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0. PREFACE

The physical theory of multipolar fluids was introduced in the paper [18] by Nedas
and Silhavy and follows general ideas by Green and Rivlin [5], [6]. The theory is
compatible with the second law of thermodynamics as well as with the principle of
material frame indifference.

As formulated in [18] and also in the survey paper [19], the theory takes into
account both the linear and nonlinear dependences of the stress tensors on gradients
of velocity. Nevertheless, the linear dependence was studied in more detail. We would
like to mention a detailed discussion of bipolar compressible fluids in [18] or [19] as
well as the series of papers by Netas, Novotny, Silhavy [15), [16], [17], or Netas,
Novotny [14] dealing with some qualitative properties of compressible multipolar
fluids as global weak solvability, uniqueness and cavitation of density.

In the present paper, we focus our attention on the case of an incompressible
fluid which has turned out to be very important in applications. It was shown in
Bellout, Bloom, Necas [3] that the multipolarity has only a minor perturbative effect
to exhibit the flattening out phenomena predicted by the boundary layer theory and
the imperfection in this particular case can be removed by considering a slightly
nonlinear version of the constitutive relations, which is completely admissible within
the context of the original formulation of the theory in [18] or [19].

Following (3], we choose from the very broad class of nonlinearities the simplest
one, i.e. the case when the first viscosity coeflicient depends on the invariants of the
first spatial gradient of velocity. While in [3] some special cases as plane Poiseuille
flow, Poiseuille flow in a pipe, plane Couette flow were studied analytically and
discussed from the physical point of view, we concentrate our effort on the general
formulation of the initial boundary value problem in two or three dimensions.
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The paper is organized as follows. The first chapter is devoted to the formulation of
the problem for bipolar fluids. In the following two chapters, we deal with the global
existence of weak solutions, regularity and smoothing effect. In the fourth chapter,
the measure-valued solutions are defined and the behavior of the weak solutions
under the vanishing higher viscosity is studied. The limits of strong viscous solutions
exhibit the loss of regularity and satisfy equations of motion for monopolar fluids in
the sense of regular measures. These conclusions are proved in Chapter five. The
sixth chapter concerns the uniqueness of weak solutions for bipolar fluids. In the
last two chapters, we study the asymptotic behavior. The existence of the universal
attractor with a finite Hausdorff dimension is proved.

1. FORMULATION OF THE PROBLEM

Let @ C RV, N = 2 or 3 be a bounded domain with a sufficiently smooth boundary
0Q. ForT > 0,t € (0,T) we denote @; = (0,t) x Q2 and [ = (0,T). We will consider
the unsteady flow of an incompressible (put ¢ = 1), nonlinear, bipolar fluid. This
model is described by the following system of equations:

(1.1) divv =0 in - Qr,
6v; 60; 6ﬂ' .
1.2 Y +vj—=—24+f in for i=1,...,N,
(12) ot ?9z; ~ Oz; +h Qr
where v is the velocity, f—the specific external body force and (7;;) is the stress
tensor.

Further, we will denote: p—the pressure, (7iji)—the bipolar stress tensor and
(eij(v))—the symmetric part of velocity tensor (e;;(v) = %(%j g—:{-)) All quanti-
ties are evaluated at (¢, z).

The stress tensor 7;;, provided it is symmetric, has the form

(1.3) Tij = —pbij + Beij(v) — pleij(v),

where 3, i can depend on the invariants of gradients of the velocity field with respect
to the material frame. Especially, we will suppose in the sequel (cf. Bellout, Bloom,
Neéas (3]) B = B(v%, D(v)), p = const. > 0, where 92 = ¢;;(v)e;;(v), D(v) =
det(eij(v))!?'jzl are the invariants of the velocity tensor with respect to the principle
of the material frame indifference (cf. Necas. Silhavy [18] or Novotny [19]). Let us
mention that the dependence 3 on the third invariant does not appear in (1.3) due to
the continuity equation (1.1). The constitutive equation for the bipolar stress tensor
is considered in the form

BEﬁ(V)

(14) Tijlc :p (?;ck
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We suppose in the sequel that

(1.5) B € €' (R?)
and
(1.6) m + py 927 < B(9%, D(v)) < p2 + ppt>

with gz > py > 0,7, v 20,7 <7 <7+ 3, #1 >0, puy > 0 being constants.
We will study the system of equations (1.1)-(1.3) with an initial condition

(1.7) v(0) = vy,

no-slip boundary condition

(1.8) v=0 on [x 90

and unstable boundary conditions

(1.9) Tije(V)vjve =0 on I x0Q

expressing zero power of internal stresses on the boundary (cf. Novotny [19]). Here
v = (vq,...,uN) denotes the exterior normal of 9.

Now we can give the weak formulation of our problem. First, put

(1.10) Vo = {v; v e WEHQ,RN) N W22(Q.RY); divy = o},
(1.11) H = {veEQRY); divy =0},

(1.12) H =372 "R

and (" denotes gi—f)

(113) y_] v Ve c WY'(Q,RV) ($+%=1) or

Van Wl"'I(Q, RM) otherwise.
Note that 4’ > 2 because of (1.6).

Let us further denote

deij(v) Oeij(w
) (oo = (B B (e,
where (-, ) is the scalar product in L2(Q,RV). Then ((-,)) is a scalar product on
Va and ||v||> = ((v.v))? is a Vo-norm. We denote B(9%, D(v)) = B(2, D(v)) — ps.
The usual Bochner spaces are denoted by LP(I,V2), LP(I, H) and L*(I, V), for
1 < p < 0o. The norm || - || denotes the usual Ly-norm. .
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Definition 1.15. A function v is called a weak solution of (1.1)-(1.9) if and only

if

(1.16) v e L¥1,Vo)NL>(1, H),
bv 4 .

