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BIFURCATION OF PERIODIC SOLUTIONS TO DIFFERENTIAL
INEQUALITIES IN R®

MirosLav BosAk, MILAN KUCERA, Praha

(Rcceive(l April 30, 1991)

1. INTRODUCTION

Consider the inequality

U(t)e K fort € [0,T),
(1) (U(t) = ANU(L) = GO U (), v = U(1) 2 0
forall ve K, a.a. t €[0,7),

where I is a closed convex cone with its vertex at the origin in R, Ay is a real
3 x 3 matrix depending continuously on a real parammeter A, G;: R x R* — R% is a
continuous mapping locally lipschitzian in the variable u and satisfying the usual

condition

GMu
(2) li SA

] = 0 uniformly on compact A-intervals.
u—0 u

Under certain assumptions concerning the eigenvalues of A and a relation of the cone
I\ to the eigenvectors of Ay, we prove the existence of a bifurcation point A; at which
periodic solutions to the inequality (1) bifurcate from the branch of trivial solutions.
Main results of the paper are contained in Theorems 1, 2. While Theorem 1 contains
the basic idea of our approach, Theorem 2 is in fact its consequence and can serve as
a tool for verifying periodic bifurcation in examples (see Section 5). Both theoreins
are proved by elementary means. We investigate the solutions of (1) and those of

the linearized inequality

U(t) € KN for t € [0, +0),

3 .
) (U(ty—A\U(t),v=U(t)) 2 0forallve N, aa. t €[0,+).
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Note that a different approach to the investigation of bifurcations of periodic
solutions to inequalities in R based on degree theory is described in [3], [4]. Further,
recall that a bifurcation of stationary solutions to variational inequalities has been
studied by several authors during the last 15 years (see e.g. [2], [5], [6], [8] and the
references therein).

2. MAIN RESULTS

Our assumptions concerning the matrix Ay and the convex cone K will be the
following: A) has eigenvalues a(A)£16(A), —v(A) which depend continuously on A €
R and eigenvectors a+itv, w independent of A. Let f;: R2 — R, i =1, ..., N be convex
functions continuously differentiable on R? \ {[0,0]} and satisfying fi(rz,, res) =

rfi(z1,z2), i = 1, ..., N for all » > 0. We shall assume that the cone A" is of the
form
(4) K={ueR? z3> fi(z1,22),i=1,2,...,N},

where z = [z, 2o, 23] is the vector of the coordinates of u with respect to the basis

{u,v,w}, i.e. u = 1@ + 220 + z3w. Moreover, we assume that
(5) K # {ueR®; z3 >0},

i.e. not all the functions f; are zero, and also that near any point v € K, v # 0 the
cone K can be locally described in terms of at most two of the functions fi,..., fx.
More precisely, we impose the following condition on K': .

for any v € N, v # 0 there exist a pair of indices 1 <7, < N
(6) and an open neighbourhood W of the point v such that

WNRK={ueW;z32> fi(x),x2), 23 2 fj(x1,22)}.

Remark 1. By a solution of inequality (1) on [0,7) we mean an absolutely
continuous function satisfying (1). The following assertions are obtained by standard
considerations from the existence results for general differential inclusions [1]. For
any u € K, X € R the solution of (1) satisfying U(0) = u exists and is unique at least
on some interval [0,7"), T' > 0. This solution will be denoted by Ux(¢t,u). If Ty > 0
and Ux(¢,u) is bounded on any subinterval [0,T) of [0,7,) on which it exists then
Ux(t,u) exists on [0,75). This together with simple a priori estimates (see Lemina
2.1 in [4]) imply that for any "> 0, A > 0 there is R > 0 such that Ux(t, u) exists
on [0,T) for any u € K, |u]| < R, |A| < A. Particularly, for any v € ', A € R there
exists a unique solution of (3) satisfying U(0) = u on the whole interval [0, 4+00). It
will be denoted by U (¢, u).
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The symbol (-, -) will stand for the usual inner product in R* with the correspond-
ing norm denoted by |-|. We denote by (-,-) the inner product {u,v) = (z,y), where
x,y are the vectors of the coordinates of w, v with respect to the basis {u, v, w}.

We set

S = {rw; r € R}

Any continuous function U: [0,T] — R*\ S can be uniquely written as

U(t) = o(t)[cos(po — (t))& + sin(po — (1)) + Xa(t)w,

where ¢ € [0,2n), o(t) > 0, ¢(t), X3(t) are continuous functions defined on [0, 7]
and ¢ satisfies ¢(0) = 0. Hence, for any u € K\ .S, A € R we can define ¢, (¢, u)
as the function ¢(t) corresponding to U(t) = Ux(t,u) on an interval [0,T") on which
Ux(t,u) ¢ S. Similarly, we define ¢y o(t,u) as the function ¢(t) corresponding to
Ux,o(t,u) on [0,400) (see also Lemma 2,(1)).

Remark 2. Let U(t) = Ux(t,u) ¢ S for all t € [0,T] and let X(t) be the
vector of the coordinates of U(t) with respect to the basis {u,v,w}, i.e. U(t) =
Xi(t)u+ Xa2(t)v + Xa(t)w. It follows easily from the definition of ¢, (¢, u) that

(U(), X2(t)a = X1 (0)7)
XE(t)+ X3(t)

oal(t,u) = , telo,T).

For u e '\ S, A € R we define
T(X u) =inf{t > 0; pr(t,u) = 2n}

and use the symbol Ty(A, u) in the linearized case (3). We note that T'(\, u) = +oo
if one of the following three cases occurs:
ealt,u) < 2n for all t > 0;
there exists T' > 0 such that ¢, (t,u) < 2n for all ¢ € [0,T) and Uy(T,u) € S;
Ux(t, u) is defined only on [0,7) and ¢, (¢, u) < 2n for all t € [0, T).

Consider the inequality

u€e N,
(7 .
(pru— Ayu,v—u) 20 forallve K.

A real number g is called an eigenvalue of the inequality (7) (for a given A € R) if
there exists a nontrivial u satisfying (7). Any such u is called an eigenvector of (7)

corresponding to p.
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We define

(u) o
gI(Uu) = —(————=
NEEE:

7 = max{g(v); 0 # u € ON'}.

for u ¢ S,u = x1u + z20 + x3w,

Remark 3. In any cone K of the form (4) there exists at least one vector v
satisfying

(8) 0#£vedK, g(v)=r.

