , . . . , Xm) := (nat <r) (oA (xu...yxm)) 

for all Xi,..., Xm G A'/<r and xx G Xi,..., xm G Xm. 

For each r G R with ar(r) = n, Q G £(-4') and Xi,...,Kn G A'/g, put 
( K i , . . . , Xn) G rA if ( x i , . . . , xn) G rA for some xi G Ki,..., xn G Xn. 

Further for <r G Conj, A let A(<r) denote the set of £-models B such that 

(i) B*:=A'/a, 
(ii) oB := oAl° for all o G O, and 

(iii) rA C r B for all r G R. 
The following definition is a standart one: 
An £-model _4 is a strong subobject of an £-model B if (A7, (a"4 ; o G O)) is a 

subalgebra of ( # ' , ( o B ; o G O)) , and for every r G R we have rA = r B H (yl')ai<r). 
We omit the easy proof of Remark 15. 

15. Remark. Let K be a full subcategory of L, A e K°b and <r G E(A'). Then 

<r G ConK A if and only if 

(i) <r G Con^ A, and 

(ii) Some B G -4(<r) is isomorphic (in L) to a strong subobject of some Y G K°b. 
If moreover, K is closed under the formation of strong subobjects and C-isomorphic 

images, then <r G Con^ A if and only if 

<r G ConL A and A(<r) n K°b # 0. 

D 
Both results still depend on K. However, for K := Mod<& for a set $ of re­

sentences, the following three examples show that ConK A may have a purely internal 
description. 

16. Examples, a. (see [10]). Let C be given by O = {0} and R = {±} where 
ar(J_) = 2 and ar(O) = 0. An £-model A is a set with orthogonality if for all x, 

ye A' 
x LA y=> y ±A x, x JLA 0A, and x 1A x = > x = OA 

(i.e. ±A is a symetric relation, or a graph, with a star and a single loop at OA). 
Let K be the full subcategory of L whose objects are the sets with orthogonality. 

Since Iv is a cjuasivariety, Con*- A is an algebraic lattice for each A G K°b (cf. 
Z. Rozensky [10, Satz 3.9]). 
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From Remark 15 we obtain the following internal description of the A'-congruences 
on A (cf. [10, Satz 2.3]): 

<r G E(A') is a K -congruence on A if and only if for all x, y G A! we have 

x<ry k x ±A y = > x<rOA. 

b. (see [12]). Let C be determined by O = 0 and R = {$} with ar(^) = 2. Let 
Ord be the full subcategory of L, whose objects are the ordered sets. Remark 15 
gives the following internal characterization of Ord-congruences: 

Let A be an ordered set and <r G E(A'). Then <r G Conord A if and only if ^.A is 

acyclic (i.e. the transitive closure of ^.A is an antisymmetric relation on A'/<r). 

Ord is an £-quasivariety, hence Conord A is an algebraic closure system of E(A'). 

The above characterisation of Conord A leads to the following closure opetator on 
E(A'). For T G E(A'), denote by < the transitive closure of rU ^A. Define g(r) by 

(x,y)€9(T) if x<y<x. 

Then g: E(A') —-> E(A') is a closure operator on E(A') such that Conord A is the 
set of ^-closed elements of E(A'). (cf. [12, Satze 17, 19,22', 49]). 

c. (see [13] and [11]). For an ordered set A call <r G E(A') convex if every <r-

equivalence class C is a convex subset of ^A is the usual sense (i.e. z G C whenever 
x < z < y for some x, y G C). Denote by Ce^l the set of all convex equivalences 
on A. 

The second author studied the following inverse problem: Are there C and K such 
that (CeA,C) is order isomorphic to Con# B for some B G A'°b with A' = H'? 
We sketch a solution. Let C be determined by O = 0 and R = {t} with ar(<) = 3, 
and let A' be the full subcategory of L whose objects are the models of the following 
quasiidentity <p: 

t(x,y,x) = > x - y. 

Then from Remark 15, we get an internal characterization: 

Let B G A'°b and <r G E(B'). Then a G Con* B if and only if (B'/<T,t*) is a 

model of <p. 

Returning to convex equivalences, define for an ordered set A, 

tA' :={(x,y,z)eA'3;x^Ay^A z] 

and set A* := (A',tA ). Then * defines a (covariant) functor of Ord to A', satisfying 

Hom0rdM,B) = HomA-(>4*,J3*) 
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for all ^4, B 6 Ord . It follows from our characterization of K-congruences, that 
CeA = Con# A* for every ordered set A. 

There is another result in this connection: Let M be a full subcategory of the 

category of binary ralational structures. If Ord is a subcategory of M, the there is 

an ordered set A such that CeA -̂  Conjv/ A ([13, Theorem 4]). 

17. Remark. A category of models is a special case of a construct in J. Adamek's 
sense, cf. [1, pp. 5-6]. Our Definition 3 of K-congruences makes sense even if K is a 
general construct. Since our proof of Lemma 6 is of a purely set-theoretical character, 
the result is also true for constructs (cf. [1, p. 69] for the definition of a construct 
which is closed under the formation of cartesian products). 
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