(1.17) S €L (1,v*)

and (1.1)-(1.4), (1.7)—(1.9) are satisfied in the following sense:

T 3v 0 N T
(1.18)/0 <W’¢> dt + //vja—::jcp;dzdt+/o ((v,)) dt
Qr
+ / / B(9%, D(v))eij (v)eij(¢) dz dt = / fipi dz dt
Qr Qr
for every ¢ € L"I(I, Y),

8v
1 at

T A T
'/O<%%,so>dt=—/o <v,%?>dt Ve € 65°(1,7).

We will need another weak formulation which does not involve the time derivative

where (-, ) denotes the duality in % and the functional is connected with v by

the relation

of v:

(1.19) //v, T dxdt+/v0w O)dx_/_/v'vi_dldt-i-/T((v‘w))dt
//ﬂ v))eij(v)eij(w) dz dt = / fiw; dz dt

for every w € €= (Qr,RY),w(t,-) € W(-,1 2(Q,RN) Vtel, w(T)=0.
If we consider a monopolar fluid, then (1.3) is replaced by
(1.20) 7ij = —pbij + B(9°, D(v))ei; (v)

and only the initial condition (1.7) and the stable boundary condition (1.8) are
considered. Therefore, the appropriate weak formulation for the unsteady flow of a
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monopolar fluid reads

Ow;
(1.21) —/ v,—;—t—dzdt+/vow(O)dx—//v,v,a de dt
Qr

/ B(9%, D(v))eij(v)eij(w)dz dt = / fiwi dz dt

for every w € €°(Qr,RV),uw(t,) € WOl 2(Q,RN) vtel, w(T)=0.

2. GLOBAL WEAK SOLVABILITY TO THE BIPOLAR PROBLEM

2.1 Preliminaries. We define the operator A:
(2.1.1) (Av,w) = ((v,w)) Ywel,

with the natural domain of definition
(2.1.2)

P(A) = {v € Va; there exists y € H such that (y,w)=((v,w)) Vwe€ V,}.

A is a self-adjoint positive operator on H, hence A~! exists and due to the compact
imbedding of V, into H it is compact. We can define powers A*, s € R, being
also self-adjoint operators with the domain of definition 2(A*®). The linear space
Vi, := 9(A*) is a Hilbert space equipped with the scalar product (A’v, A’w)+(v,w).
We denote ||v||}, := (A®v,A*V) + (v,v). It is clear that the norms in || - ||v,, and
A, A®)} are equivalent norms in Vi, provided s > 0.

The following properties will bev useful in the sequel:
(2.1.3) A’'v € 2(A°~*) for every v € Z(A*) and s > s; > 0.

(2.1.4) There exists an orthonormal basis {w’} C V; such that
(i) we€e2(@)Vj=12,...,
(i) (@, w)) = Aj(w ,w)Vw € Vs,
(il) 0< A €A2<...0j = o0if j — o0.

(2.1.5) Let us put P,v =Y Aj(w’,v)w’ and Q := I - P,.
j=1
If (H)n :=span{w!,w?,...,w"} in L2(Q,RN) and
(V2)n := span{w!,w?,...,w"} in V4, then P, is an ortho-
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gonal projector of H onto (H), and of V; onto Va,.
(2.1.6) P,Av = AP,v and also Q,Av = AQ,v.
(2.1.7) (A%v,v) 2 A{*(A*~*1v,v) for every v € V3 and s > 51 > 0.

(2‘1'8) (A’Qnv,Qnv) 2 '\:;l‘f.](A.—:’uQnV,A.;’.LQnV)
for every v € V3 and s > 5, > 0.

(2.1.9) For v € H we define A*v € 2(A™*) by (A’v,p) = (v, A’p)
for every ¢ € 9(A*), where (-,-) denotes duality in Z(A*).
(2.1.10) For v € L*(1, 9(A*)), %;ire Lz_(l, H) and ¢ € €°(Qr,RV),
we have ((A'3%,0) = 7 (2452, )t
where ((-,-)) denotes duality in L%(I, D(A*)).

Let us note that for 0 < s < %
(2.1.11) Vis = V3,
where the closure is taken in W4*2, hence the norms || - |jw+..2 and || - ||v,, are

equivalent. Consequently, the norms ||v|lw..> and [|A*/4v]|| ,s > 0 are equivalent on
P(A*!*). The proofs and a more precise discussion of these facts can be found in
Lions, Magenes [12].

Let p > 1. Put

(2.1.12) vlv,, = (/ﬂle.-,-(v)l”)%,

where V) , = {v; veW,? divy = 0}. Then || - |lv,, and || - |lw1.» are equivalent
(cf. Necas [13]).

2.2 Existence of Approximations. We choose an orthonormal basis {w’ 152
in H (see (2.1.14)). In order to get appropriate approximations of (1.18) or (1.19)
we use the Faedo-Galerkin method. Put

(2.2.1) vi(t,z) = E-,;*(z)wi(x).
=1

Then

(2.2.2) " =Ehr7,....10) €' (1I.RY)
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is a solution to the system of ordinary differential equations (r ='1,2, .eym)

(2.2.9) (dst"u) +/ ,g‘ wdz + ((v",u"))

+ [ By, Do es(ves @ de = [ fuids
with the initial condition
(2.2.4) v"*(0) = Puvo.
As usual, this system has a solution (2.2.2).
Now, we prove appropriate apriori estimates.

