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1. INTRODUCTION

We wish to extend the concept of Green’s relation which plays an important role
in the algebraic theory of semigroups [cf. [2], [3], and [4]). Let T be a set and W
a monoid whose identity is denoted by 1 or 1,, if necessary. We say that Wacts on T
Sfrom the left (right) iff there is a map ¢: W x T — T such that for all e T and
wy, w, € W we have

d(1, 1) =1,

B(wiwa, 1) = $(wi, §(ws, 1)) [(wiws, 1) = $(ws, $(wy, 1))] -
If Wis a group this definition reduces to the usual concept of a group acting on a set
[5. p. 70]. It is convenient to denote ¢(w, t) by wt (tw) if W acts on T from the left
(right) and to call the operation left (right) multiplication of t by w. If two monoids

U, V act on the same set T from the left and right, respectively, then for t € T, u; e U,
v,e V(i = 1,2) we have

(1.1) Lyt =1t=1tl,,

(1.2) (uguy) t = uy(uyt),

(1.3) t(v,0,) = (tvy) v, .

Further, if

(1.4) u(t) = (ut)v, ueU, veV, teT,

then we say that U and V act associatively on T, and we call Ta U — V combine.
There are numerous examples of this kind of algebraic structure. For instance,

(a) Any monoid M is obviously an M — M combine.

(b) Let M, (R) denote the set of all s x ¢ matrices with entries from a com-
mutative ring R with unity. Then M (R) = M, (R) is a monoid under matrix mul-
tiplication, and for any positive integers m, n the set M,, ,(R) is a M,(R) — M,(R)
combine if the left (right) action is defined as left (right) matrix multiplication.

(c) Let Z[i] = {a + bi| a, be Z} be the ring of Gaussian integers. Then Z[i]
is a Z[i] — Z[i] combine where the left multiplication is ordinary multiplication of
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complex numbers but the right multiplication is defined by
(a + bi)(v, + iv,) = v,a + ivyb.
It is easy to verify that (1.1) through (1.4) hold.

(d) A matrix S = [s5;] in M, (R*) is called substochastic if Y7_ s, <1
(i = 1,...,n) and stochastic is equality holds for all i. S is called doubly substochastic
if both S and ST are substochastic. The set of all (square) substochastic (resp. doubly
substochastic) matrices in M,(R*) forms a compact Hausdorff semigroup which is

denoted by &, [2, resp.] under matrix multiplication [cf. [7]]. Let & be the set of
all substochastic matrices in M,, ,(R*). It is easy to check that

SAe¥ for Ae¥ and Se¥,;
ASe¥ for Ae¥ and Se¥,.

Therefore & is an &,, — &, combine. Similarly, the set of all doubly substochastic
matrices in M, (R*) is a S, — S, combine. If we consider the semigroup <,
of stochastic matrices in M,(R*). then the set of all stochastic matrices in M,, ,(R")
isan €, — 3, combine.

The following propositions indicate ways to construct new combines from given
ones. Since the proofs are immediate, they are omitted.

Proposition 1.1. If U and V are monoids and T, ..., T, are U — V combines. then
the direct product T= Ty x ... x T, is a U — V combine if the multiplications
are defined coordinatewise.

Propesition 1.2. If the monoid acts from the left on a set T, and the monoid V
acts from the right on a set T,. then the direct product T=T; x Ty isa U — V
combine if the multiplications are defined by

u(ty, 1) = (uty, 1), (8, ta) e = (1, 1,0)
fortyeT t,eT,,ueU,andveV.

As an example let T, be the set of all m-dimensional stochastic column vectors,
T, be the set of all n-dimensional stochastic row vectors, V = S, the set of alln x n
(row) stochastic matrices, and ¥ = ST the set of all m x m column stochastic
matrices. Then T} x T, is an T — &, combine if the left and right multiplications
are defined as

P(x,y) = (Px,y) and (x,y)Q = (x, ¥0Q)
forPeSl.Q0eC, xeT, yeT,.