(This v represents the ray which is the closest one to .S with respect to (-, -) among
those lying on 9K.)

We denote by Tk (u) the contingent cone to K" at a point u € K, i.e.
Tk (u) = cl(U U av - u)).
h>0veEK

Theorem 1. Let [A;,As] C R be an interval and v an arbitrary fixed element
satisfying (8). Assume

9) To(A, v) < 400 for Ay

<A< A,
(10) a(A)+v(A)>0 for \} <A< Ay,
(11) B(A) >0 for A\ < A< Ay,
(12) [Ux o(To(A, v),v)| < |v] for A = )y,
(13) [Ux,0(To (A, v),v)| > |v] for A = A,.

Then for any sufficiently small » > 0 there exists A € (A, A2) such that Ux(-,7v)
is a periodic solution of the inequality (1). There is at least one bifurcation point
Ar € (A1, A2) at which periodic solutions of (1) bifurcate from the branch of trivial
solutions.

Idea of the proof of Theorem 1 (see Section 4 for details). The con-
ditions (9), (10), (11) and Lemmas 2, 3 enable us to prove that the solution of
the linearized inequality (3) starting from the particular initial condition v satisfies
@x,0(To(A,v),v) > 0 when X € [A;, A2]. As aresult, Lemma 1,(vi) implies T(), rv) <
+oo for all A € [A1,A2] and 7 > 0 small. Combining Lemma 3 and Remark 5 we
conclude that Ux(T(A, rv),rv) = k(A,7)v where k(A7) is a positive function defined
on [A1, A2] x (0, R). The conditions (12), (13) ensure k(A;,r) < r < k(A2,7). Since
k is continuous in the variable A we obtain for any sufficiently small » > 0 a value
X € [A1, A2] such that k(A7) = r. Thus we get Ux(T,rv) = rv where T = T(A, rv)
and rv is the initial condition of a periodic solution. O
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Theorem 2. Let [A}, As) C R be an arbitrary interval. Assume

(14) a(A)+v(A) =0,a(A) <0 for A = Ay,
(15) a(A)+v(A) >0 for Ay < A < Ay,
(16) B(A) >0 for Ay <A <Ay,
(17) 0#u€dR = Axu ¢ Tk(u) for A = Ao,
(18) 0#£u€IN = (Aru,u) >0 for A = A,.

In addition, assume g > 0 whenever yu is an eigenvalue of (7) corresponding to an
eigenvector u € K for some A € [Ay, Ag).

Then to any sufficiently small r > 0 there exist A € (A1,A2) and u € K, [u| =r
such that Uy(-,u) is a periodic solution of (1). )

Idea of the proof of Theorem 2 (see Section 4 for details). We shall find
an interval [A1, Aa] C [A1, Ag] for which the assumptions (9)-(13) are fulfilled. As in
Theoren 1 the solutions of the inequality (3) starting at v are investigated. First we
prove by using (14) that the solution Uy ¢(¢, v) of the inequality (3) with A = A} is
simultaneously a solution of the linear differential equation l'/'(t) = A\U(t). Making
use of the explicit form of this solution (see Remark 4) and of Lemma 1 we find
To(A, v) < 400 and |Uy,o(To(A, v),v)] < |v] for all A close to A;. Hence A; satisfying
(12) is obtained. To find A2 we consider two cases: either Ty(A,v) < +oo for all
A € [Ay, A2) or there is a 8§ € (A, Ag] such that Ty(8,v) = +o00 and To(A,v) < 400
for all A € [A}, ). In the first case we use the assumptions (17), (18) and Lemma 4
to get the inequality |Ux o(To(A,v),v)| > |v| for A = A2 and we can put Ay = A,. In
the case of Tp(6,v) = 400 we use Lemma 2 to prove

Uso(t,v)

——— = s ufort — 400
|U,5,0(t,v)|

where u € O is an eigenvector of (7). By our assumption, the corresponding
eigenvalue pu is positive, which permits us to show |Uso(¢,v)] — +00 as t — +o00.
This in turn leads to the inequality (13) with some Ay < 8, A2 close to 6. a

3. SoME GENERAL REMARKS

Let ' C R® be a nonempty closed convex set and w € R an arbitrary vector.
The nearest point (with respect to the norm |- |) to w in the set ¢! will be hereafter
referred to as the projection of w onto (.

We introduce some additional notation:
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Ki ={ueR® 23> fi(x;,22)}, 1 <i<N,

Ti(u) for u € K; is the contingent cone to K; at a point u,

ni(u) is the unit inner normal to 0K; at a point u € K,

P,w for u € K, w € R3 is the projection of w onto Tk (u),

Piw for u € K;, w € R? is the projection of w onto T (u),

L is the 3 x 3 matrix with columns @, 9, and By = L~'A,L is the canonical
form of Ay, i.e.

' ad) B 0
By = | —-B(A) a(X) 0
0 0 —v(X)

While points in R® are usually denoted by u = [u1,us, u3], vector functions with
values in R? are denoted for instance by U(t) = [U;(t), U2(t), Us(t)]. Throughout the
paper the symbols U(t), Un(t, u), ¢x,0(t, 1) etc. denote the right derivatives of the
corresponding functions.

Remark 4. Let U(t) = Xi(t)a+ Xa()v+ Xs(t)w, X(t) = [X1(t), Xa(t), X3(1))
be the solution of the equation U(t) = A,\U(t) with the initial condition U(0) = v.

Then X(1) = ByX(t), t > 0 and

X1 () = MY X,(0) cos B(A)t + X2(0) sin B(A)t),
(19) Xo(t) = e*M(X5(0) cos B(A)t — X1(0)sin B(M)t),
X3(t) = e7"MX;5(0).
Remark 5. Let v € K satisfy (8) and let T(A, v) < +oo for some A € R. Then
(1) g(Ux(T(A,v),v)) < 7 implies Ux(T'(A,v),v) = kv with some k > 0.

For any u € R*\ S
(i1) g(w) > 7 implies v € K and g(u) > 7 implies u € int K.

The proof of these assertions follows directly from the definitions of the function

g and of the number 7.
Remark 6. Let u € K, w € Tk(u), 2 € R3. Then it is easy to see that

(20) w= Pz (w-z,a—w)>20 forallz € Tk(u).

Thus it follows from the definition of the cone Tk (u) that P,z is the unique point

in Tk (u) with the property

(Pyz —z,Py2) =0,
(Pyz—2z,v—u) >0 forall ve K.