Lemma 2.2.5. Let the assumptions (1.5), (1.6) be satisfied and let
(2.2.6) vo € L}(Q) and fe L?(1,V3).

Then

22D IV W r oy + IV ar vy + // B((5™)?, D(Vv™))ei; (v™)ei; (v™) de dt
(”f”lﬂ(l v*) + ”VO ”L:(n)) const.,

(2.2.8) “V ||L2(‘y+l)(l wiaG+1)) S < const.

Proof. Theestimates (2.2.7) can be derived by multiplying the equation (2.2.3)
by 77 and adding the resulting equalities. We get

(229) IVl + (v + [ B DOy (v (v7) de = (8,7,

After integrating the last equation over (0,7, one gets (2.2.7); (2.2.8) follows from
(2.2.7) and (1.6). a

Lemma 2.2.10. Under the assumptions of Lemma 2.2.5

(2.2.11) v < const.,
at L""(l,"')
where ¥* is the dual space to ¥ (see (1.13)).
Proof follows directly from (2.2.7) and (2.2.8). a
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Lemma 2.2.12. Let

(2.2.13) vo € D(AY*) and fe L*(1,2(A"'%)

and let

(2.2.14) k1 < B(5%, D(v)) € k2 (it means that v =5 =0 in (1.6)).
Then

(2.2.16) ||v"||L,.(,'9(A1/.)) const.,

<
"Vn”uu,g(,un)) < const.
and

(2.2.17)

< const. .
L3(1,9(A-1/1))

avn
ot

Proof. We multiply (2.2.3) by Al/27:‘, add these equations for r = 1,2, ...

which gives
(2.2.18) (?-Y: AV 4 (v, AV 2v)) = -/ vt'ai?(AWv"),-dz
3t 0 J 3::_,
- ./nﬁ((f’")z, D(v™))ei; (v")ei; (AY/?v") dz + /n fi(AV?V); dz.
Clearly we obtain

v?

a 1 1/4 2 3 n(2
(2219) 2o IAVAIE 4+ 4V g/ﬂ :

n
Y

1/2yn).
O(AY2v™); dl‘l
oz;

+IC2/ |e,-j(v")e,-j(Al/2v")|dz+/ |f,-(A1/2v"),-|dz.
Q (1]

)n’

Let us denote the integrals on the right-hand side of (2.2.19) by Y;, Y3, Y3, re-
spectively, and estimate them separately. We use the Holder and Young ineqnalities.

Then
(2.2.20) Y1 < || AV AV |AY 2 ||| A3/ 4|
< el A3V + Ko (e)||AY AP AV 22,
(2.2.21) Yz < mol| A3 A7 ||| AY AV < €]l A4V + Ko(e)||AY AVt
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and
(2.2.22) Ys < A3 AV (|| A72|| < €| A3 471 + Ka(e)l| AT 4112

By integrating (2.2.19) over (0, t) and using (2.2.7),(2.2.20)-(2.2.22) and the Gron-
wall lemma we obtain (2.2.16). The assertion (2.2.17) follows from (2.2.16) and from
the definition of the norm L?(0,T, 2(A~'/4)). ]

Let us denote Is = (8, T) for 6 € (0,T) and Q51 = Is x Q. The next lemma deals
with the smoothing property.
Lemma 2.2.23. Let

(2.2.24) vo € D(AYY), fe LY(Qr).

Let 3 depend only on 2, and let (2.2.14) hold.
Then for every 6 > 0

(2.2.25) [Iv® ”Luo(16 P(A1/2)) S < const.,
av"

(2.2.26) 5

< const.
L?(Qs,T)

Moreover, let

(2.2.27) 1B'(5*) < ex,

where ¢, is a positive constant. Then

(2.2.28) ”V"”Lz(]‘.g(,q)) < const.

Proof. Let &€ €°((0,T)),&(t)=0fort € (0,4), £(t)=1fort e (5,T). Let
us multiply the r-th equation in (2.2.3) by 97 (t)€2(t) and add the resulting equalities.
We get

av"

1
(2.2.29) 3 '57

2

= €AYV 4 / s

—/nfzv;'g B d +/g % B)?) de
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where B(s) = jﬂ.(a) do.

0
The terms denoted by Y3, .. ., Y4 on the right-hand side of (2.2.29) can be estimated
by

(2.2.30) 1| < K1||A¥4v"))?,
6v .
(2.2.31) |Ya| < l1€£ < + Ka(e)lIf|1%,
av n n
(22.32) vl < Je5r | v ||A3“ ||
av" ||?
< e + K3(e)|| A A" |2 | A% 47|12,
(2.2.33) 1Yl < K4 / lei; (v*)es; (V™) dz < K[| AV A2,
1]

Thus the estimates (2.2.25) and (2.2.26) follow immediately from Lemma 2.2.12.
Now, we multiply (2.2.3) by A.£2(t)7”(¢) and again add these relations. We get

2w (5 eav) + (" ezAv"))+ [ €8s e (v ds
=- [ e *(Av"). e+ [ flAv)ide

The last equation can be rewritten as
(2235) LSl 4 fleAv?

_ d_€1/2n_l/2n_ _/2n§_’_’£ ny.

