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1 INTRODUCTION 

In [8], p-almost tangent structures were introduced as a natural generalization 

of almost tangent structures . A p-almost tangent structure consists of a p-tuple of 

tensor fields {Ji, . .., Jp} of type (1,1) on a (p -f- l)n-dimensional manifold verifying 

some compatibility conditions. The tangent bundle of p^velocities Tp N of any 

differentiable manifold N carries a canonical p-almost tangent structure (hence the 

name of the structure) . 

In this paper we study the existence of p-almost tangent structures. In §3, we 

state a theorem on the existence of associated structures in the sense of Bernard 

[1]. In §4 and §5, obstructions to the existence of p-almost tangent structures on 

certain manifolds are stablished in terms of their Euler, Stiefel-Whitney, Chern and 

Pontrjagin classes. 

The results in this paper may be closely compared with the corresponding ones 

for almost tangent structures of higher order (see [6]). However, there are significant 

differences between almost tangent structures of order p and p-almost tangent struc­

tures. For instance, the geometrical model for a p-almost tangent structure is T ! N , 

the tangent bundle of p1-velocities, manifold which possesses a canonical structure of 

vector bundle (see [9]), while the geometrical model for an almost tangent structure 

of order p is Tp N, the tangent bundle of order p, manifold which is no longer a vector 

bundle. (A linear connection on N induces a vector bundle structure on TpN and 

allows the construction of a vector bundle isomorphism between TPN and T ! N , but 

it essentially depends on the linear connection (see [3]).) 
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2 p-ALMOST TANGENT STRUCTURES 

Let M be a (p -f l)n-dirnensional manifold and let there be given a p-tuple of 

tensor fields {J i , . . ., Jp} of type (1,1) such that , for 1 <j a, b ^ p, 

(1) JaJ6 = JbJa = 0; 

(2) rank Ja = n, and 

(3) Im Ja 0 ( 0 Im Jb) = 0 for all a. 
\?a } 

Such a p-tuple of tensor fields { J i , . . . , Jp} defines a p-almost tangent structure on 

M which is then called a p-almost tangent manifold. 

Let us remark that a 1-alrnost tangent structure is an almost tangent structure in 

the usual sense (see [2], for instance). 

E x a m p l e . Let be N an n-dimensional manifold and TpN the tangent bundle 

of pl -velocities of N (see [4]). If (xx) is a coordinate system on N, then (x%, x\; 1 ^ 
a ^ p) w--l denote the induced coordinates on Tp

lN. Define 

Ja = V ^ -——— 0 dxl. 
-—-̂  dxl+an 

Then it is easy to prove that {J i , . . •, Jp} defines a p-almost tangent structure on 

Tp N (for a more detailed study see [8]). 

If we put Va = ImJa, then Va is an n-dimensional distribution on M. Therefore 

a = \ 

is a pn-dimensional distribution on M. 

Now, let be z G M\ then Vz is a p77-dimensional subspace of the tangent space 

TZM. Choose a complement Hz of Vz in TZM, and let {e,} be a basis of Hp. Then 

{e\ei+an=Jae
i;l^a^p} 

is a basis for TZM, that is a frame at z which will be said adapted to the p-almost 

tangent structure. If 

{ e % e i + a n ; l < : a O } 

is another such frame at z, {e1} being a basis for a different complement of VZy then 

there are n x n square matrices A, A\,. . . , Ap, with A G Gl(n, R), such tha t 

t = A)e{ + (A1))e^+n + • • • + (Ap)y
+Pn, 
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and hence 

e*+an = A)e>+an, l^a^p. 

Therefore, two adapted frames are related by a (p-f 1)n x (p-\- 1 )nsquare matr ix of 

the form 

(1) 

( A 0 . . . 0 \ 

Ax A ... 0 

\AV 0 . . . A) 

The set of such matrices is a closed Lie subgroup G C Gl( (p-f l ) n , R ) , and hence 

the set of all the adapted frames at all points of M' defines a G-structure on M. The 

following results have been obtained in [8]: 

T h e o r e m 2 . 1 . (1): Given a (p -f l)n-dimensional manifold M, there is a nat­

ural one-to-one correspondence between the p-almost tangent structures and the 

G-structures on M. 

(2): A p-almost tangent structure {J i , . . ,J P } on M is integrable if and only if 

{Ja,Jb} = 0, where {Ja, Jb} is the tensor held of type (1,2) on M given by 

{Ja, J6}(K, Y) = [JaK, JbY] - Ja[X, JbY] - J6[JaK, Y]. 