(21)
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Remark 7. An absolutely continuous function U: [0,T) — K is a solution of
the inequality (1) if and only if

(22) U(t) = Puy(AAU(t) + G\, U(t))) for a. a. t €[0,T)

(see [1]).

Remark 8. Any solution U: [0,T) — K of (1) is right differentiable, its right
derivative is right continuous in the interval [0,7) and the equation (22) holds for
all t € [0,T). For the proof see [T7].

Remark 9. Anyeigenvalue u of the inequality (7) with the corresponding eigen-
vector u satisfies

plul® = (Axu, u).

Further, it follows from Remark 6 that for any « € K and p € R the inequality (7)
1s equivalent to

pu = PyAju.

Remark 10. Suppose that at a point t = to the solution U(t) = Uy o(t,u) of
the inequality (3) satisfies the equation U(t) = AyU(t). Then éa,0(to, u) = B(A) (see
Remark 4). This occurs for instance when Uy o(to,u) € int K. More generally, it
follows from Remark 8 that if U(t) is a solution of (1) such that U(t) € int K for all
t € [t1,15] then the equation U(t) = AxU(t) + G(A, U(t)) holds on this interval.

Remark 11. For any solution U: [0,T) — K of the inequality (3) we have
(U(t)— AU, U() =0, t €[0,T).

Lemma 1. To any T > 0, A > 0 there exists R > 0 such that for any sequences
An = A A <A u, €K, uy — u, Jul < R we have

(1) U, (yun) — Ux(+, u) uniformly on [0,T],

(i) if Ux(t,u) ¢ S fort € [0,T] then @y, (-, un) — @x(-, w)uniformly on [0, T},

(i) if T(A, u) < T, oA(T(A, u), u) > 0 then T(An, u,) — T(N, u).

Let A, = A €eR,0#u, € N, u, — 0, F’f—ﬁ — w € R3, let T > 0 be arbitrary.
Then Us. (- un)

(iv) Tl

(v) ifw ¢ S then ¢y, (-, un) — @a0(-, w) uniformly on [0, T],

(vi) if w ¢ S, To(A\,w) < 400 and ¢y o(To(N,w),w) > 0 then T(\,,u,) —
To(/\,w).

U o(-, w) uniformly on [0, T},

For the proof see Theorems 2.1, 2.2 and Consequence 2.2 in [4].



Observation 1. Let u = z1@ + z20 + 3w € AN \ {0} and w € IT;(u) for some
i, l <i< N. Then {w,z2t — x,9) = 0 implies w = pru, t € R.

Observation 2. Let u, € K, u, — u. Then for any vector v € Tk (u) there

exists a sequence v,, — v satisfying v, € Tg(up), n=1,2,....

The proof of this observation follows from results proved in [1].

Observation 3. Let u, € K, z, € R} u, — u, z, — z. Then the following
implications hold:

(i) If Py, 2n — w, Py, zn € 0Tk (uy), n = 1,2,... then w € 3T;(u) for some i,
1<ig< N

(1) If Py, 2p — w, w € T (u) then w = P,z.

(i) If there exists j, 0 < j < N such that u, u, € K1 NIK,N...NIK; N
int Kjpi 0. Nint Ky, n=1,2,... then Py, 2z, — Py2.

Proof. (i) Since Py, 2, € 0Tk (un) we have (Py, zn,ni, (un)) = 0 with some
1 <1, <N,n=1,2,.... We may suppose that the sequence i, is constant and
therefore
(Pupzn,ni(up)) =0, n=1,2,....

From the continuity of the normal n;(-) we conclude (w,n;(¢)) = 0 and therefore
w € 0T;(u). '

(i1) Take an arbitrary v € Tk (u). Observation 2 implies v, — v for some sequence
vp € Tk (un),n=1,2,.... We have

Ivn - an 2> IPu,.zn - znl
and consequently |v — z| > |w — z|. This inequality, holding for all v € Tk (u),
together with w € T (u) implies w = P,2.
(1i1) The case j = 0 is trivial. Let j > 1. As |Py, zn]| < |2za| and z, is convergent,
the sequence P, z, is bounded. Therefore it is sufficient to prove the implication
Py,2n mw=w= P,z
However, for n = 1,2,... we have

(Pu,zn,ni(un)) 20, i=1,2,...,j.

(‘onsequently, (w,n;(u)) 2 0,7=1,2,..., j, and w belongs to Tk (u) = Ty (u)N...N
Ti(u). Now we use (ii) to prove w = Pyz. a
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Observation 4. Let u € K, w € R3 be arbitrary vectors.

If Pow € intTjpq(u) N...Nint Ty (u) where 1 < j < N — 1 then P,w coincides
with the projection of w onto Ti(u) NTa(u) N ...NTj(u).

Further, P,w = w whenever P,w € int Tk (u).

Proof. Denote by II theset Ti(u)N...NT;(u). We have P,w € II and therefore
it is sufficient to prove (Py,w —w,z — P,w) > 0 for all z € Il (see Remark 6). Choose
z € 1. Then (1 —t)P,w+tz €1l, 0 <t < 1. Moreover,

(1-t)Pow+tz € Tjp(u)Nn...NTy(u) fort >0, small.

Hence P,w + t(z — P,w) € Tk (u) for some t > 0. Since P,w is the projection of
w onto Tk (u) we have

1
(Pyw —w,z — Pyw) = ?(P.,w —w, P,bw+i(z — Py,w)— P,w) > 0.

4. PROOF OF MAIN RESULTS

Lemma 2. Let A € R, 3(A) >0, and let ve€ K\ S. Then

(I) U ,o(t,v) ¢ S for allt >0,

(H) if a,0(to,v) = 0 then Uy o(to,v) is an eigenvector of (7) and ¢ o(t,v) = 0 for
all t > tg,

(y if
(23) Jim o o(t,v) = ¢
then
(24) lim 0BY) e o

t—+oo |Uj o(t, )]

where u is an eigenvector of (7),
(TV) if ¢a,0(to,v) < 0 for some tg > 0 then ¢, o(t,v) <0 for all t > ¢,
(V) if To(A, v) < 400 then ¢y o(t,v) > 0 for all t € [0, To(A, v)).

Proof. Throughout the proof we shall write U(t) = Uy o(t, v), ¢(t) = ¥a,0(t, v).