= /nfdt(A v*)i(AY%v™); dz A v§ 7z; (Av™)i dz

4 -~ ~n n n
+ [ favyide = [ S e (v AV ).
a a 0Z;j
The right-hand side of (2.2.35) can be estimated by
(2-2.36) / " s (A ")i de < [IEAVP|[|AY AR A4V
< ellAVP|® + Ka(e)l| A% 4vm |7 (A 4vn)?

and

(2237) e /n a%(é((ﬁ“)?)e.-,-(v"))(fiv").-dz

$2|[]£25'((ﬁn)2 Cra’\(;': )aeraaz(:’ )u‘J(V")(AV ) dz
3((t™ ae'”(v") n —
+|§2/ﬂﬂ((v M2 (o Jedz| = ¥s + Yo
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where

(2.2.38)
Ys < cllEAVP(| A 40| A2 |17 < ellE AV P + Ka(e)l|AY 2V || |A¥4v"| 2,
(2.2.39) Yo < K[IEAV™ || |AY2v"]| < ell€AV™|1® + Ka(e)l| A 2v™ |2

The proof of the estimate (2.2.28) is complete. O

3.EXISTENCE THEOREMS AND SMOOTHING EFFECT

Theorem 3.1. Let the assumptions of Lemma 2.2.5 be satisfied. Then there
exists a weak solution v of (1.1)«(1.9) (see (1.18)) such that

(3.2) v € L*(I,V3) n LAY (1, wi2G+Dyn L (1, H),
5\' 11/ -
(3.3) a7 €L

Moreover, if y = ¥ = 0 (in condition (1.6)) then

(3.4) v € %(1, H).

Theorem 3.5. Let the assumptions of Lemma 2.2.12 be satisfied. Then there
exists a weak solution v,

(3.6) v € (I, 2(AV*) N L3(1, 2(A%Y)),
(3.7) %" € L*(1,2(A7'%)

such that (1.18) holds.

Theorem 3.8 (smoothing effect). Let the assumptions of Lemma 2.2.8 be satis-
fied. Then the weak solution v (see Theorem 3.5) is such that for every 6§ > 0

(3.9) %" € L*(Qs.1),
(3.10) v € L’ (15, 2(A)),
(3.11) v € Go(I5, D("?)).

559



Proof (of Theorems 3.1, 3.5, 3.8) . From (2.2.7), (2.2.8) and the well-known
Aubin lemma (cf. Lions [11] or Simon [20]) about three Banach spaces concerning
the compact imbedding of the space

{ve 171, By); 2 m e LI(I, Bl)} into  LP(I, B),
we have
(3.12) v* - v *weaklyin L%(/l,H),
(3.13) v® —v weaklyin L*(I,V3),
. R
(3.14) a‘;; O 4 weaklyin L7"(1, %),
(3.15) v® — v strongly in L%(I,W*?), s < 2,

where (3.12)—(3.15) hold at least for a suitable subsequence.
By virtue of (3.15)

(3.16) ei; (V") — €ij(v) ae. in Qr,
hence

(3.17)  B((™)%, D(v")ei; (v') = B(3?, D(v))eij(v) ae.in  Qr

and because of

(3.18) HB(™)?, DO ess (vl 3542 < const.

we have

(3.19)  B((™)?, Dv™)ei;(v") — B(5?, D(v))ei;(v) weakly in  LEH(Qr),

which implies convergence of the last term on the right side in the weak formulation

(1.18).
Similarly, we prove 3.5 to be a consequence of 2.2.12 and 3.8 to be a consequence
of 2.2.23. a
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4. MEASURE-VALUED SOLUTIONS TO MONOPOLAR FLUID

In Chapter 3 we have proved the existence of weak solutions to the problem (1.1)-
(1.9). Nevertheless, for monopolar fluids described by (1.21) in many situations,
such a question becomes an outstanding open problem.? Therefore an appropriate
generalization of weak solutions is useful.

We will consider the space Lz(QT,‘fo(RNz)), where ‘ﬁo(RNz) is the Banach space
of continuous functions f: RN* — R satisfying I«\llim f(A) = 0. A well known form

—o0

of the Riesz representation theorem (cf. Hewitt, Stromberg (7], Edwards [4]) states
that

(4.1) L*(Qr, %(RN"))" = L2, (Qr, MRN)),

where M (RN?) is a Banach space of bounded Radon measures. Let (-, -) denote dual-

ity in 6o(RV*). Then v € L?w)(QT, M(RM*)) if and only if v is a *-weak measurable

mapping® v: Qp —s M(RN2) such that

(4.2) vl 2 (Qr.M(RN?)) = €sssup ||V(t',,||M(nNz)dz dt < 00
(e (t,r)€QT
with
(4.3) “l/(t,,-)”I"(gN?) = sup /@du(,',)
pEE(RNT) 0,

1ol g, mn2, <!

= sup (v(t, z). o).
»”E%n(RNQ )

”‘r’".“u(.,\zl')sl

We denote by b: RV — RN ¢ RV 0 N mappings which are defined as
follows:

b(a) = (bij(0))}=1 = (B(o?, D(a))eij (o)), 21 and €(0) = o

Definition 4.4 (measure-valued solution). A couple (v,v) is said to be a
measure-valued solution to the initial boundary value problem (1.1), (1.2), (1.7),
(1.8), (1.20) if and only if

(4.5) v e L®(I, H)n LA(I, V)N L2A+D (] w2+

2 For some special cases this problem was solved in the framework of weak solutions by
Ladyzenskaya [9] (cf. Remark 5.32), other results can be found in Lions [11], §2, Sect. 5.
3y is a *-weak measurable mapping if and only if (u(,‘z),(,a) is Lebesgue measurable for

N 2
every v € o(RV").
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where V; = {v; v(t) € Wol"‘; divv = 0};

(4.6) v € L,(Qr, MRN),
(4.7) "V(g',)”M(.Nn) =1 ae. inQr,

4.8 b;i(0),&i; (o) are v-integrable functions on RM for 1,7=12,...,N
3] j

and

(4.9) / odyg z)(0) = Vv(t,z) ae. in Qr,

RN?

