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ON THE BOUNDEDNESS AND PERIODICITY OF SOLUTIONS
OF SECOND-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS
WITH A PARAMETER

SVATOSLAV STANEK, Olomouc

(Received July 10, 1989)

1. PROBLEM

Let to € R, let X;, X2 be subsets of C°(R) and I = (a,b) (—o0 < a < b < 0).
Consider the functional differential equation

(1) v —at)y = Fly.y', 1]

where F: X| x Xo x I — C°R), q(t) > 0 for t € R, containing the parameter y. The
problems considered are to determine sufficient conditions on ¢ and F that would
make possible to choose the parameter u so that there exist

a) a solution of (1) vanishing at the point ¢, and such that y and y’ are bounded

on R,
b) a periodic solution of (1) vanishing at the point ¢g.
The samne problems are considered for equation (1) where F[y, z, u] does not depend
on z. -

In the special case with F[y, z, u](t) = f(t,y(t), z(t), p), where f(t,y,z,pu): R® x
I — R, the above formulated problems have been considered in [2] and [3].

2. NOTATION, LEMMAS

Let ty € R and let u, v be solutions of the equation
(q) v' =q()y, € C°(R), q(t) >0 fort eR,
w(to) =0, u'(to) = 1, v(ty) = 1, '(to) = 0. Setting
r(t,s) = u(t)v(s) —u(s)v(t) (= —r(s,t)),
or

ri(t,s) = W'(L)v(s) — u(s)v'(¢) ( = i—ﬂ—(l,s))



for (t,s) € R?, then r(t,s) >0 fort > s, r(t,s) < O0fort <s, ri(t,s) > 1fort #s
and 7{(t,t) = 1 for t € R (see Lemma 1, [1]).
Denote by Y;(Yp) the Fréchet space of all continuously differentiable (continuous)

functions on R with the usual metric topology, and let X;(Xp) be the subset of
Y1(Yo) defined by

X1 ={y; y €Y1,y and ¢ bounded on R}
(Xo = {y; y € Yo,y bounded on R}).

Let F: X1 x Xox 1 — Yo, F:[y,z,1] = F[y, 2, u](t) be an operator satisfying some
of the following assumptions: there exist positive constants rg, r; such that
(i) F is a continuous operator on D x I, where D = {(y,¥'); y € Y1, |y ()| <
fort € Randi = 0,1}, thatis, if {yn}, {ttn}, (yn,¥,) € D,y € I are convergent
sequences and llm Un =V, hm fin = jtg, then llm Flyn, ¥pn] = Fly, ¥, po);

(i) |F[y, z, p](?)| < L ( )ro for (y, ,p) € HxI and t E R, where H = {(y,2); y €
X1,z € Xo, |y(t)] < ro, |2(t)] <7 fort €R};
(i) Fly, v, )(t) < Fly, o/, p2)(t) for (y,4/) € D, t ER, 1, p2 € I, py < pio;
(iv) Fly, ¢/, al(t). Fly, 9/, b)(t) <O for (y,¥/) € D, t €R;
(v) 2y/foV/A+ Qro < 71, where Q = sup{q(t); t € R}, A = sup{|F[y, v, ul(t)|;
(v,¥,n) € Dx I, t €R} (< Qro);
(vi) Fly, ¥, }() is an w-periodic function for every (y,y’) € D, u € I, where y is
w-periodic.
When Fly, z, u] = Gy, 1] does not depend on z we assume that G satisfies some
of the following assumptions: .
there exists a positive constant rg such that
(J) G is a continuous operator on Px I, where P = {y;y € X, |y(t)] < ro fort € R},
that is, if {yn}, {ttn}, yn € P, pn € I are convergent sequences, lim y, =y,
Bim i = pio, then lim Glym, in] = Gly, il T
(5) 1Gl, K)(0)| < a(t)ro for (y,u) € P x I and ¢ € R;
(113) Gly, m](t) < Gly, pa)(t) fory € Pt €R, py, p2 € 1, piy < piz;
(Gu) Gly,d](t).G[y,b)(t) <0 forye P,tER;
(u) Gly, #](t) is an w-periodic function for every w-periodic function y € P and
pel

Lemma 1. Let t;, {2 € R, {1 < o < t3. If assumptions (1)—-(v) hold for positive
constants ro, 7y, then for every ¢, (¢, ¢') € D there exists a unique po € I such that
the equation

(2) ¥ —q()y = Fle, &', p)(t)
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with g = pio has on the interval (11, t,) a solution y (which is then unique) satisfying

(3) y(t1) = y(to) = y(t2) = 0.
Moreover, |y)(t)| < ri for t € (t;,t2) and i =0, 1.