(I) If the statement were false there would exist to > 0 such that U(lo) € S,U(t) ¢
S for all t € [0,%0). Remark 11 implies

SV =200, U0) = A0 0),U(0) > ~CU O]
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with some C' > 0. Thus |U(t)|*> > e~ “!|v|* and therefore U(t) # 0 for all ¢t > 0.
Now it follows fromi the assumption (4) that U(tg) € int K. Therefore U(t) is also
a solution of the equation U(t) = A\U(t) on (to —€,to +€), € > 0 small. However,
one can see from Remark 4 that no solution to this equation starting from a point
u & S can reach S in a finite time.

(IT) Let w = U(tp), w = U(to) and let u = £, + 240 + z3w. [t follows from (1)
that u ¢ 5, and Remark 2 yields

(25) (w,zou — z19) = 0.

We have w € Tk (u) by Remarks 7, 8. We shall prove w € 9Tk (u). Indeed, if
w € int Tk (u) we would obtain from Remark 8

Py Axu = U(tp) € int Tk (u),

and Observation 4 would imply P,Ayu = Aju. Hence U(to) = A,\U(¢) and Re-
mark 10 would yield ¢(to) = B(A) > 0.

Now w € 9Tk (u) implies w € 9T;(u) for some i, I <i < N and thus Observation 1
together with (25) yields P,Ayu = w = pu with some ¢ € R. By Remark 9 we
conclude that u is an eigenvector of (7).

Let us set V(t) = e**u and prove that V(t) = Uy o(¢, u). Indeed, using (7) we get

(V(t) = ANV (1), 2 = V(1)) = (ue*'u — e Ayu, z — eFtu)
= e (pu — Ayu, ez —u) >0

forallze K, t > 0.

Consequently, since V(0) = U(to), we have U(t) = V(L —tg) = per(t=to)y = enl(t=toly,
for t > tp and so the statement follows from (25) by Remark 2.

(I1I) To prove that the limit in (24) exists we shall verify that there is exactly one
u € R® that satisfies

Ulty)

(26) 77 (2)]

— u for some t,, — +00.

Let us prove that (26) implies u € OK. Suppose there is u € int N satisfying (26).
Then Uy o(t, u) € int K" for all ¢ in a small interval [0,7] and Lemma 1,(i) yields

Ux o (t, ]ZE;:;I) eint i, t €[0,7)
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for n sufficiently large. Hence U(t + tp,) = Uxo(t,U(tn)) € int K, t € [0,T] and
therefore U(t) = AxU(t),t € [tn,tn + T). By Remark 10

T
et +T) — (tn) / ety + t)dt = / B(AN)ds = TB(A) >0,
0

which is a contradiction as (23) yields ¢(t, +T) — ¢(t,) — 0 for n — +00. We have
proved that (26) implies v € dK. Finally, it follows from (4) that there is exactly
one vector u € K with a given argument (determined by (23)) and a given norm
|ul = 1.

To show that u is an eigenvector of (7) we shall prove ¢ ¢(0,u) = 0 and then use
(11). Suppose for a moment that ¢y ¢(0,u) > 0. Then ¢y o(T,u) > 0 for some T' > 0
and Lemma | together with (24) yields

U()
(o)l

for t large and some € > 0. Since ¢ 0(0,w) = 0 for all w € K\ S we have
exo(T,U(t)) = o(t + T) — ¢(t) and so the last inequality contradicts (23). By
excluding in a similar way the inequality ¢ 0(0,u) < 0 we complete the proof of
().

(1V) It follows from (1) (and Remark 8) that o(t), p(t) are defined for all ¢ > 0.
We set t; = inf{t > to: ¢(t) > 0} and suppose tg < t; < +oo. It follows from
Remark 8 that t_lji‘xl1+ o(t) = ¢(t1) and so ¢(t1) > 0. On the other hand, if p(f) = 0
for some ¢ € [to, 1] we would obtain from (1) that ¢(¢) = 0 for all ¢ > ¢ which would
contradict the assumption t; < +o0.

0<e<pro (T, ) = oro(T,U(D)

Thus we are left with the situation

(27) o(tr) >0,
(28) o(t) <0, tE€Elto, ).

To show that (27) and (28) contradict each other we shall prove

(29) Jim U(t) = U(ty)

and therefore

(30) Jim g(0) = g(10).

First, note that because of (6) we may suppose

(31) K ={ueR® r3> fi(ar,22), 23 > fi(x1,22)}
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where ,j are not necessarily distinct indices. Indeed, all our considerations will be
confined to a suitable neighborhood of the point « = U(t;). Now Remark 10 and
(28) imply U(t) € OK for all t € [to,ty) and therefore U/(¢,) € ON. Moreover, we
may suppose z3 = fi(z1,z2) = fj(z1,22). Indeed, if fj(x,22) < z3 then u € N
would imply fi(z1,z2) = 23 and we could take 7 = j in (31). Thus the normals
ni(u), nj(u) are defined and we first consider the case where n;(u) = nj(u). We have
Tk (u) = Ti(u) = Tj(u) and therefore P Ayu = PiAyu = PJAyu. To prove (29) it is
sufficient to show P, A)u, — PyAxu whenever u,, — u, u,, € 0N, n =1,2,... (see
Remark 8). The continuity of the normals n;, n; implies

up EAN; NIt N; = Py Ay, = P Ayu, — PI’;A,\u,

Unp

u, €int K; NOKN; = Py, Azu, = [’,{"A,\un — PJAAu.
Recalling Observation 3, (iii) we find
up € ON; NON; = Py, Aaun — PyAsu

and (29) is proved.
Finally, let us deal with the case n;(u) # nj(u). We set

_|on o afi
a= [—H“(.L), (')‘-L‘Q(L)’ l],
RN

o= |-~

¢ = [z2,—21,0],

where u = r1u + x9v + x3w. (Note that a, b are normals to JR;, OK; with respect
to (-, -).) Assume for a moment that («,c) = (b,¢). Then (¢ —0b,¢) = 0 and it follows
from the properties of the functions f;, f; that (a —b,2) = 0, (« = 5,[0,0,1]) = 0.
Thus the vector a—b would be orthogonal to three independent vectors and therefore
would equal zero. Iowever, the assumption nij(u) # nj(u) imphes a # b. Hence

a,c b,c). We can assume (a,c) < (b, c) and write this inequality as
| )

af; . afi
“ 9 Ginteo — i) + 2L cos(n — ¢(t)
oz Oy
af; . A f;
< = G0 wt11) + DL cos(in = plt1)),
().L] ().LQ

where 2 = pcos(pg — @(l1)), 22 = osin(go — @(f1)). Hence we obtain
d . d .
@ff(cos(s:u = ¢)sin(po = @) > == Ji(cos(po = @) sin(po — )