(4.10) //v, $i dzdt+/vocp dz—//v.vja dz dt
z;

// B‘P'd dt / B(62, D(0))es; (0)dve 5y = / fis dz dt

RN?

for every p € L2(1, W1 (9, RM)), %f € L (Qr,RN) for every t € I, ¢(T) = 0 (for
v’ see (1.13)).

Remark 4.11. Let v be a weak solution to a monopolar fluid, i.e.
S v € L®(I,H) N L%(1,V;) N L2G+D(1, w1H2G+1)) and (1.21) is satisfied. Then
(v,v), where vy ;) is defined by v(; ;) = 6(0i; — %?(t,x)) a.e. in Qr, is a measure-
valued solution.

On the other hand, if a couple (v, v), where

v € L®(I,H) N L3(1,V;) n L2+ (1, wH2G+1)y and viu,z) = 6(c — Vv(t,z)),
satisfies (4.8)-(4.10), then v satisfies (1.21).

Now, we are ready to prove the following theorems.

Theorem 4.12. Let the assumptions of Lemma 2.2.5 be satisfied. Then in the
class (4.5)-(4.7) there exists at least one measure-valued solution (v, v) satisfying
(4.8)—(4.10).

Theorem 4.13. Let the assumptions of Theorem 4.12 be satisfied and let v#
be a weak solution of (1.18) in the class of solutions (3.2), (3.3) (see Theorem 3.1)
corresponding to pu. Put

(4.14) u(“t,z) = é(0 — VvH(t, z)).
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Then there exists a subsequence of (v¥#,v*) such that

(4.15) v#* — v weakly in L*(1,V}),

(4.16) v# — v *-weakly in L=(1, H),

(4.17) v# — v *-weakly in L(zw)(QT,M(RNz)),

(4.18) v* — v strongly in L*(Qr),

(4.19) Im (:Tke,-j(v“), g%e,-j(go)) — 0 for every ¢ € €°(Qr),

and (v,v) is a measure-valued solution to the monopolar fluid.

5. PROOF OF THE THEOREMS
First, recall one fundamental theorem about Young measures due to Ball [2].
Theorem 5.1. Let Q C R™ be a Lebesgue measurable set and let 27 : Q — RM

j = 1,2,..., be a sequence of Lebesgue measurable functions. Then there exist a
measure v and a subsequence {z*} C {27} such that

(5.2) v € L) (Qr, M(RM)),

(5.3) [lvylimmmy < 1 forae y€Q,

(5.4) P(2°) = (vy. ) = / ¢(o)dyy (o) *-weakly in L*(Q)
RM

for every ¢ € 6o(RM) and s — oco. Moreover, if

(5.5) lim sup meas{z € QN Bg;|z*(z)| 2k} =0

k—co 4=1,2

for every R > 0, where B = {y € Q; |y| < R}, then
(56) "Vy”M(QM) =1forae y€eQqQ.

Further, let the condition (5.5) hold and let
(5.7) sup [ Wl dy < o0
s=1,2,...
Q
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be satisfied for any continuous function . Here V: (0,00) — R is some Young
function 4.

Then (for s — oo )

(5.9) o(2°) = (vy,p) *weakly in Ly(Q).

Proof. We associate with 2/ the mapping v/ : Q — M (RM) defined by

(5.10) vy = by
hence
(5.11) ||1/5HM(RM) =1forae y€Q.

Due to separability of 65(RM). and consequently of L'(Q, %o(RM)), there exist a
subsequence {v*} of {v7} and an element v € LG (@QT, M (RM)) such that

(5.12) v* — v *-weakly in LT (Qr. M(RM)).
Therefore
(5.13) (vy, @) — (vy,p) *-weakly in L™(Q)

for every ¢ € Gy(RM) ( we use the *-weak compactness of bounded sets in sepa-
rable Banach spaces ). So (5.4) is proved, and (5.3) follows from the *-weak lower

w

semicontinuity of the norm || - llLrO)(QTJ"(nM)).

We define 9% € G5(RM) as follows:

1 for |7 <k
HKry=L 1+k—|r] for k<|r|<k+1
0 for |r|>k+1.

4 Definitions and properties of Young functions as well as Orlicz spaces are to be found in
Krasnoselski, Ruticki [8]. We only note that a Young function satisfies

(5.8) lim @ =

§—o00



Let (5.5) be satisfied and let £ C @ be a bounded measurable set. Then

(5.15) lim ——l——/ ok (*(y)) dy =

s—oomeas (E)

meas(E /(u,,,ﬂ") dy

< — dy<1
< meas(E)/E”V”"M('M) y <

However,
1
. —_— 1—o9%(2° d
(5.16) < L @) 4y
< meas{y € E; [(y)| > k)
= meas (E)
> s 22 >
¢ wp MBUEEFWIZH
s=1,2,.. meas (E)

where €. — 0 if k — o0o. Letting s — 00 in (5.16) we get

1 \ 1
, —e § ———— _ .
6an 1-a< s [ dr< s [l do

From this and (5.15) we obtain

(5.19) 1= / 1 s vy 4,

mr-as

which implies that ||vy|[srrrr) = 1 ae. in Q. So (5.6) is proved.

Let ¢: RM — R! be any continuous function satisfying (5.7). We can suppose
without loss of generality that ¢ > 0. Put

(5.19) o* () = p(r)0¥(r).