If T is a U — V combine the Green’s relations £, ¥, #, 2, and # on T are
defined as follows: for any two elements a, be T

(i) a2b iff @ = bv; and b = av, for some v, v, €V;
(it) a&b iff a = u,b and b = u,a for some u,, u, e U;
(iii) a#b iff @ = u;bv, and b = u,av, for some u,,u, €U, vy, v,€ V"
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(iv) as#b iff ab and aZb;

(v) a2b iff a%c and cZb for some ce T.

Again by way of example suppose that T,, ,(F), the set of m x n matrices over
a field F and that U, V are the general linear groups of the appropriate orders. Then
aRb iff a and b are column equivalent. Similarly, a.#b iff a and b are row equivalent,
and a#b iff a and b are (row-column) equivalent.

In Section 2 we investigate the Green’s relations on a U — V combine T with
special reference to the question “When does 2 = £?” In Section 3 we investigate
the Green’s relations on the set of m x n nonnegative matrices M,, ,(R") as an
M, (R*) — M,(R*) combine. In Section 4 we study the regular elements in M, (R*).

2. GREEN’S RELATIONS AND TOPOLOGY ON A GENERAL COMBINE

Throughout this section we assume U and V are monoids acting associatively on
a set T, in other words T is a U — V combine. The equality of 2 with # for the
stochastic matrices (cf. [2]) or more generally for a compact topological semigroup
(cf. [3]) is known. We transfer the latter development to the case of a combine, and
refer to [3] for the notions of topological semigroups.

Definition 2.1. A U — V combine T is stable iff

(a) aeT, veV, and Ua = Uav imply that Ua = Uav; and
(b) ae T, ueU, and aV < uaV imply that aV = uaV.

Lemma 2.2. Let T be a stable U — V combine, and let a, b e T. Then

(a) uV = bV < UaV implies aV = bV, and

(b) Ua = Ub < UaV implies Ua = Ub.

Proof. IfaV < bV < UaV, then b = uav forsomeue U, ve V. ThusaV < bV =

= uavV < uaV. Since T is stable we have aV = uaV, whence aV = bV. Thus (a)
holds. The proof of (b) is analogous.

Theorem 2.3. If T is a stable U — V combine, then 9 = ¢ in T.

Proof. It suffices to prove that for any a.be T, a#b implies aZb. If a#b,
then UaV = UbV, and a = ubv for some u € U, ve V. Hence aV = ubV by Lemma
2.2(a). So a#(ub). On the other hand we have

Uub <« Ub <« UbV = UaV = UubV < UubV,
whence Uub = Ub by Lemma 2.2(b). The latter equality yields (ub)#b. Therefore,
agb implies that aZ(ub) and (ub)&Lb, or aZb.

Theorem 2.4. Let T be a U — V combine. If U is a compact monoid such that
forany a,beT, {xe UI bV < xaV} is a closed subset of U, and if V is a compact
monoid such that for any a,beT, {ye Vf Ub < Uay} is a closed subset of V,
then T is stable and 2 = # in T.
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Proof. Suppose aV < uaV for some a € T and u € U. By hypothesis
A = {xeU|uaV < xaV}
is a closed, hence compact, subset of U. For any x, y € A we have
uaV c xaV < xuaV < xyaV,

which yields xy € A. Thus 4 is a compact subsemigroup of U, and so (cf. Theorem 1.8
of [3, p. 13]) there exists an idempotent e € A. So from the definition of 4 we obtain
that aV < uaV < eaV, or for any v e V there exists a v’ € V such that av = ear’.
Now eav = e*av’ = eav’ = av, whence aV = eaV. Thus aV = uaV. This proves
that aV < uaV implies aV = uaV. Similarly, we can show that Ua < Uav implies
Ua = Uav. Therefore the U — V combine T is stable, and the remaining assertion
follows from Theorem 2.3.
Let us return to example (d) of Section 1 of the &, — %, combine

T={aeM,(R")| ais substochastic} .
We wish to show that T is stable. As noted previously &, and %, are compact
monoids. For any a, b € T, the set

X ={xe¥,| b¥, < xa¥,}

is closed. To see this observe that if {x,} < X is a sequence which converges to
x € &, then for a fixed z € &, and for each k, there is a v, € &, such that

(*) bz = x,av, .