Iy



at the point ¢ = ¢(¢;). Consequently,

(32) fi(cos(po — @), sin(po — ¢)) > fj(cos(po — @), sin(po — ¢))

whenever ¢ > ©(t;) and ¢ is sufficiently close to ¢(t;). It follows from (27), (28)
that the function ¢(¢) attains its strict local minimum at the point ¢ = ¢;. Taking
(4) into account we obtain from (32) an € > 0 satisfying '

(3‘3) U(t)EintKj, tE(h—E,l[)U(t},tl-Fe).
Consequently, Tk (U(t)) = T;(U(t)) and
(34) PunyA U(t) = P{'J(”A,\l./(t) ae. on () —eg,l; +¢€).

By Remark 7 we conclude that the function U(t) on (t; — €,t; + €) is a solution of
the inequality (3) with I replaced by K;. Remark 8 implies that formula (34) is
valid everywhere on (t, —¢,t; + ¢). In particular, P,Ayu = PiAyu. Moreover, as
we have noted above, U(t) belongs to 9K for t € (t; — ¢,t1]. Thus it follows from
(33) that U(t) € 0K; for t € (t; — €,t1] and therefore

tﬂin_ PU(t)A)\U(t) = tlgn_ PLi,(t)A,\U(t) — P(f/(h)A,\U(tl)
= P:;,A/\U = PuA,\'lt = PU(tl)A/\l[(tl)~

Thus (29) follows from from Remark 8 and the proof of (IV) is complete.

(V) The assertion follows immediately from the definition of Ty(A,v) and from
(V). O

Lemma 3. Let a(X) + v(A) > 0 for all A € [A1,A2]. Then forany T > 0 there

exists R > 0 such that the following implications hold for*any u € K'\ S:

lul < R, g(u) <7 = g(Ux(t,u)) < 7 forall A€ [A, ], t €[0,T],
g(u) < 7= g(Uro(t,u)) < 7 for A € (A1, A], t € [0, +00).

Proof. First of all we realize (see Remark 1) that if |u| is small enough the
solution Uy (¢, u) exists on [0,T) for all [A;, A2]. We shall prove

lu| < R, g(u) < 7= Ux(t,u) ¢ S for all A € [A\1, X2], t €[0,T].

Indeed, suppose Uy, (tn,u,) € S, g(un) < 7 for some u, — 0, t, € [0,T], A\, €
[A1, A2]. We may suppose A\, — A, t, — ¢t and I%:_I — w. Then w € K\ S and by
Lemma 1, (iv)

U/\,.(tn)un)

— U,\,o t,w).
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Hence Uy o(t, w) € S, which contradicts Lemma 2 (I).
Now if the first implication of the lemma were false there would necessarily exist
sequences t, € K, u, — 0,1, —t, Ay — X € [A1, A2], £, > 0 such that

(35) .(](U/\n(tn»un)) =T,
(36) g(Ux, (t,up)) > 1for t € (ly,th +€0), n=1,2,...

Recalling Remark 5,(ii) we can see from (36) that Uy (t,u,) € mt N fort € (¢,,t, +
€n), n = 1,2,.... Therefore the equation

Ux, (tun) = Ax, Un, (t,un) + G, Ux, (t, uy))
is valid on (¢,,t, + €,). Particularly, Remark 8 gives
U/\,.(tn’ un) = A/\ U An ( nyun) + G (/\na l')\ (ln' Un))-

As a result of (35), (36) the right derivative of the function g(U/5, (-, u,)) is nonneg-
ative at the point ¢,. Setting v, = Uy, (I, un) we get

< (grad g(Un, (tn, un)), (./,\,_(tn, un)) = (grad g(v, ), Ax, vn + G(Ay, v)).

Lemma 1,(1) implies v, — 0 and, since v, # 0, we may suppose I—:LI — w. By
passing to the limit in the inequality

Un ) Un ("(/\n Un)
0< (gradg(m),fhnm + ~——|v“| )

we obtain from (2)

(37) 0 < (gradg(w), Ayw).
We set
ie)= s, 2€R\S

and obtain
grad g(w)L = grad §(z),

where Lz = w. We have §(z) = 7 and simple calculation yields

. T TLo 1
grad !}(1') = —;L") ] B

Consequently,
(grad g(w), Ayw) = (grad g(w), LBy2x) = (grad g(w) L, Byx)
= (grad (), Brx) = —7((A) + v(A)).

By virtue of (5) we have 7 > 0 and therefore by our assumption (grad g(w), Ayw) < 0,
which contradicts (37).

The second implication of the lemmma is an easy consequence of the first one. O



Proof of Theorem 1. We shall successively prove that the following
assertions (I)-(VII) hold with some R > 0 sufficiently small.

(1) @a(0,7v) > 0 for all A € [, X2], » € (0, R). In particular, ¢ o(0,v) > 0 for all
A€ [A1L A
The second inequality (the linearized case) follows directly from the assumption

(9) and Lemma 2,(V). Suppose that there exist sequences A, — A, r, — 0 such that
(38) éx, (0,rpv) <0, n=1,2,...

Remark 8 together with (2) and the fact that the cones Ti(v), Tk (r,v) coincide,
inply

l . 1
—Ux, (0,ry0) = — Py o (Ax, 0t + G(Ay, 1p0))
7.” 7)71

(39)

1 .
P, (AA" v+ —(.:(,\,1,1-,1-(})) — Py Az = Uy 0(0, ).

Now Remark 2 implies ¢, (0, 7,v) — ©x.0(0, v) and therefore (38) yields ¢y 0(0,v) <
0, which is impossible by the second inequality. ’
(1) @a 0(To (A, v),v) > 0 for all A € [Aq, Aq].

Since g(v) = 7 it follows from the asswption (10) and from Lemuna 3 that
g(Uxo(t.v)) < 7 for all t > 0. Therefore Remark 5,(1) yields

Uno(To(A,0), 0) = k(A)v, A € A, 4],
where k(A) > 0. By (1) we get
@x,0(To(A, v),v) = @x0(0, k(A)r) = @ar0(0,v) > 0.

(1) There exists T > 0 such that T'(A,rv) < T for all » € (0, R), A € [A1, A2].