If ® is the complementary Young function to ¥, then C¢(Q) denotes the closure
of the set of all measurable functions defined on Q with respect to the Orlicz norm
l1lLs- To prove (5.9) it is sufficient to show that

(5.20) (vy, ) € Le(Q)

[ ]
(=2}
()



and to verify, for an arbitrary g € Cg(Q), the validity of the following limiting

processes:

(5.21) // 9(y) ¢* (2*(v)) dy = /f 9(y) (2* (v)) dy,
q Q

(5.22) //y(y)sok(z’(y))dy = //y(y) (vy, %) dy,
q q

(5-23) //y(y)<vy,<p") dy — //y(y) (vy, p) dy.
q q

The convergence in (5.21) is the uniform one with respect to s. This can be proved
directly. Indeed,

(5.24) ] / ()] 164 (= () — pl=* ()] dy
Q

< / ()] (1 = 95(12* (2" (1) dy + / lo(w)le(=* () dy
Ag B;

S N9llLocaplle(z*)g(az) + 9llLeplle(z*NlLe(my) = J,

where A} = {y € Q: k< |2°(y)| < k+ 1}, By = {y€Q; |2°(y)| 2 £+ 1}. Using the
fact that ||h||L,(@) < (1+ ff ¥(h(y)) dy) together with (5.5) we obtain
Q

(5.25) 7 < (lallacan + lollagen)( + / / (p(z*)) dy
Q

< const.([|gllLecaz) + 19llLe(Bp))-

By virtue of the uniform continuity ® of Orlicz norm ll9llLo(q) With respect to Q’,
one gets that for every € > 0 there exists ko such that for k > ko the right-hand side
of (5.25) is less than ¢. Thus (5.21) is proved.

To verify (5.23), note that ¢*¥+! > ¢¥ > 0. Due to the monotone convergence
theorem we have

(5.26) / oFdy, — / pdy, forae. y € Q.
RM RM

* This means: let g € Lg(Q), then for every € > 0 there exists 6 > 0 such that ||g]|L, (Q’) <
e for every Q', meas Q' < §—cf. Krasnoselski, Ruticki (8]
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For g > 0 we have

(5.27) 9(y) (vy, ") > 9(y) (vy, ") 20
and
(5.28) Jim g(y) (v, ¢) = 9() (v, 9) -

Similarly, owing to the monotone convergence theorem, we obtain (5.23). (5.22)
folows immmediately from (5.4) and the imbedding Ce(Q) O L1(Q). Now it suffices
to prove

(5.29) 1 (v, ") llLe(@) < const.

Then there exists x € Ly(Q) such that

(5.30) [[ s (a6) tw — J[ stwxay
Q Q

for every g € C¢(Q). Comparing (5.30) with (5.23), where we take smooth functions
as the test functions, we get

(5.31) x(y) = (vy,p) forae yeQ

and (5.20) is proved.
Clearly, o* < p**! < ¢. Thus

(5.32) sup / V(e (= ))dy < sup / W(lp(=*)) dy < ¢
s=1,2,... s=1,2, ..
Q
or
(5.33) (v ") o) < o

where ¢ depends neither on k nor on s. Thus there exists a € Ly(Q) (comparing
(5.34) with (5.22) it can be seen that a(y) = (uy,<p") for a.e. y € Q) such that, for

s — 00,
(5.34) (1/’,<pk> — a *-weakly in Ly(Q).

Taking G = ¥ and u, = (v*, ¢*) in Lemma 5.35 below we finally obtain (5.29).
The proof of Theorem 5.1 is complete. O
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Lemma 5.35. Let G: R™ — R U {00} be a lower semicontinous convex func-
tion. Let us,u € L'(Q;R™) and

(5.36) /fdu, — /fdu for every f € €(R™).
Then
(5.37) / G(u) < limin / G(u;).

Q Q

Proof (of Theorems 4.12,4.13) .
Let {v#},>0 be a sequence of solutions to (1.18) corresponding to u > 0. We have
uniformly with respect to pu

(5.38) "V““L”(I,Lﬁ(n)) < const.,
(5.39) ”Vu“L3(I,9(A'/‘)) < const.,
5.40) B(v*)eij(vH*)eij (v*) < const.,
) )
Qr
(vH (vH
(5.41) m Deis (v ), Bei; (V') < const.,
sz 6.1:,,

hence due to (1.18)

m
(5.42) ovr < const.
ot LY'(1,%*)
It is clear that
6e.~~(v“) ae.--(w))
4 ) ) -
(5.43) I ( e v, 0

for every w € 65°(Qr,R"). Further, due to (5.38)(5.41),

(5.44) v# — v weakly in L%(I, 2(AY)).
(5.45) v — v *-weakly in L*(I, H),
(5.46) v# — v strongly in L%(Qr).

Due to (5.39),

(5.47) ||V“(t,x)||M(R~n) <laeinQr,
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hence (5.3), (5.4) hold. In Theorem 5.1 weput Q = Qr, z# = Vv¥ v¥ = §(0— Vv“)
@ =¢&jorby, i,j=12..N,¥r)= —TTHT provided ¥ # 0 or ¥(7) = —1'
provided ¥ = 0 (note that the condmon (5 8) is satisfied). The validity of (5 5)
follows, for instance, from the L!-estimate of Vv* in Qr, which is clearly guaranteed
in this case.