Proof. Let (p,¢') € D. Setting h(t,u) = Flp, ¢, ](t) for (¢, 1) € (t1,t2) x 1,
Lemnma 1 follows from Lemma 4 [1]. O

Remark 1. The solution y in the assertion of Lemma 1 may be written in the
forin

_or(t,tg) M
- r(l(),t]) tﬂ

u(t) (1, 9)Plp ' al(s)ds + [ ()Pl ' pol(s)ds.

Lemma 2. Let ty, t2 € R, {; < to < ts. If assumptions (j)—(ju) hold for a positive
constant rq, then for every ¢ € P there exists a unique po € I such that the equation

(4) ¥ —q(t)y = G, p)(t)

with pt = po has on the interval (t,,t5) a solution y (which is then unique) satisfying
(3). Moreover, |y(t)| < ro for t € (t1,t2).

Proof. Lety € P. Setting h(t, ) = Gp, p)(t) for (¢, n) € (t1,t2) x I, Lemma 2
follows from Lemma 5 [1]. O

For z, t}, t2 € R, t; < t, define functions x, ¢,, ¥z, 7z: R — R by

for t € (ty,t2),
Xh,iz(t) =
0 forteR-—(t,t2);

va(t) = {(1) for t € (—o0,z),

for t € (z,00);
1 fort € (—o0,z),
2(t) =
0 forte (z,00).

Let t1, 8o €R, ty <ty <ty andlet p €Yy, ¥ € Yo, (p,¢') € D, ¥ € P, where D
and P are defined in (i) and (j), respectively. Consider the equations

()
¥ =4()y = xe.0 (O Fle, ', 1](1) = 9() (1= X1, 1 (8)) y— (%)-w;(t)y— (ﬁ)zﬂ.(l)y

0

and

(6) . ,

Y = a(t)y = xu,, ()G, (1) = q(8) (1 = X115 (1)) y — (%)-Vtz(t)!_/ - (%) 7, (t)y,
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which depend on the parameters u, a, 8; 1t € I, a, B € R. We say that z is a solution
of (5) ((6)) on R if z € C}(R)N C%(R — {t1,¢2}) and for y = z(t) the equality (5)
((6)) holds for all t € R — {t,t2}.

Lemma 3. Let t, ts € R, t; < ty < l2, and let assumptions (i)—-(v) hold for
positive constants ro, r1. Then for every ¢ € Y1, (p,¢’) € D there exist a unique
po € I, 0 < ag < 71, 0 < Po < 1 such that equation (5) with p = po, a = ay,
B = Po has a solution y (which is then unique) satisfying (3) and

limsup y(t) = rosign Bo, limsup y(t) = rosign ag.
t——00 t—oco

Proof. Fort € J = (t1,t2) equation (5) is of the form

(8) ¥ —q()y = Fle, @', pul(t), te,

and by Lemma 1 there exists a unique pn € I such that equation (8) with p = pug
has a solution 2z (which is then unique), z(t;) = 2(tg) = 2z(t2) = 0. Moreover,
|2O(t) < riforted,i=0, 1.

For t € (—o0,t;) and t € (2, 00) equation (5) is of the form

®) v=—(2)%
and
(10) | v'=-(2)s

respectively. We see that equation (9) ((10)) has on the interval (—oo, ;) ((t2,0c))
a solution y;(y2) satisfying y(l')(tl) = 2()(t;) for i = 0, 1 and limsupy,(t) =

t——00
rosign |2'(t1)] (ygi)(tg) = 2()(ty) for i = 0,1 and limsup yo(t) = rosign|z’(t2)]) if
t—o0
and only if y;(t) = rosin (%l(t —t1)) (yg(t) = rosin (Lg’—)(t - tg))). Setting
Bo = |2'(t1)], @o = |2'(t2)| we have 0 < Bo < 71, 0 € g € 71 and the function
. =(1) fort € J,
(11) y(t) = { rosignz’(t))sin (-’:—:(t —11)) fort € (—o0,ty),
rosign z'(t2) sin (£2(t —t2)) for t € (t2,0),