We use (11) and Lemma 1,(vi) to find that T'(A,, r,v) — To(A, v) whenever X, — A,
rn — 0. As a result, any such sequence T'(A,, r,v) is bounded.

(1V) For any r € (0, R) and X € [A|, A2] there exists a unique k(A,7) > 0 such that
Us(T(A,re),re) = k(A r)v.

We use Lenima 3 together with (111) to obtain

g(UN(T (A re),re)) <1, A€ [AL A0, » € (0, )

Since re € JN and g(rv) = 7, the statement is a direct consequence of Remark 5.(i).

o=
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(V) @x(T'(A, rv),7v)) > 0 for all » € (0, R), X € [A1, As).
Suppose

(40) ex, (T(Ay,rpv),rav) <0, n=1,2,...

where A, — A, 1, — 0. It follows from (2) that G/(A,0) = 0 and therefore {/,(¢,0) =
0, ¢ > 0. Lemna 1,(1) together with (IT1) implies Uy, (T(An, rv), rnv) — 0. We use
(IV) to write Uy, (T'(An, rnv), rnv) = k(Ay, 7)o, n=1,2,... and so (40) yields

0 > Sé’)\,. (71(/\71:7'711’)1 Tn U) = (,‘9,\"(0, k(/\ru 7‘n)v)'

Since k(An, ) — 0, this contradicts (I).

(VI) The function A — k(A,7) is continuous on [Ay, A9] for each r € (0, R).

[t follows from (lII), (V) by Lemuna 1,(iii) that T'(A,,rv) — T(A,rv) whenever
An — A, An € [A1,A2) and » € (0, R) is fixed. Recalling (IV). we obtain from
Lemma 1,(i) that

k(An,r)o = Ux (T(An,rv), 70) = Ux(T (A, 70),70) = k(A 7)v
and consequently, k(Ap,7) — k(A 7).
(VII) We have k(A,7) < r < k(Aq,7) for all » € (0, R).
Suppose k(Ay,7,) = rp > 0, 7, — 0. As in (I11) we find T'(Ay, rv) — To(Ar,v)
and therefore by Lemma 1,(iv)
L(/\l ) 7'71)1’ _ U)\x (T(/\J y 7‘”1.'), I'nU)

rﬂ 7’”

i U,\“[)(Yb(/\; y 'l’), l‘).

Finally,
L(/\] y 7'n)|”|

n

o] < — [Un,0(To(Ar, 0), )],

which contradicts (12).

Analogously, the assumption k(A2,7,) <, 7 — 0 leads to a contradiction with
(13).

It follows from (1V), (V1) and (VII) that for any v satisfying (8) and for each
r € (0, R) there exists a value A € [A, Ao] satisfying Ux(T(A, rv),rv) = rv, which

completes the proof. : O
Lemma 4. Let 0 # v € AN and let A € R be such that
0#uw€EIN = Ayu ¢ Tk(u).
Then 0 # Uy o(t,v) € IN fort > 0.
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Proof. Set U(t) = Uxo(t,v). Since v ¢ S we obtain from Lemma 2,(I) that
U(t) # 0 for all t > 0. Now if the statement were false there would exist ¢ > 0 and
a sequence t, — to+ satisfying

0 # U(to) € 0K,
U(ty) emt K,n=1,2,...

We get Tx (U(t)) = R? and by Remark 8 we obtain U(,) = AxU(t,). By the same
remark we get Py AaU(ty) = U(tg) = li141_1 A U(tn) = A\U(to) and therefore
A U(to) € Tr(U(to)). This contradicts our assumnption. a

Proof of Theorem 2 is based on Theorem 1. We take an arbitrary fixed
element v satisfying (8) (see Remark 3) and verify the assumptions of Theorem 1 for
an interval [A}, Xo] C [A1, Ao].

We set

(41) & = sup{A € [A1, Ay]; To(N, v) < 400 for all A € [Aq, N]}

and prove successively the following assertions (i)-(vii).

(1) We have A} < 6.

Let U(t) = X (t)u+Xa(t)v+N3(t)w be the solution of the equation U(t) = A\U(1)
with the initial condition U(0) = v for A = A;. Using the formulas (19) we get

g(U(t)) = X3(0) e~ (@) +v(Mt

T V/NI0) + X2(0) =9l

where A = A,;. By virtue of (8) and (14) the last relation becomes g(U(t)) = ,
t > 0 and from Remark 5,(i1) we conclude that U(t) € K for all ¢ > 0. Therefore
U(t) = Uxo(t,v), t 20 and we have

—(a(/\)+u(/\))t, { 2 O,

(42) Ux.o(t, l.") = A\Us o(t,v) for A= Ay, t > 0.
Remark 10 implies

(43) éaolt,v) = B(A) for A=Ay, £ > 0.
(‘onsequently,

(44) To(Ay,v) < +o0, @a,0(To(Ay, ), v) > 0.

Lemma I,(11) implies To(Ay, v) — To(Ay, v) whenever A, — A Therefore Ty(A, v) <
+oo for all A sufficiently close to Ay and (41) inmplies (i).



(11) |Ux o(To(A,v),v)| < |v] for all A sufficiently close to A;.
We use (43) to obtain To(A;,v) = 2n/6(A1) and (14) together with Remark 4 to
2ra(X)
find Ux,0(To(A, v),v) = e P37 v for A = A;. By the assumptions (14), (16) we get

[Ux o(To(A, v),v)| = ey |v] < |v| provided A = A;. The statement now follows
from (44) and from Lemma 1, (1), (iii).

(iii) If To(é,v) < 400 then |[Uso(t,v)| > |v| for t > 0.

We shall first prove 6 = A,.

Because of (i) and (15) we have a(8)+v(0) > 0 and Lemuma 3 implies ¢(Us o(¢. v)) <
7 for t > 0. Consequently, by Remark 5,(1)

Us o(To(6,v),v) = kv with some k > 0.

Hence
©5,0(To(0,v),v) = @6,0(0,kv) = ¢5,0(0,v).

According to Lemma 2,(V) the assumption Ty(8,v) < 4oc implies ¢50(0,v) > 0.
Thus ¢s,0(To(é, v),v) > 0 and from Lemma 1,(iii) we obtain that To(A, v) < +o0 for
all A sufficiently close to 6. Thus (41) implies § = As.