Since {v;} is a sequence in the compact set &, it has a subsequence which we again
denote by {v,} which converges to v € &,. Pass to the limit in (*) to obtain

(**) bz = xav.

But z € &, is arbitrary so that b, = xa¥,. Thus X is closed. Similarly, the set
{ve, [ &b = Fnay} is closed. Thus the hypotheses of Theorem 2.4 are satisfied.

Clearly aZb in a general combine T is equivalent with a b plus some other con-
dition. Such a condition is given in the next theorem.

Theorem 2.5. Let a and b be elements of the U — V combine T. Then aZb iff
there u,u’ € U, v, v’ € V such that

(i) a=ubv, b=uav
and
(i) av'v =a.

Proof. If a2b, then for some ce T we have aZc and c¥b. Thus there exists
u,u’ eU, v, v’ e Vsuch that
a=cv, c=av', c=ub, b=uc,
whence
a=ubv, b=uar', and av'v=a.
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Conversely, (i) and (ii) imply

u'a=uavv=>bv, and b = u'av’ = bvv'.
Therefore

av’ = ubvv’ = ub and b = u'(av’),
while

a=(av')v and (av’) = a(v’).
Consequently, aZ(av’) and (av')£b. Thus aPb.

Remark. Condition (i) is of course the statement that a #b. The additional con-
dition (ii) could be replaced in Theorem 2.5 by any one of the five equalities

uw'a=a, wub=>b, bow =b, ub=av', or ua=bv.
In fact if (i) and any one of these six equalities holds, the remaining are true.

Corollary 2.6. The relation 2 in T is an equivalence relation.
Proof. We consider only transitivity. By Theorem 2.5, aZb and b%c in T imply

a=u,bv,, b=u,av,, av, =u,b;

b = uscvy, ¢ = uzbvy, and bu; =b,
whence
d = U U3CO30y , € = UalU,av,0,, and

a(vyr,v30,) = uy(bogvy) v, = u by, = a.

Therefore a%c.

Corollary 2.7. aZb in T iff
(iii) av’ =ub, av'v=a,
(iv) ua=bv, b =b,

where u,u' e U and v,v" € V.

Proof. Use Theorem 2.5 and the observations that (iii) implies a = ubv, while (iv)
implies b = u'av’.

Note that we can, of course, replace av'v = a by uu’a = a and b’ = b by
u'ub = b.

A U — Vcombine T has several kinds of subobjects. If a subset T, of TisaU — V
combine we call it a U — V subcombine of T. If U,(V;) is a submonoid of U(V) then
the U — V combine T is also a U; — V| combine, the latter is called a subU — V
combine of the former. When a and b in T have some Green’s relation relative to
a sub U — V combine, they obviously have the same relation in the original U — V
combine. Since each monoid has a special submonoid — its maximal subgroup,
which is the set of all invertibl elements, each U — Vcombine has a specialsubU — V
combine, namely a U® — V° combine where U°(V°) is the maximal subgroup of
U(V). Denote the Green’s relation on the U° — V° combine by %°, #°, #°, #°,
and 2°. We have the following summary.
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Proposition 2.8.

@) A°cR L°cP, F'cf, #cH, 9°c .

(b) aZ®b iff a = bv for some ve V°.

(¢) aZ°b iff a = ub for some u e U°.

(d) a#°b iff b = uav for some ueU°®, veV°.

(e) a#°b iff a = bv and a = ub for some ueU® and ve V°.

(f) a2°b iff b = uav for some ueU®, veV°.

Proof. (a)—(e) are immediate. For (f) note that if b = uav, then a#°(av) and
(av)#°b by (b) and (c). whence aZ°b. Conversely, a2°b implies a,#°h by Theorem
2.5, so that b = uav by (d).

Corollary 2.9. 2° = ¢°.