is the unique solution of (5) with p = o, @« = ag, B = P having the properties
demanded in the lemma. a
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Lemma 4. Let t, ts € R, r; < tg < ta, ts —t; = 2 and let Qo = max{q(t); t €
(t1,t2)}. Assume that assumptions (j)-(ju) hold for a positive constant rq. Then for
every i € P there exist a unique jig € 1,0 < ag < 2r¢(14+Qo), 0 < Bo < 2ro(1+ Qo)
such that equation (6) with g = po, @ = g, B = PBo has a solutlon y (which is then
unique) satisfying (3) and (7).

Proof. Since fort e .J = (t,t2) we may write equation (6) in the form
(12) v —at)y = Gy, p)(t), teJ,

there exists (by Lemma 2) a unique po € I such that equation (12) with g = y has a
solution z (which is then unique), z(t1) = z(to) = z(t2) = 0. Moreover, |2(t)| < ro for
t € J. Since |Glep, ;1](t)| roQo for t € J (by (jj)) we have |2"(t)| < 2roQo for t € J.
Next, z(t; + 1) — z(t;) = 2'(€), 2'(§) — 2'(t1) = 2"(7)(€ — t1), where £ € (t;,t; + 1),
T € (t1,8), thus [2/(¢1)] < |=(t1+1)—z(t1)|+]z"(7)|(E—=t1) < 2ro(14+Qo). Analogously
|2'(t2)] € 2r0(1 4+ Qo). Setting By = |2'(t1)], @o = |2'(t2)] as in the proof of Lemma
3 we can verify that the function y defined by (11) is the unique solution of (6) with
jt = flo, @ = g, = Po satisfying (3) and (7). a

Remark 2. From the proofs of Lemmas 3 and 4 we see that the solution y of (5)
((6)) in Lemma 3 (Lemma 4) satisfies [y(¥)(t)| < r; fort € Rand i =0, 1 (Jy(t)| < 7o,
[ (t)] < 2ro(1 4 Qo) for t € R).

r

Lemma 5. Let t;, t2 € R, t; < tg < to. Assume that ascumptions (1)~(v) hold
for positive constants rq, ry. Then there exist 1o € I, 0 < ag < 71, 0 < Bo < 7y such
that the equation

Y

(12)
2 2
v = a0y = X6 LOF [,y 1] = g1 = X0 6(0)y - (%) via(O)y = (7%) T (0y

with pt = o, = «vg, B = By has a solution y satisfying (3) and (y,y’) € D.

Proof. Let S={y;y€Y1,(y,¥) € D} and let J = (t;,t2). By Lemma 3 for
every ¢ € S there exist a unique po € I and unique ag, fo, 0 < ag <7, 0< Bo < 7y
such that equation (5) with g = g, o = «g, # = By has a solution y (which is then
unique) satisfying (3), (7) and (y,y’) € D (see Remark 2). Setting T'(¢) = y we
obtain an operator 7': S — S. S is evidently a closed convex and bounded subset of
the Fréchet space Y.

To prove that T'is a continuous operator let {y, }, yn € S be a convergent sequence,
n“—l»l;) Yn =¥, and let z, = T'(yn), z = T(y). Then, by Lemma 3 and its proof and by
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Remark 1, there exist a sequence {t,}, ptn € I and po € I such that

( 7(to,t)
T’tl,

to) ./h1

zn(t) = 4

( T‘(to,t)
T(tl,to) to

2(t) = 4

where

(IZ:L(tl)I :) Bn =

(Izn(t2)l =)

= |

t
+ / (8, 3) F [y v, 1u](5) s
to

ro sign z! (¢ ) sin (%(t — 1))

\ 7o sign 2}, (t2) sin (%:(t —t3))

+ [ ) Pl o) ds

rosign /(t1) sin (£2(t — t,))

 rosign z/(£2) sin (22(t — t2))

(tla S)F[yfh ynr ltﬂ](s) ds

fort e J,

for t € (—o0,1;),
for t € (¢2, 00),

t
r(tl ) S)F[y’ y’,/_tg](S) ds

fort € J,

for t € (—o0,t1),
for t € (t2,00),

r1(t1, to)
r(to, 1)