3 E X I S T E N C E O F P - A L M O S T TANGENT S T R U C T U R E S 

Let M be an 7i-dimensional manifold. 

D e f i n i t i o n 3 . 1 . A G'-structure P'(M,Gn) on M is said to be equivalent to a 

G-structure P(M,G) if there exists E G Gl(?i,R) such that P' = PE. In such case 

P' is a G-structure if and only if E G N(G) (the normalizer of G in G\(n, R)). We 

then say that P' is a G-structure associated to P. 

P r o p o s i t i o n 3 .1 . [1] Let P'(M, G') be a principal bundle over M with structural 

group G'. Then there is an one-to-one correspondence between closed subbundles of 

P' and the sections of P'/G, G being an arbitrary closed subgrouop of G'. Further­

more, there is and one-to-one correspondence between the closed subbundles of P' 

with structural group G and the sections of P'/G. 

Consequently, the problem of determining all the possible G-structures on M is 

solved when N(G) ^ G, because there is an one-to-one correspondence between these 

G-structures and the sections of FM/G. 
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For the case of the p-almos tangent structures, that we are considering here, we 

have 

P r o p o s i t i o n 3 .2 . N(G) ^ G. 

P r o o f . Let G be the subgroup of Gl((p + l )n , R) of matrices of the form 

( A 0 

A! A 
o \ 
0 

\AP 0 . . . \Aj 

where A £ Gl (n ,R) and A £ H — {0}. A direct computation shows that G -< G C 

N(G). • 

Therefore 

Coro l lary 3 .1 . If there exists a p-almost tangent structure on a manifold M, 

then all its associated structures correspond biunivocally to the sections of FM/G. 

4 ORIENTABILITY, EULER NAD S T I F E L - W H I T N E Y CLASSES OF p-ALMOST 

TANGENT MANIFOLDS 

Let { J i , . . . , J p } be a p-almost tangent structure on M. We shall define a Rie-

mannian metric g on M adapted to the structure as follows. 

Let H be an n-dimensional distribution on M complementary to V = \\ ® • • - 0 Vp 

(for instance, we can take H being an orthogonal complement of V with respect to 

some Riemannian metric on M). Let go be a metric on the vector bundle H. Since 

for each a, 1 ^ a ^ p, 

Ja\H-H^Va 

is a vector bundle isomorphism, we may define a metric g a on the vector bundle Va 

such that 

ga(JaX,JaY) = g0(X,Y), X,YeH. 

Therefore 

g(Л\ Y) = g0(Л'0) YQ) + J2ga(Xa,Ya), 

P P 

defines a metric on M, where X = XQ+ Yl Xa, V = Yo+ ^ ^ ' ^o G f/, Xa, Va £ \\ 
a=l a=\ 
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Let {e1} be an orthogonal basis of Hz, z £ M, with respect to go- Then {e*+an = 

Jae*} is a basis of (Va)z orthonormal with respect to g a and {ea\ 1 ^ a ^ (p + l ) n } 

is a frame at z orthonormal with respect to g. Let {ea} be another such orhonormal 

frame, {e1} being a different orhonormal basis of Hz\ then there exists an n x n 

square matrix A G Gl(n ,R) such that 

A\é 

id h and hence 
-i + an _ дi ei + an 

1 ^ a ^ V-

Hence the orthonormal frames are related by a (p + l ) n x (p + l ) n square matr ix 

(A 0 ... 0\ 
0 A ... 0 

\ 0 0 A) 

with A E O(n). 

The set of such matrices is a closed Lie subgroup G' C G l ( ( p + l ) n , R ) , and the 

set of all such frames at all points of M defines a G'-structure on M . Conversely, 

it is easy to prove that given a G ; -structure P' on M , then P' defines a p-almost 

tangent structure on M . 

Summing up, we have 

P r o p o s i t i o n 4 .1 . Cxivej) a (p + l)n-dimensional manifold M, there is a natu­

ral one-to-one correspondence between the p-almost tangent structures and the G'-

structures on M. 

Let us remark that G' = O(n) x ••• x O(n) C 0 ( ( P + l)w). Furthermore, if p is 

odd, then G' C SO((p+ l ) n ) . Thus, we have 

P r o p o s i t i o n 4.2. A p-almost tangent manifold is orientahle if p is odd. 

Coro l lary 4 . 1 . The real projective space R p ( t > + 1 ) n does not admit p-almost tan­

gent structures for odd p. 