3. GREEN'S RELATIONS ON M,, .(R™)

In the remainder of this paper we shall concentrate on a particularly important
combine, namely the .#°, — .4", combine M, (R*), where 4" = M(R") is the
multiplicative monoid of & x k nonnegative matrices and the left and right actions
are the usual matrix multiplications. We shall investigate the generalized Green’s
relations on M,, (R™)

First let us note how we are employing the terms nonsingular and invertible.
If Ae A, then A is nonsingular iff det A #+ 0. However, A is invertible (in A7)
iff A7! exists and is an element of A",. If A is invertible, then A is a monomial matrix
(cf. [2, p. 67]), that is

A = Pdiag(ay, ..., a;)

where a; > 0 (j = 1, ..., k) are the nonzero entries of a diagonal matrix and P
Is a permutation matrix.

Following [2] and [7] we shall say that a (finite) set S of vectors in (2%)" is cone
independent iff no vector in S lies in the polyhedral cone generated by the remaining
ones. Equivalently, S is cone independent iff no vector of S is a nonnegative linear
combination of the remaining. If S consists of the columns of A € M,, (R"), then
we denote by d(A4) the maximum number of cone independent columns of 4. Con-
sequently, d(AT) is the maximum number of cone independent rows of 4. Let 4’
denote an m x d(A4) submatrix of A with cone independent columns: 4’ denotes
ad(AT) x nsubmatrix of 4 with cone independent rows; and A4, denotes the d(AT) x
x d(A) submatrix of 4 which is a submatrix of both 4" and 4". Such an 4'(4’) is
called a greatest column (row) cone independent submatrix of A, while 4, is called
a greatest cone independent submatrix of A. An important fact is that each A €
€ M,, (R*) is uniquely determined by A’ and A’ (cf. [8, p. 97]).

It is easily seen that AZB in M,, ,(R*) iff the polyhedral cone G(A4) in B™ generated
by the columns of 4 coincides with the polyhedral cone G(B) generated by the columns
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of B. Equivalently, A#B iff d(4) = d(B) and A" = B'M where A'(B’) is a greatest
cone independent submatrix of A(B)and M is a d(A4) x d(A)(nonnegative) monomial
matrix. Therefore the next two results concerning the structure of .2, ¥, # classes
in M, (R") follow.

Theorem 3.1. The following statements are equivalent:
(i) A#B [A¥B] in M, (R");
(i) G(4) = G(B) [G(4T) = G(B")]:
(iii) There exists un invertible matrix M in A g4y [N 441)) such that
A =BM|[A =MB]:
(iv) A'A°B [A ¥ B in M, 44(R*) [in My 1, (RY)] .

Theorem 3.2. The following are equivalent:

(i) A#B in M,, (R);

(i) G(A) = G(B) and G(A™) = G(B"):

(ii1) There exist invertible matrices M € Ay 4, and N € ¥4 41, such that
B =AM, B =NA, B,=AM = NA, ;

(iv) A'4°B'. 2 %°B', and A, #°B,.

These two results are generalizations of Theorem 2.2 and Theorem 3.1 of [8]
on which the other results in [8] are based. Therefore all the results obtained in [8]
are true for the generalized Green's relations on M,, (R*). For instance we have

(a) d(A) = d(B) and d(A") = d(B") if AZB in M,, (R™).

(b) Let V, be the maximal subgroup of .47, whose elements are all the invertible
(monomial) matrices: let W= V,,, x V1, be the group direct product of ¥,
and V,t,. The set

Wy = {(M,N)e W| A,M = NA4,)}
is a subgroup of W. The s class containing A, # ,, consists of all matrices B e
e M,, (R™) such that

B =AM, B =NA, and (M,N)eW,, .

Finally. the mapping f: W, — #, with f(M, N) = B is bijective.

The following two theorems concerning the structure of J# and & classes in the
combine M,, ,(R") are generalizations of Theorem 3.2, Proposition 3.3 and Corollary
3.4 of [1]. We can prove them by almost the same arguments as used in [1].

Theorem 3.3. A#BinM,,,
of sizes d(AT) x d(BT)., d(B) x d(A), d(BT) x d(AT), and d(A) x d(B) respectively
such that

(R*) iff there exist nonnegative matrices X . Y,, X1, Y{

Ay = X,B,Y,, B, = X,A,Y].