13
7'(t1 ) S)F[yn) y;; ) ﬂn](s) ds
to

t
+ / ¥, (L1, 8) Flgms s in)(5) ds],

to

r1(t2,0)

ty
/
7'(t0,t1) to r(tl,S)F[yn, ynv”'n](s) ds

t2 R
[ 25 P, Yo in)(5) ]
to

()1 =) fo=]|

ri(t1, o)
7(to, t1)

ty
/ r(t1,5)Fly, o', wol(s) ds
to

t
+/ r1(t1, 8)Fly, ¥, po)(s) ds|,
to

(I'(t2)] =)
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ri(t2, o)

vto i) S, "o OF Y pol(s) ds

to

t2
+ / Y, (t2, 8)Fly, o, wo)(s) ds|,

to



If {u,} is not a convergent sequence then lim g, = Ay, lxm fr, = A2, Ay < Aq for

subsequences {y, }, {ptr, } of {pn} and by (1)
to, ) ["
lim 2, (t) = rito,!) r(ty, s)Fly, v/, M](s) ds

n—oo " T(tl,tg)

t
+ / r(t,5)Fly, o' M(s) ds,
to

r(to,t) [
lim z, (t) = : / r(t1,s)Fy, ¥, A2](s) ds
to

n—oo r(t1,to)
t
+/ r(t,8)Fy, v, A2](s) ds
to
uniformly on J. Since % r(t1,s) < 0 for s € (t1,t0), r(ta,s) > 0 for s € (to,t2)
and Fly, v, M](s) < Fly, ¥, A2](s) for s € J (by (iii)) we get
. r t 1t2 /
lm (zx,(t2) — 2, (t2)) = (fo, t2) r(t, sH{Fly, v, MI(s) = Fly, ', X2)(s)} ds
ES 0 1o) Joy
t2
4 [ Pl M) - Flu/ A} ds < 0,
to

which contradicts z,(t2) = 0 for all n € N. Consequently, {y,} is convergent and

we may write him g, = p*. Then
n—00

N o r(tet) “r () ds
=) Jim w0 = T2 [, Py e d
+ / r(t,5)Fly, o/, 1)(s) ds

uniformly on J and z* is the unique solution of the equation
1 q

"—q(t)z = Fly, ¥, 1" I(t), te,

2*(t)) = z*(to) = z*(t2) = 0. Consequently, by Lemma 1 p* = yo and z*(t) = z(

183

for t € J, hence lim «, = ay, lun Bn = Po and lnn zn(t) = z(t) locally umformly
n—oo

on (—oo,t;) U (lz,00).

Next, the equalities

rll(tvt()) /tl
r(t1, ) Flyn, ¥, ttn ds

o) Jo, (t1, 8)Flyn, 4, 1n] (5)

t

::1(1) = +/ 7‘/1 (l’ .5‘)]7[yn’ y:pﬂn](s) ds fort e J,

to
Sfl(tl)COS(%(t—ll)) for t € (—oo,ty),
zp(t2) cos (%f,‘(t —13)) for t € (t9, ),
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ri(t to) , _
r(to. 1 )/ r(ty, s)Fy, ¥, po)(s) ds
() = +/ i (t,s)Fly, v, pol(s) ds fort € J,
to
(ty) cos (£2(t — 1)) for t € (=00, t,),
;’/(tv)(‘05(" (t —t2)) for t € (ta,00)

imply lim 2} (¢) = 2/(t) locally uniformly on R. Consequently, lim T(y,) = T(y)
and TT{:E:J('OHUHUOUS operator. e

Let z € T(S) and let Qo = max{q(t);t € J}, B = max{g,roQo + A}. Then
z = T(y) for some y € S and since |2”( | = lq(t)=(t) + F[y, ,uo] N < roQo+ 4 for
Lt € J, where yig € I 1s an appropriate number, ];, 0 = I sm t—tl))| < r‘ for
t € (—oo,t),|z"(t)] = ( (t—to ))| < ;‘ for t € (t2,00), we have |z" )I g B
for t € R. Then T(S) C 1\ = {y, yeYiNCYHR - {t1,t=}), (v, v') € D, |¥' ()] < B
fort € R—{t1,t2}} and since K\ is a compact subset of Y, T(.S) is a relative compact

subset of Yj.
Therefore by the Schauder-Tychonoff fixed point theorem there exists a fixed point
y € S of T satisfying the conclusion of Lemma 5. O

Lemma 6. Let the assumptions of Lemma 4 hold. Then there exist g € I,

0 < ap < 2r9(l+ Qo), 0 < Fo < 2r9(1 + Qo) such that the equation

' an 2 B2
(13) 4" =01y = X, OG0 M =0 (1=xe 6 0)y= () vay= () iy
with jt = g, « = ag, = Py has a solution y satisfying (3) and

(14) Wl <ro, (O] <2r0(1+ Q) fort €R.