R e m a r k 1. As a consequence of Proposition 4.1 it follows that a p-almost tan­

gent s tructure and an almost tangent structure of order p have a common subordinate 

G^-structure (see [6]). 
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Let M be a p-almost tangent manifold. The tangent bundle TM of M can be 

decomposed as the Whitney sum 

(2) TM = HeVi0---0VP; 

therefore, the Euler class of TM is given by 

(3) e(TM) = e(H) U e(V{) U . .. U e(Vp), 

where U denotes the cup product . Hence 

P r o p o s i t i o n 4 .3 . Let M be a (p + \)n-dimensional manifold such that e(TM) ^ 

0, and H n ( M , Z ) = 0. Then M does not admit p-almost tangent structures. 

P r o o f . Let M be a p-almost tangent manifold. From (3), one deduces 

e(TM) = 0, since e (H ) , e (V a ) G H n ( M , Z ) . D 

Coro l lary 4 .2 . Let M be a connected, compact and oriented (p+\)n-dimensional 

manifold with non-zero Euler charasteristic \{M) and such that H n ( M , Z) = 0. Then 

M does not admit p-almost tangent structures. 

P r o o f . Let p be the fundamental class of Af, // <E H ( P + 1 ) n ( M , Z ) . Then the 

Euler class of M is given by 

e(TM) = p ( M ) = 0. 

The result follows now from Proposition 4.3. D 

Coro l lary 4 .3 . (1): Ifp is odd or n is even, then 5 ^ p + 1 ) n does not admit p-almost 

tangent structures. 

(2): If both p and n are odd, then C P 2 does not admit p-almost tangent 

structures. 

P r o o f . (1) in fact, Hn(.S*^+1 ) n , Z) = 0 and X(S{p+l)n) = 2. The result then 

follows from Corollary 4.2. (2) is proved in a similar way. D 

Next, we shall study the Stifel-Whitney classes of a p-almost tangent manifold. 

From (2) we deduce that the total Stifel-Whitney class of TM is given by 

(4) w ( T M ) = ( w ( / / ) f + 1 = ( w ( V a ) ) p + 1 . 

Thus, 

P r o p o s i t i o n 4 .4 . The total Stifel-Whitney class of a p-almost tangent manifold 

M can be expressed as a power of order p + 1. 

Coro l lary 4 .4 . Let M be a p-almost tangent manifold. If p is odd, then all the 

odd Stifel-Whitney classes of M vanish. 

P r o o f . The result follows by straighforward computation from (4). D 
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R e m a r k 2. Since M is orientable if and only if W! = 0, Proposition 4.2 is, in 

fact, a consequence of Corollary 4.4. 

5 PONTRJAGIN AND CllERN CLASSES OF p-ALMOST TANGENT STRUCTURES 

Let M be a (p-f- l)n-dimensional manifold. For each point z.E M , T, M will 

denote the complexification of T I M . 

Assume given a p-almost tangent structure { J i , . . . , Jp} on M, and for each Ja let 

us still denote as Ja its canonical extension to F?M; then, the extended tensor fields 

Ja, 1 ^ a ^ p still verify ( l ) - (3 ) in §2. Note that each extended Ja has complet 

rank n. 

It is clear that the existence of a p-almost tangent structure on M induces a 

reduction of the structural group of the complexified tangent bundle T M of M to 

the subgroup G of Gl((p -f l )n , C) of complex matrices of the same form of those 

i n ( l ) . 

Let F(M, Gl((p + l)7i, C) ) be the principal bundle of frames of FCM, and let 

P'(M,G ) be the reduction of P to G . A connection on P is said a p-almost 

tangent connection if it is reducible to a connection on P'. 

From [5, Prop. 5.2] it follows easily: 

P r o p o s i t i o n 5 .1 . Let V be a connection on P, with connection form LO and 

covariant derivative V . Then F is a p-almost tangent connection if and only if 

VJa = 0 , U a O . 

Suppose tha t T is a p-almost tangent connection on M with connection form u . 

Since LO, restricted to P', takes values in the Lie algebra of GC it follows that the 

matr ix form of UJ is as follows: 

/ »î 0 

\ ы . j +pn 

0 \ 

0 

J 

Consequently, the curvature form Q of T, restricted to P' has the form 

(5 
J+n 

0 

-1! 

V«j+řm 0 

0 \ 
0 

щj 
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Therefore (see [7, Ch. XII]), the total Pontrjagin class of TM is given by 

p(TM) = de t ( / ( p + , ) n - (l/27c)fi|) = {det(/„ - (l/2n)Q))}p+l 

Thus, 

Theorem 5.1. The total Pontrjagin class of a p-almost tangent manifold M can 

be expressed as a power of order p + 1. 