Furthermore, by virtue of (17) we can use Lemma 4 to obtain
(45) 0# Uso(t,v) € AN for t > 0.
Thus we can use (18) together with Remark 11 to obtain
|Us ot 0)]* = o] = [Us,o(t, 0)[* = [Us 0(0, v)]*
t
= / 2(Us.o(s,v),Uso(s,v))ds
0
t
= / 2(AsUso(s,v),Uso(s,v))ds >0, £ > 0.
0
(1v) There exists a real constant I such that

(U/\,U(ty v), Uxo(t, v))

| > BUsolt, )]
30,\)0([, ‘U)

for all A € [A},0), t € [0,To(A,v)).
Assume that, on the contrary, there exist sequences A, € [A1,6),t, € [0, To(An, V)

satisfying

((-."/\,,,O(tﬂ , U)y (//\,,,O(tﬂi T)))
P 0(ln,v)

(46) < =nlUx, oltw, 0)*, n=1,2,...



Since Uy, o(tn,v) # 0 (see Lermnma 2,(1)) we can rewrite (46) as

(U/\n,o(o) u”), un)
95A y.,,O(O) 'Un)

(47)

<-n,n=1,2,...

where
o U/\,.,O(tny U)
" |U/\,,,0(tﬂyv)|.

We may assumne u, — u € K, A\, — X € [A},98] and, since |Py, Ax un| <
|Ax, un] < C, also

(48) Un, 000, un) = Py, Ax,un — w € R?
(see Remark 8). Moreover, Remark 11 yields
(49) (Unn0(0, ), tn) = (Ax, tn, un) — (Aru, u).

On the other hand, considering (41) we obtain froin Lemma 2,(V)

(50) ér0(t,v) >0 for all A € [Ay,0), t € [0, To(A, v)).
Hence
(51) 3,000, 1) = @a, 0(tn,v) > 0.

On the other hand, (47), (49) imply
(52) éan,0(0,u,) — 0 as n — +oo.
Using Remark 2 we get
<UAn,0(U» Un), Tnoll — 2n10) = (221 + 225)¢r,0(0, 1) — 0,
where Lz, = u,, Lz = u, and consequently, (48) yields
(53) (w, z2u — z,0) = 0.
Furthermore, we have
(54) Py, Ax, un € 0Tk (uy,) for all n sufficiently large.

Indeed, if P,, Ay, € int Tk (u,) we would get by Observation 4 that (,'/,\"'0(0,11”) =
Py Ax un = Ay u, and by Remark 10 ¢y, 0(0,u,) = B(A.). But (52) would
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imply B(A) = 0 for some A in [Ay, As], which contradicts (16). By Observation 3.(i)
we conclude that (54), (48) imply w € JT;(u) for some i,1 < 7 < N. Recalling
Observation 1 we obtain from (53) w = pu, jt € R. Remark 8 and (48) yield

0< (l:’,\mo(O, up) — Ay, un, v —up) — (pru— Ayu,v—u) forallve K

and therefore u is an eigenvector of (7). Moreover, u € N because u € int K' would
mply @x, 0(0,u,) = B(An) — B(A) > 0 (see Remark 10), which would contradict
(52). By the assumption of Theorem 2 the cigenvalue yu is positive. Finally, recalling
Remark 9 we have (Ayu, u) = g|ul? > 0 and therefore (49) yields (U)\mo((), Up), Un) >
0 for n large. This inequality together with (51) contradicts (47).

(v) The function ¢s(¢, v) is nondecreasing on [0, To(é, v)).

Assume there exist 0 < £ < to < Ty(0,v) such that gso(t;, v) > @so(t2,v). By

Lemma 1
(35) <p,\,0(h,v) > Lp,\,o(lg,ll), 0<ti <t < To(A, U)

for all A sufficiently close to 6. As we have proved in (i) the interval [A},§) is
nonempty and therefore we conclude from (55) that ¢, 0(to,v) < 0 for some Ag €
[Ay,8) and tg € [0, Tu(Ao, v)). This contradicts (50) and (v) is proved.

(vi) If Ty(8,v) = +oc then t-LI:I]oo [Uso(t,v)] = 4o0.

Lemuma 2,(1) implies Us o(t,v) ¢ S for all t > 0. Thus we get from the definition
of To(8,v) that ¢s0(f,v) < 2r for all t > 0. It follows from (v) that the function
ws.0(t,v) has a proper limit as { — +o0. Set U(t) = Usgy(t,v). Then Lemma 2,(I11)
yields
U(t)
()]

where u € I\ is an eigenvector of (7). By Remark 11 we have

(56) —uast — 4+,

SO = 200, U() = 24,00, U(0)

| e (4 U0 U@
o = 2|U(t)] (‘4*|U(t)|’|U(t)l)’

and by (506)

58) ( U U

Ay——=—, ——— ) — (A u,u) as t — +o00.
U] |uu)|> (Ase, )

Let y¢ be the eigenvalue of (7) corresponding to u. By the last assumption of Theo-
rem 2, p is positive and Remark 9 yields (4xu, u) = pulu)> > 0. Consequently, (vi)
follows from (57) and (58).
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(vii) If Tu(d, v) = +oco then |Ua, o(To(An,v),v)] — oo for a sequence A, — é—.

Since Ty(6,v) = +oo we use Lemma 1,(1),(ii) to conclude from (i) and (vi) that
there exist sequences A, — 86—, t,, € [0, To(A,, v)) satisfying

(59) |Ux, 0(tn,v)] = 400, n — +oo.

To prove |Ux, o(To(An,v),v)] — +oo we define for each A € [Ay,6) a function
Via:[0,2n] — K as follows:

Va(p) = Uno(t,v) for o = @ o(t,v), t €0, To(A, v)].

It follows from (50) that Vy(y) is correctly defined. Moreover, Vy(¢) is absolutely
continuous and right differentiable on [0, 2n) (see Remark 8). Thus we obtain from

(iv)
SN =2 (;II;VM’ V*(*”)

(60) =2 <¥i% (u,o(z,u)) > 2B|Uxo(t,v)|* = 2B|Va(p)|?

for some B < 0 and all ¢ € [0,2n). Now Gronwall’s lemma yields
A@)]* > [Va(e)e*P™=9), ¢ € [0, 2r).
We set ¢, = pa, 0(tn,v) € [0,2r) and obtain

[Uxn0(To(An, v), 0)7 = Vi, (20) 2

(61) S .
> 2=y, ()2 2 e MBI, (1, v)]%

The statement now follows from (59).