Proof. Let S ={y;y e YINP, |y(t) < 2r0Qo(ts —t;) for t € R} C Yo.
S 1s evidently a closed convex bounded subset of the Fréchet space Y. By Lemma
4 (see also Remark 2) for every 1» € S there exist a unique yo € [ and unique
0 < ag <2ro(1 4+ Qo), 0 < Bo < 2r0(1 + Qo) such that equation (6) with g = uo,
« = g, 8 = o has a solution y (which is then unique) satisfying (3), (7) and (14).
Setting 7'(y’) = y we obtain an operator T: S — S. Proceeding analogously to the
proof of Lemma 5, with evident modifications, we can prove that 7' is a continuous
operator and T'(S) is a relative compact subset of Yy. By the Sclllauder—’l‘ychonoff
fixed point theorem there exists a fixed point y € S of T', and from the definition of

T we see that Lemma 6 holds. a
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Lemima 4 [3] yields

Lemma 7. Assume that assumptions (1)-(vi) hold for positive constants o, 71,
and ¢ Is w-periodic. Then for every w-periodic function ¢ € Y1, (¢, ¢') € D there
exists a unique yo € I such that equation (2) with pt = pg has an w-periodic solution

y satisfying
(15) y(to) = 0.

This solution y is unique and (y,y') € D.

Using the method of the proof of Lemma 4 [3] we can easily prove

Lemma 8. Assume that assumptions (j)—(u) hold for a positive constant rq and ¢
is w-periodic. Then for every w-periodic function ¢ € P there exists a unique yg € [
such that equation (4) with jt = po has an w-periodic solution y satisfying (15). This
solution y is unique and

v < 1o, Y ()] € 2rowQy for t €R,

where Q) = max{q(t); t € (to,to +w)}.

3. BOUNDEDNESS OF SOLUTIONS

Theorem 1. Assume that assumptions (1)-(v) hold for positive constants rg, r;.
Then there exists pio € [ such that equation (1) with g = po has a solution vy,
y(to) = 0 and (y,y’) € D.

Proof. Let {t,}, {zn} be sequences, ... < th4; <ilp < ...< ) <lo <z <
)<<y < Tpyy < ..., lim b, = —c0, lim 2, = oo, and let @ = sup{q(t); ¢t €
n—00

n—oo

2 . .
R}, B = nmx{;—:,roQ + A}. By Lema 5 and its proof, the equation

2 3\ 2
Y =4Oy = Xtp e (O F [y, v 1] = () (1= X0, 0 (£)y — (i) ve, ()y— (7/—0) 7, ()y

has a solution yn, yn(tn) = yn(to) = yn(zn) = 0, (¥n,y,) € D, |y,i(t)] < B for
teER—{tn,z,} with gt = i, a = apy, B = B, where i, € I, 0 < ap <71, 0 < B <
1. Consider the sequence {y,(¢)}. Using the Ascoli theorem and Cauchy’s diagonal
method we may assume, without loss of generality, that {y,(¢)}, {y,(t)} are locally
uniformly convergent on R. Since {yt,,}, {a@n}, {3} are bounded sequences, we may

also assume that they are convergent, lim g, = po, lim a, = ap, lim B, = By.
n—oo n—00 n— o0
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Let y(¢t) = lim y,(t) fort € Rand let J C R be a compact interval. Then y(to) = 0,
n—00
(y,¥') € D and by letting n — oo in the equalities

Yn(t) = () yn(t) = Xtn 20 (O F [, Yoo i) () = q(0) (1 = Xtp,20 (£)) yn ()
— (52) e, Onl0) - (’f,—;)“mu)yn(t),
teR—{t,,z,},n €N,
we obtain

y'(1) —a(y(t) = Fly.y', po](t) forte .
Since J 1s an arbitrary interval, we see that y is a solution of (1) with u = o,
y(to) =0, (v,¥') € D. o
Example 1. Consider the equation

t2

(16)  y" —q(t)y = % / lyiﬁiz ds + cos (y' (v(t)) + t) exp ( (p(t)) = ) + 1,

—cht

where ¢, ¥, ¢ € C°(R), 4 < q(t) < Q for t € R. Assumptions (i)-(v) hold with
ro = 1, r, = 2,/Q+4 and I = (=2,2). Therefore by Theorem 1 there exists
fto € (—2,2) such that equation (16) with g = o has a solution y, y(to) = 0,

)] <1, |y ()] < 2v/Q 4 for t €R.