The assumptions of Theorem 5.1 hold. Thus we get

(5.48) // o(t, z) (v*(t, z), Bij(or,)) dz dt — // e(t,z) (u(,,,),ﬂ.-j(ar,» dz dt
Qr Qr

for every ¢ € L”' (Qr) and
(5.49) // o(t, z) (v¥(t, z),0.5) dzdt — // e(t, ) (V(,,,),a,.,> dz dt
Qr Qr

for every ¢ € L2(Qr). The rest is obvious. (|

Remark 5.50 (Sufficient condition for v to be the Dirac measure).
Put ‘r(") B(9%)ei;(v), hence 1;; = —pb;; +1’(") (cf. 1.19), and suppose

-2

)

(5.51) 7] < er(1 + [T 0] for 7 >

2 30:
a 5

[0 = @es ) = () do

(5.52) c2 [912(1 + c3l9|?),

(5.53)
2 cq Z (eij(v) — €ij (V) (eij (v) — €ij(V)),
i,5=1
where ¢y, ¢q, c3, ¢4 are positive constants.

Then we have according to Ladyzenskaya [9]:

Theorem 5.54. Let vo € Vy, £ € LY(I,WH2(Q,RN) and let (5.51)—«(5.53) be
satisfied. Then there exists a unique v

(5.55) v € L®(I, H) N L3(I, V) n LXF+D ([, w12G+1)),
such that (1.21) is fulfilled.
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Thus, under the assumptions of Remark 5.50 (cf. Remark 4.11) among measure-
valued solutions of (1.21) (see Theorem 4.12) there exists a unique exceptional solu-
tion which is the Dirac measure, i.e. v = §(0 — Vv).

6. UNIQUENESS OF WEAK SOLUTION

Let us denote §;j(a) = ﬂ(éz,D(a))agj with ¢ = ;—(a,-. + a5 )(ars + ayr)
D(a) = det(a,,)gwl. We prove the following theorem.

Theorem 6.1. Let the conditions (2.2.13), (2.2.14) be satisfied and let

(6.2) I 0Bi;

< const. for every i,j,r,s=1,...,N.

Oay,

Then in the class of functions v satisfying (3.6)—(3.7) there exists only one solution
to (1.18).

Proof. Letu= v—v be the difference of two solutions of (1.18) corresponding
to the same initial conditions. Then u has to comply with

Ou Ov;
63 (Fe)+@en=- [uitea
6u. _ Ov, - % 6<p,
- fogee [ (52) - (50) e
for every p € V.

We take ¢ = A'/?u as a test function in (6.3). The terms on the right-hand side are
bounded as follows (cf. (2.2.19)):

(6.4) ‘/ P (A‘”u) dz| < erf| A% *u| [|4%/4v]) |4 *ul)

< ellA¥%ull® + K (e) |43 4v |2} A *ul .

(6.5) | / v,f’ﬂm“zu) dz| < ey |4 *ul] [|4%/4%]] |4 *u]

< el A% %u|? + K(e) [| A4V | A *ul?,
311,. dv, ] 8(A?u);
(66) l/ [ﬂu ﬂu(a )] ——‘aTj‘_'dz

</ AP (3vr ((91), dv, )) du, | |8(AY?u);
= Ja | 8ars \ 0z, dr, Oz, Oz, Oz;j

< 1||[A¥ 4| [|A %] < || A¥ 4| + 2K (e) ||AY *u|?,
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where 0 < ¥ < 1. From (6.3)-(6.6) and the Gronwall lemma one gets
(6.7) A Su()l|? < |4 *u(0)|f? exp u(t),

where pu(t) = ¢ fo' (14 ||A%/4v||% + ||A%/4¥]||?) d7 with c; > 0. The uniqueness is
proved. a

Now, let vo € Z(A'/*) and f € L%(Q). Under the assumptions (2.2.14), (6.2)
we can define a family of operators S;: 2(AY/4) — P(A'/4),t > 0 by

(6.8) Stvo = v(t, vo),

where v(t,vp) is a solution to (1.18) with initial condition vyg.
Due to the existence (Theorem 3.5) and uniqueness (Theorem 6.1) we can state

Lemma 6.9. The operators {S:},5 defined above form a semigroup on (A4,
ie.

(6.10) Sovo = Vo,
Si4tvo = St Suve Vvo € D(AMVY).

7. EXISTENCE OF THE UNIVERSAL ATTRACTOR

Definition 7.1. A closed compact set & of a Banach space X is a universal
attractor of the semigroup {St},5¢, St: X — X if and only if
(1) & is an invariant set, i.e. S;% = & for every t > 0;
(i1) for every bounded set B C X we have tl_l.rg dist(S:B, o) = 0, where
dist(M, N) = inf sup ||z — y||x.
T€EM yeN

The following theorem gives sufficient conditions for the semigroup {S:},5, to
have a universal attractor. For the proof see Babin, Visik [1].

Theorem 7.2. Let S;: X — X be a semigroup on X. We suppose that

(i) {St}i3o is uniformly bounded, i.e. for every bounded B C X there exists a
constant R(B) such that ||S;B||x < R(B) for every t > 0;

(ii) there exists a bounded closed set By C X which is attracting, i.e. for every
bounded set B C X there exists T(B) > 0 such that S;B C By for each t > T(B);

(i11) the operator S; is continuous for t > 0 and compact for t > 0.
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Then the semigroup {S,},;O has a universal attractor.

Lemma 7.3. Let B be an arbitrary bounded set in 2(A'/*). For the semigroup
{St};y0 defined by (6.8) there exist numbers Ry > 0 and a > 0 such that

(7.4) [ISeBl| < Ro forevery t>t(B)>0 |,
[IStvol| < Ro forevery t>0
(7.5)
provided vo € By = {v; ||v|| < Ro},
t+1
(7.6) / [lAY2S, B||*dr < a for every t > T(B).