Now, since the total Chern class ofTM is given by 

c(TM) = de t ( / ( p + 1 ) n - ^ y « ? ) - {det(/n - ^=Sl<]}P*1. 

(see [7, Ch. XII]). 

Theorem 5.2. The total Chern class of a p-almost tangent manifold M can be 

expressed as a power of order p + 1. 

Corollary 5.1. The complex projective spaces CP~5 do not admit (2p— \)-almost 

tangent structures. 

P r o o f . In fact, for p > s, there exist no such structures by dimensional reasons. 
Then, suppose that p ^ ,s. As it is well known, the total Chern class of CP 2 5 is 

c(CP25) = (l + c02 5 + 1 , 

where a is a generator of H 2 (CP 2 5 , Z). Therefore, 

c(CP 2 ' ) = £ C2" + Mcv 2 ' ^ 1 - = 1 + (2, + 1)« + • • •. 
1 = 0 ^ l ' 

Now, if CP 2 5 would admit a (2p— l)-alrnost tangent structure, according to Theorem 

5.2, we should have 

/ r \ 2 p 

c ( C P 2 5 ) = ( ^ A ^ ' J =(A0)2 p + 2p(A 0 ) 2 p - 1 A 1 a+. . . 
S'=o ' 

for some integer ?\ By identifying coefficients in both expressions, we deduce 

1 =(A 0) 2 p , A0 = ±1 , 2 s + 1 =2p(Ao)2?,"1A1 = ±2pAj. 

The last equality gives a contradiction. • 
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P r o p o s i t i o n 5.2. Let M be a p-almost tangent manifold. If p is odd, then the 

odd Pontrjagin classes of M can be expressed as twice a polynomial in its Chern 

classes. 

P r o o f . Let T^ M be the complexification of TM. Then the total Chern class 

of T M can be expressed as a power of order p+ 1. Therefore, when p is odd, the 

odd Chern classes of T M can be expressed as twice a polynomial in these Chern 

classes. Now, if E is a complex vector bundle and FR denotes the underlying real 

vector bundle, we have (see [10, Ch. 15]) 

Pk(Eu) = c*(F)2 - 2c ,_ 1 (F ) c* + 1 (F ) + • • • ± 2c 1 (F )c 2 , _ 1 (F ) ± 2c2k(E). 

Thus, when k is odd, the result follows. • 

R e in a r k 3. Proposition 5.2 cna be used to obtain a new proof of Corollary 5.1. 

Corol lary 5.2. Suppose that (w2j(M)) ?- 0, for some odd integer j . Then M 

does not admit (2p — l)-almost tangent structures. 

P r o o f . As it is well known (see [10, Ch. 15]), if E is a real vector bundle over 

M , then the mod 2 reduction of the Pontrjagin class pt(E) is equal to the square of 

the Stiefel-Whitney class w2i(E). Therefore, from Proposition 5.2., 

( w 2 > ( M ) ) 2 = Pj(M) = 0 mod2 . 

• 

Corol lary 5.3 . The real projective spaces R P 2 s do not admit (2p — \)-almost 

tangent structures. 

P r o o f . In fact, the total Stiefel-Whitney class of R P 2 5 is given by 

w ( R P 2 5 ) = (l + a ) 2 5 + 1, 

where c\ is a generator of H ! ( R P 2 5 , Z). • 

Finally, we study the existence or not of p-almost tangent structures on several 

families of symmetric Hermitian irreducible compact spaces. 

(1) The complex Grassmannians W(m,n) = U(m + n)/U(m) x U(n). The first 

Chern class of W(m,n) is 

c\(W(m,n)) = —(?/> + n)(Ti, 
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where &\ is a generator of the infinite cyclic group H2(V'V(?7i, n), Z). Therefore, 

bearing in mind the proof of Proposition 5.5, we deduce that W(m,n) does not 

admit (2p — \)-almost tangent structures when m + n is odd. Since'LV(l, n) = C P n , 

we reobtain Corollary 5.L 

(2) The spaces Gn — Sp(n)/U(n). 

For the spaces, we have 

ci(6 f
n) = (n-r l)o-!, 

where a\ is the generator of H 2 ( G n , Z ) . Thus, G2n does not admit (2p — \)-almost 

tangent structures. 

(3) The complex quadncs Qn = S0(n + 2)/SO(2) x SO(n). 

In this case, we have 

c\(Qn) = not. 

Therefore, Qn does not admit (2p — \)-almost tangent structures. 
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