Theorem 2. Assume that assumptions (j)—(ju) hold for a positive constant rg
and @ = sup{q(t);¢t € R} < co. Then there exists jig € I such that the equation

(17) v —q()y = Gly, 1]
with u = po has a solution y, y(to) = 0 and |y(¢)| < o for t € R.

Proof. Let {t,}, {zn} be asin the proof of Theorem I, z; —¢; > 2. By Lemma
6 the equation

v = q(0)y = Xt en (OGy ) = q(O) (1 = v, 2, ()Y
(&) 0w - (£)

7o ro
has a solution 1 Yny ¥ Jn( n) = Jn(fO) = Jn(-Ln = O |Jn i X 7o, ny,(l)l S 27'0(1 + (.,))
fort € R with . = pp, @ = o, B = By where y,, € I, 0 < a,, < 2rp(1 + Q).
0 < Bn < 2ro(1 + Q). As in the proof of Theorem 1 we may assume that {y,(¢)}
is locally uniformly convergent on R, hm j, = jo, lim «, = ag, him 8, = fo.
n—00 n—00 n—aoc
Setting y(t) = lim y,(t) for t € R we have y(to) = 0, |y(t)] < 7o for t € R and it is
n—oo

obvious that y is a solution of (17) with 1t = . O
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Example 2. Consider the equation

In(1+]])
(18)  y" —q(t)y = arctant(1 + supI {y(s))ey ) / e~ ltly(s) ds + 5"y,
ogsg|t
t3

where ¢, ¢ € C%R), 3re?(1 + e?) < q(t), sup{q(t); t € R} < co. Since the as-
sumptions of Theorem 2 are satisfied for p € <—67te3, 67[63) and 7o = 2 there exists
pto € (—6me®, 6me®) such that equation (18) with i = po has a solution y, y(to) = 0,
ly(t)] < 2 for t €RR.

4. PERIODICITY OF SOLUTIONS

Theorem 3. Let assumptions (i)-(vi) be satisfied for positive constants rq, 7
and let ¢ be w-periodic. Then there exists pg € I such that equation (1) with p = pg
has an w-periodic solution y, (y,y’) € D and y(to) = 0.

Proof. By Lemma 7 for every w-periodic ¢ € Y}, (¢,¢') € D there exists a
unique jo € [ such that equation (2) with g = po has an w-periodic solution ¥,
y(to) = 0 and (y,y’) € D. This solution y is unique and we may write it in the form

totw
r(t,to) / ,
y(t) = —Lt) [ ‘ _
y(t) r(to, to +w) r(to +w,5)Flp, ¢ pol(s) ds
to

t
+/ r(t,s)Flp, ¢, po)(s)ds, teR.

to

Setting T'(¢) = y we obtain an operator T: S — S with S = {y; y e Y1, (y,¥') € D,
y is w-periodic}. To complete the proof of Theorem 3 it is sufficient to prove that T
has a fixed point.

We will prove that T" is a completely continuous operator. Let {yn}, yn € S be a
convergent sequence, “lil.'lr‘lu Yn = vy, and let z,, = T(yn), 2 = T(y). Then there exist

{tn}, pn € I and po € 1 such that

totw
r("\t()) ,
Snt - N ’ . ”
© 7(to, to +w) / (to+w, 8)F[yn, Yn, pnl(s) ds
to
t
+/ r(t, 8)Fyn, yi, 1tn](s)ds, t€eR,
to
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and

totw
r(t,t
) fo
t
+/ r(,8)Fy, Y, jo)(s)ds, teR.
to
Obviously
,( totw
(¢t
nlt) = 2 [t )Pl ()
to

t
+/ T (t, $)F[yn, Ui, ptn](s)ds, ¢ €R.
to

If {¢tn} is not a convergent sequence then there exist convergent subsequences {s, },