Proof. We take ¢ = v as the test function in the weak formulation (1.18). We

have
dl 2 1/2,12 )
Egll"ll +|AV 5|12+ | B(%, D(v))eij(v)eij(v)dz
(7.7 1“ \ ‘-
< i < =—IIfN12 + Zv)I%
< I vl < g + Sl
Hence
(18) LV + MIvIE < 2
: dt ! SN :

After solving the ordinary diferential equation, we obtain

- 1 -
(7.9) I < flvollZe™ + 5 (1 = =) 1™
The proof is completed by putting R > “)\E,u and a = (A + 1)R3. a

Let us recall the so called generalized Gronwall leinma (Cf. Foias, Sell, Temam [5]
or Temam [21, p. 89)]).

Lemma 7.10. Let g, h, y be three positive locally integrable functions for ty <
t < oo which satisfy

(7.11) % <gy+h for all t >t
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and

t4r t+r t+r
/ gds < ay, / hds < ag, / yds < a3
t 1 t

for all t > to,

(7.12)

where a), ay, az are positive constants. Then

(7.13) y(t+ 1) < (a3 + az) exp ay for all t > to.

Now, we are in a position to prove the existence of a universal attractor. We will
verify that the semigroup (6.8) satisfies the conditions (i), (i1), (iii) from Theorem 7.2.

Theorem 7.14. Let {Si},5, be the semigroup of operators S: AV —
P(AY*) defined by (6.8). Then there exists a universal attractor & C (A,

Proof. Let us consider the weak formulation (1.18) with the test function
¢ = AY%v. We get (cf. Lemma 2.2.12)

d 1
(1.15) oAV + AV < (A1 1A% ) 1AV 2|
+ AV A2+ Qe A2

1 9 .
< I+ K (JIAYAVIP A2V + A2 iR
so we have
d . ,
(7.16) AV < KAV A AR + K (1142 + D61

Let us denote oy = Kja, as = Ky(a + [|f||?), a3 = a( for a see Lemma 7.3).
Due to Lemma 7.3 and the generalized Gronwall lemma with y = ||JAY/4v||?, ¢ =
K1 [|AY2v|)2, h = K, (J|A2v||? + |If||?) we have

(7.17) IAY4v(t)||> < R'  for all sufficiently large ¢,

where R' = (a2 + ag)(exp ay). Hence ||S;B||lg(41/4) < R’ for t > T(B). Thus the
condition (ii) in 7.2 is fulfilled.
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Moreover, we also have (see 7.15)

(7.18) % sup ||A'Y4S,B||® < sup {%”A'/“vo”’
(0,7(B)) ~ " veB
T(B) T(B)
+ / [|A%4S,vo|? dr + K / 1AM 2S,vo||?||AM 4vo])? dr
0 0
T(B)
+K / A2 S,voll? dr + T(B)IFI} < .
0

Thus also (i) in 7.2 holds.
Continuity of {S¢},5, follows from the proof of uniqueness, see (6.7), and the
compactness is a consequence of Theorem 3.8., exactly (3.11), and of the compact

imbedding of 2(A'/?) into 2(A'/4). O

8. HAUSDORFF DIMENSION OF THE ATTRACTOR

In order to prove the finite Hausdorff dimension of the universal attractor, we use
the well-known lemma (cf. LadyZenskaya [10]).

Lemma 8.1. Let M be a bounded set in X (Hilbert space) and let T: X — X
be a mapping such that

(i) TM 2D M,
(ii) IT(v1) = T(v2)llx S Lllvi —v2llx  L>0 Vu,v2€M
(iii) QT (v1) = QT(v2)llx < éllvi—v2flx 0<6<1

where Q = I — P; P and Q are orthogonal projectors of X onto X, and X},

respectively (dim X,, = n).
Then M has a finite Hausdorff dimension dy which can be estimated by

2k2L? 2 )

(82) d()(]”) S n lOg (l—_6'3 - W

with an absolute constant k.

We apply this lemma for the universal attractor &/, whose existence is guaranteed
by Theorem 7.2, and put T = S;. Then (i) holds automatically. For the definition
of P:= P, and Q := @, see (2.1.5).
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We denote u(t) = v(t,v') — v(¢,v?), where v!, v2 € &. Clearly, u(0) = v! — v2.
Thus we need to verify

(8.3) |4 %u()|| < LIA*u(O)|],
(8.4) 1A /4Qu(2)|| < 6]|AY *u(0)]]

at least for some t > 0.
First, we have already proved the estimate (8.3) in the proof of uniqueness (see

t
Theorem 6.1). Here L = exp [ (1 + [|A%4v}|]? + ||A%/4v?|]?) dr.
0

Second, we proceed similarly as in the proof of uniqueness (Theorem 6.1) but using
AY2Qu as the test function.
We obtain (cf. (2.1.11), (2.1.12)):

& 1IAYQuIP + [|4°/4Qull® < (14 *Qull A/ 4ul| |44
+ AV A ] 1474 Qull + x| A 4ul] |47 Qu)
(8.5) 1 3/4. 112 /4,112
< A )| A
< B() ( 3777714 Qull + SR()1 A
+a -1—||,43/4Qm||2+§c1||Al/4u||2 :
601 2
Hence
d 3
69 SIATQuI + 147 QuI? < (3RAw) + ) 14l

Denoting L, = (3R*(2) + 2¢}) and using (2.1.8), we rewrite (8.6) as

d
(8.7) 144 Qul® + Anssl|AY4Qul? < Ly[|AY *ul?.
Thus, we have
(8.8) 1AY4Qul)? < |4 *u(0)|le™ >+ + A—L‘—nA"“un’ (e7h+rt —1);
n+41

using (8.3), (2.1.4), we verify (8.4). The proof is complete.
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