We shall complete the proof of Theorem 2 by finding values A| < As in the interval
[A1, Au] such that the conditions (9)-(13) are valid. To do this we need to consider
two cases: Ty(6, v) < +20 and Ty(6,v) = +oc.

When Ty(é,v) = 400 we use (i), (ii) and (vii) to conclude that the conditions
(12), (13) hold for some Ay < A} < Az < 4. In addition, (41) implies (9) and the
conditions (10), (11) are guaranteed by (15), (16). '

In the case Ty(6, v) < +oo we find Ay € (A}, 8) satisfying (12) by (1), (ii). Further,
we set As = ¢ to obtain (13) from (iii). The conditions (9), (10), (11) are obtained

as above. (]
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5. EXAMPLE
Lemma 5. Suppose that 0 # u € I, A € R and there is j such that
(62) P,Ayu = PiAju.
Set 2 = L~ 'u,y = L™n;j(u) (the inner normal to L='K;), = = L™ nj(u). If

I B o B
(63) 23>0, z3>0, B — M MILEBVET 2 g0y S

Y33

and u is an eigenvector of (7) then the corresponding eigenvalue yu of (7) is positive.
Proof. We can suppose without loss of generality that 2? + x3 = 1 and we
shall write n instead of nj(u). Realize that 0 = (u,n) = (2, L*n) = (z,y), i.e.

(64) —T3Ys = L1y + Tayo.

We have Ayu ¢ T;(u) because otherwise (62) would yield P,Ayu = Ayu and there-
fore u would be an eigenvector of A, by Remark 9. However, A, has no eigenvectors
on K under the assumption (4). Hence, formula (62) yields

(65) PyAyu = Ayu— (Axu,n)n

and by Remark 9
jru = Ayu — (Axu,n)n,

which is equivalent to

pe = Bye — (Bye,y)z.

Multiplying this equation successively by [z}, 22,0], [z2, —x1,0] and using (64) we

obtain
(66) p=a—[(a+v)(ziyr + z2y2) + Blz2ys — z1y2))(2121 + 2222),
(67) =0 = [(a+v)(x1y1 + z2y2) + Blxays — z1y2))(2221 — 2122),

where we write «, 38, v iustead of (), B(A), v(A). Set a = zyy; + zaya, b =
Loy — T1Y2, € = L2z — 129, d =212 + Taza.

Let us show that
a
(68) c<0, y3>0, —<0.
Y3

The first inequality can be obtained from (67) by using the inequalities 8 > 0,
(e +v)a+pBb=(Barz,y) = (Axu,n) < 0 (because Ayu ¢ Tj(u)). The second follows
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from the assumption (4) and from the fact that y is the normal to the cone L™K
at the point z. Finally, formulas (63), (64) imply ¢/ys = —z3 < 0. Calculating «
from (67) and substituting in (66) we get

B — vac— pbe
o= —
ac
— be —ad
(69) p=plzbomad

ac

Also, (y,z) = (L*n,L™'n) = (n,n) = 1 and by a simple calculation we get
l—be—ad=1—-yz; —y220 =1 — (y,2) + Y323 = y3z3.
Hlence, we use (68), (63) to obtain from (69)

o= /3%33 —v= yB:S(;} N v)

ac ac Y3z3
2 ) ::.)!
2 Y3z3 ,d—'l/l \/yl +y?\[l + 2 >O
ac Y323

Example. Consider the matrix Ay and the cone K in R® defined by

| SA+17T  =A+17T =X -19
Axv==| =22-50 4x-14 =2x+22
—3A427 =32-9 3x-9

)

K={ueR* v >0,j=123}

The eigenvalues «(X) £18(A) = A £ 6i, —v(A) = —1 clearly satisfy (14), (15), (16)
with Ay = —1, A, > —1 arbitrary. The corresponding eigenvectors are u + iv =
(1,=3,2] £i[2,—1,~1], @ = [1,2,3]. Hence,

1 2 1 | -1 =7 5
L=1]-3 -1 2 L™'=— |13 =5
. ’ 30

1
2 -1 3 5 5 5

Our cone can be described as

KN={u=Lx;(Lx); 20,j=1,2,3}
= {U- = *L‘II_I+J'26+TJH)) L3 2 fj(xlv£2)1j = 1,2,3},

where f; are defined by z3 — fj(x1,z2) = (La);.
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Suppose that u € R is an eigenvector of (7) with some A > —1. We shall prove
that then the corresponding eigenvalue must be positive. Consider successively points
u € 0K of two types (see the notation from Section 3):

(a) u € IK3Nint Ky Nint Ko, ie. u = [u,usz,0},u; > 0, us > 0. Then Tk (u)
T3(u) = K3 and therefore (62) holds with 7 = 3. We have ng(u) = [0,0,1], y
[2,-1,3],z = %[1, -1, 1],z = %[—ul —Tug, 13uy +us, 5Hu; + Hus] and (63) is fulfilled.
Lemma 5 implies g > 0.

Il

Il

(b) v € K3 N 3K,; we can suppose v = [0,1,0]. Then Tg(u) = K3 N Ky,
Ayu = é[—/\ + 17, 4X — 14, =3X — 9]. If A < 17 then P,Ayu = P3A,u and the
same argument as in (a) can be used to prove g > 0. On the other hand, we
use Remark 9 to obtain g = (Ayu,u) = (1—5[4/\ — 14] > 0 when A > 17. The cases
u € OKNint KoNint K3, u € KoNint K1Nint K3 and v € 0K{NIK9, u € IN-NIR 5
can be treated as (a) and (b), respectively. Summarizing all possible cases we can
see that (7) can have only positive eigenvalues corresponding to eigenvectors u € N
if A > —1 = A;. Furthermore, considering as above the separate regions of the cone
K, we find that the condition (17) is fulfilled with A2 = 20. For instance, in the
region (a) we have Aypu = %[l 1Tuy — 3ua, —90u; +66us, —33u; — 69us] and therefore
Asgou ¢ Tk (1) = K3 because —33u; — 69us < 0 for points under consideration. For
the points u belonging to the region (b) the condition (17) for any A > —3 follows
from the expression for A, written above. The other cases can be treated similarly.
The assumption (18) with Ay = 20 is also satisfied. For instance in the case (a) we

obtain (Agou, u) = é[ll?u% + 66u3 — 93ujus) > 0 for all u; # 0, us # 0.
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