Theorem 3.4. The following are equivalent:
(i) AYB in M,, (R*);
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(") A()@BO in Md(AT).d(BT)(R+);

(iii) There exist X, X1 € N 4uty Y1, Y] € A g4y such that
Ao = X BoY,, B, = X/1A0Y1, ’

and any one of the following equalities holds:

X, X4, = Ay, A\Y(Y, = A,. X{X,B, = B,,
B Y, Y, =B,, X,B,= A,Y,, X4, = B,Y, ;

(’V) AoZ By in Myym)aa(R);

(v) There exist invertible matrices X € 17y 41, Y€ A 44, such that
B, = XA,Y.

Remark. If A, is a greatest cone independent submatrix of 4 € M,, (R") then

any greatest cone independent submatrix A5 of A can be expressed as

Ay = M, A, M,

where M, € A"y 41, and M, € A7y 4, are monomial (cf. Theorem 3.1 of [1]). Thus
Ag Ao or A52°Ay in My a(R*). Therefore Theorems 3.3 and 3.4 remain
true if Ay, B, there are replaced by any other greatest cone independent submatrices
Ay, By respectively.

Proposition 3.5. If Ae M,, (R*) and rank A = n < m. then
(i) A#2B iff AZ°B;

(i1) if A has a nonnegative left inverse, so does any B in 2 ,.
Proof. Since

n=d(A) = rank 4 = n,

we have d(A) = n, A" = A,and B’ = B. Then by Theorem 3.1, AZB implies A’ #°B’,
or A#°B. This proves (i).

Let Ze M,, (R*) be a left inverse of A so that ZA = I,. Then for any Be 4,
there is by (i) an invertible matrix M € A"y, such that B = AM. Therefore M~ 'Z
is a nonnegative left inverse of B, and the proof is complete.

The next two results follow immediately.

Proposition 3.6. If Ae M,, (R") and rabk A = m < n. then

(i) A¥B iff AL°B:

(ii) If A has a nonnegative right inverse, so does any B in £ 4.

Proposition 3.7. If A € A", is nonsingular, then the following are equivalent:
(i) AZB:

(i) A2°B;

(iii) There exist invertible matrices X, Y in A", such that B = XAY.

Note that Proposition 3.7 contains the known result given in Corollary (3.4.7)
of [2, p. 73].
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4. REGULAR ELEMENTS IN M, ,(R")

Recall that an element a of a semigroup T is regular iff axa = a is solvable for
some x € T. Regularity is an important concept in the theory of semigroups, especially
in the study of Green’s relations. Regularity in .#", has been studied in [1] and [2].
We restate the main results as:

Theorem 4.1. Let A € A", be of rank r. The following are equivalent:

(a) A is regular in A,.

(b) A has a semi-inverse in A", of the form D, ATD,, where D,, D, € A, are
diagonal.

(c) A has a semi-inverse in A", which is r — monomial, that is, the largest
nonzero submatrix of the semi-inverse is a monomial matrix of order r.

(d) A has a monomial submatrix of order r.

(e) AZE,. where E, is the canonical idempotent of rank r given by

Lol
E,_[o 0]_1,@0.

(f) AFE,.
(g) d(A) = d(A") = r and A, is regular in A", where A, is a greatest cone
independent submatrix of A.

To formulate regularity in a general U — ' combine we need to add to the struc-
ture, specifically, we require T'to have a conjugate combine, that is,a V' — U combine
T’ which satisfies the following condition: there exist surjective maps A: T x T' —» U
and u: T' x T — Vsuch that

(1.6) 1, = t,(112), (rht) 1 = 13(1,13)

for any t,,t, € T, 1y, t, € T', where t,¢} and ryt, denote A(t, t}) and u(t}, t,) respec-
tively. The V — U combine T’ is called a conjugate of the U — V combine T. As
examples we may take M, ,(R*) as a conjugate of M,, ,(R*), and each semigroup
which is considered as a combine may be considered as a conjugate of itself.

We now define regular elements in a combine T which has a conjugate T'. This
definition reduces to the original one when T is a self conjugate semigroup.

Definition 4.2. The element a € T'is regular iff axa = a is solvable for some x e T".
Further, if uxa = a and xax = x for some x e T’ and a € T, then a and x are said
to be semi-inverses of each other.