{pr, }, im g, = Ay, im pr, = Aa, A < Ao, and consequently
n— 00 n—o0

)
. 7. b
to

t
+ [ )Pl N6 ds
to

totw
lim =/ _ 7"1(t,t0) : . ,
i 5 (1) = o tot @) r(to+w,s)Fly, ¥, Aa](s) ds
) o
t
+ [ )Py A ds
to

uniformly on R. Since z, are w-periodic, we have

to+w
(19) 0= "liuclo (2, (to+w) — =z (L)) = / k(s)Fy. v, A](s) ds,
to
totw
0= lim (5 (to+w)—z (to)) = / k(s)Fly, ¥, Aa](s) ds,
to
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where k(t) = %—‘r(to+w,t)+r’l(t0+w,t) for t € (to, to +w). Since k(t) > 0

on (to,to +w) by Lemma 2 [3] and Fly, v, \1](t) < Fly, ¥, A2)(¢) for t € (to,to + w)
(by (iii)) we have

totw

E(){Fly,v', Ml(s) = Fly, ¥/, A2](s)} ds < 0,

to

which contradicts (19). Therefore {y,} is convergent and we may write lim p, =
n— 00
1. Then

totw
* _ : . — T(t,tg) roo*
(2"(t) =) lim z,(t) = (o to+ ) / r(to +w,s)Fly, ¥, p7(s)ds
to
t
+/ r(t, s)Fly, ', u*](s) ds
to
and
(tt) T
. / 7'11 t,to / PR
1 )= ——— *(t F d:
Jim z, () o o +2) r(to +w,s)Fly, v, 1*)(s)ds
to

+[rwwwwymmn® (= 2 (1))

uniformly on R. Hence z* is an w-periodic solution (which is then unique) of the
equation

M —q(t)z = Fly, ¢, 1”1(2),

2*(to) = 0, (:*,z*') € D. By Lemma 7 po = p* and z = 2z* and therefore
lim T'(yn) = T'(y), thus T is a continuous operator. _

n—.I:x;t y € S and z = T(y). Then z"(t) = q(t)=(t) + Fly, ¥, no](t) for t € R, where
pto € I is an appropriate number, and thus |z'(t)] < 7@ + A (= B) for t € R. Since
TS)yCL={y;ye C*R)NS, |y’(t)] < B for t € R} and L is a compact subset
of Y1, T(S) is a relative compact subset of Y;. By Schauder’s fixed point theorem
there exists a fixed point of T. This completes the proof. g

Using Lemima 8 we may prove
Theorem 4. Let assumptions (j)—(u) be satisfied for a positive constant ro and
let ¢ be w-periodic. Then there exist i € I such that equation (17) with u = po

has an w-periodic solution y, y(to) = 0, |y(t)] < ro and |y (t)] < 2row@, fort € R,
where @, is defined as in Lemma 8.
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Example 3. Consider the equation
(20) Y’ — q(t)y = exp (= |y (¢ +sint)| + 1) ch (Jy(t + 1)]") + pexp(cost),

where g € C°(R) is a 2n-periodic function, q(t) > e(1 +e?)chl fort eRand nisa
positive integer. The assumptions of Theorem 3 are satisfied with [ = (—02 ch l,0>,
ro = 1 and ry = 2\/e(l +e2)ch 1 + Q, where @ = max{q(t); t € (0,2n)}. Thus
there exists po € (—ez ch 1,0) such that equation (20) with g = g has a 2n-periodic
solution y, y(to) =0, Jy(t)] < 1, |¥'(t)] < 2/e(1 +e2)ch1+Q for t €R.

Example 4. Consider the equation
(21) Y — q(t)y = cos(2nt) In [yz" (y(t) +t) + e] +

where ¢ € C°(R) is a I-periodic function, ¢(t) > 2In(1+e) for t € R and n is a positive
integer. The assumptions of Theorem 4 are satisfied with I = (= In(1 +€),In(1 + ¢))
and 7o = 1. Therefore there exists po € (—In(1 + €),In(1 + €)) such that equation
(21) with g = po has a l-periodic solution y, y(to) =0, Jy(t)] < 1 and |¢'(t)] < 2@,
for t € R, where Q; = max{q(t); t € (0, 1)}.
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