It is easily seen that each regular element in a general combine has a semi-inverse.
It can be shown that in a general combine if one element of a 9 class is regular, then
all the elements in the 9 class are regular (cf. exercises (3.6.1) and (3.6.3) of [2,
p. 83]). On the other hand elements in a general combine T which has a conjugate T
may have one sided invertibility. If ax = 1, [xa = 1,] is solvable for some ae T
and x € T', then x € T" is said to be a right [left] inverse of a e T. An element in T
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is half invertible if it has a right or left inverse. For example,

I 0 1 +
[0 1 ]]EMQ.:;(R)

is half invertible because it has a right inverse

1 0
0 1]leM;,(RY).
0 0

Proposition 4.3. If U = V and an element a in a U — V combine T has a right
inverse x and a left inverse y, then x = y; that is, the half inverse in unique.

Suppose a U — U combine T is self cpnjugate. An element a € T is said to be
invertible iff there exists an x € T such that

(4.1) ax = xa = 1.

By Proposition 4.3 the element satisfying (4.1) is unique. We call this unique x the
inverse of a. When a semigroup T is considered as a T — T combine, the concept
of invertibility comforms to the common one.

The next result 1s immediate.

Proposition 4.4. If an element a € T has u left [right] inverse. and if b#%a [h £ °a]
in T, then b has a left [right] inverse.

We return to considetation of the .4°,, — 4", combine M,, ,(R*) whose conjugate
we take to be M, . (R*). In the remainder of this paper we assume, without loss of
generality, that m = n.

Lemma 4.5. Let Ae M, (R*). Then

(i) A is regular in M,, (R™) iff [A O] is regular in A", where O denotes the
m x (m — n) zero matrix.

(ii) A has a semi-inverse in M, ,(R*) iff [A O] has a semiinverse in . 4",,. Further A
has a semi-inverse which is r — monomial. where r = rank A. iff [4 0]
has a semi-inverse which is r — monomial.

Proof. By Theorem 4.1 it suffices to prove (ii). If X, e M, ,(R™) is a semi-inverse
of A, that is, AX,4 = A and X,;4AX,; = X, then the two m x m nonnegative

matrices
[4 0] and [X‘]
0

satisfy

(4.2) [4 0] [g‘ l] [4 0] =[4 0],

o [l
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. X
Therefore [ A4 0] has a semi-inverse [0

1] in A, Itis clear that if X, is r — mono-
mial, then so is

X,

o |-

On the other hand if [4 0] has a semi-inverse

in .¥,. where X, isn x mand X, is(m — n) x n, then

(4.4) [4 0] B(‘;] [40] =4 0],

and

v [R]uold]-[0]

Since (4.4) and (4.5) obviously imply (4.2) and (4.3), X, e M, (R") is therefore
a semi-inverse of 4 e M,, (R™). If

]

is r-monomial, then X, must be r-monomial, otherwise rank X, < r = rank 4,
which contradicts 4 = AX,A.

Lemma 4.6. 4 e M,, (R*) has a semi-inverse in M, ,(R*) of the form
diag(c,.....c,) AT diag (d;. ..., d,,) iff [A 0] € A", has a semi-inverse of the form

diag (s,.....s,) [4 0]" diag(t,, ..., t,,). where all the diagonal matrices are non-
negative.

Proof. If X = diag(c,. ..., c,) AT diag(d,, .... d,) satisfies
(4.6) AXA=A and XAX = X,

then we have

o wofuen = Bl

where

X
0 b
x] . e

ol= diag (¢y, ..., ¢, 0,...,0) [4 0] diag(d,. ..., d,)

s a semi-inverse of [A 0] in A& ,,. Conversely, if [A 0] hsa a semi-inverse

diag (s, ... 5n) [A O]7 diag (ty. ... 1,) = [g‘]

in A, where X denotes diag(sy, ..., s,) 4 diag(t,...,t,) € M, (R"), then (4.7).
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holds. Since (4.6) is implied by (4.7), the matrix X is a semi-inverse of A which satisfies
the desired conditions.

Lemma 4.7. Let Ae M,, (R*), r = rank A, and I, € A", be the identity matrix.
Then

(i) A@[g’ g] in M, (R*) iff [A 0] g[g g] in A

(ii) Af[é’ g] in M, (RY) iff [A o]y[é' g] in .

Proof. (i) By Theorem 3.4(ii), A2(I, @ 0) implies that d(4) = r = d(A") and
Ao2I, in A, where A, I, are greatest cone independent submatrices of 4 and
I, ® O respectively. But A,, I, are also greatest cone independent submatrices of
[A40] and I, ® 0 in A&,, whence (4 @ 0) #(I, ® 0) are in A", by Theorem 3.4.
This proves the ,,only if” statement. The ,,if”” statement is proved similarly.

(ii) By Theorem 3.3, A #(I, ® 0) is equivalent to
(4.8) Ay = X,1,Y, and I, = X1A,Y{,
where X, Y}, X, Y{ are nonnegative of respective sizes d(AT) x r, r x d(A),
r x d(A"), and d(A4) x r. It is clear from Theorem 3.3 that (4.8) is equivalen: to
(4®0) 41, ®0)in A,

Lemma 4.8. If AeM,, (R*) has a monomial of order r = rank A, then this
submatrix is a greatest cone independent submatrix of A.

Proof. We have

M B,
PAQ =
o-[y &
where P and Q are permutation matrices, M € A", is monomial with M~ ' e A",.
Let B, = MC,, By = C3M; then C, = M~ 'B, and C; = B;M ™! are nonnegative.
Since r = rank 4 = rank (PAQ) we have
[B;, B,] = X[M, B,],
where X is some real but not necessarily nonnegative matrix. Now B; = XM and
B; = C3M yield X = C; MM ™' = C,, whence
M McC,
PAQ = .
Q [C3M C3MC2]
This shows that M is a greatest cone independent submatrix of 4.

Finally Theorem 4.1 and the lemmas of this section imply the following gener-
alization of Theorem 4.1.

Theorem 4.9. Let Ae M,, ,(R*) be of rank r and let A, be a greatest cone in-
dependent submatrix of A. The following are equivalent.
(a) A is regular in M,, ,(R").
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(b) [4 0] is regular in A,

(c) A has a semi-inverse in M, ,(R*) of the form D,A™D,, where D, € A", and
D, e A ,, are diagonal.

(d) A4 has a semi-inverse in M, ,(R*) which is r-monomial.

(e) A has a monomial submatrix of order r.

(f) AQE,, where

E, = [f) 8] eM, (R*) (E, =0).

(g) AFE,.

(h) d(A) = d(A") = r and A, is regular in A,.
(1) A4o2°l, in A&,

(i) Ao F°l, in A,

Remark. Using the same argument as stated in the remark after Theorem 3.4,
we claim that if 4 € M, ,(R*) of rank r is regular, then any greatest cone independent
submatrix A, is regular in .4, is monomial, and satisfies 4,2°I, and A, #°I, in A",

Corollary 4.10. If Ae M,, ,(R*) is regular, then the 9 class containing A and
the # class containing A are the same; that is 9, = ¥ 4. Further, all the elements
of 2, = ¥, are regular.

We call a 9(#) class in a combine a regular 2(#) class iff all its elements are
regular.

Corollary 4.11. Let b = min {m, n}. The combine M,, ,(R*) has exactly b + 1
regular # classes: g (r = 0,1,...,b) and hence b + 1 regular 9 classes.

The next theorem shows that half invertibility and regularity for a matrix in
M,, (R*) of full rank are actually the same.

Theorem 4.12. Let A€ M,, (R*) be of rank min {m, n}. Then A is regular iff A
has a nonnegative left inverse when m > n, or a nonnegative right inverse when
m < n, or a nonnegative inverse when m = n.

Proof. It suffices to prove this when m > n. If A is regular, then 4 has a monomial
submatrix M of order n = rank 4 by Theorem 4.9(¢). Then there is an n x n
permutation matrix P such that

M
pa = [A]

whence X = [M™' 0] P"' e M, ,(R") is obviously a left inverse of A.
Conversely, if A4 has a left inverse X € M, ,,(R*) so that X4 = I,, then AXA = A,
and A4 is regular.
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