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Czechoslovak Mathematical Journal, 42 (117) 1992, Praha 

SEQUENTIAL CONVERGENCES IN -£-GROUPS 

WITHOUT URYSOHN'S AXIOM 

JAN JAKUBIK, Kosice*) 

(Received February 25, 1991) 

The system ConvG of all sequential convergences on an ^-group G satisfying 
Urysohn's axiom was investigated in the papers [4-9], [11], [12]. 

All ^-groups which are considered in the present paper are assumed to be abelian. 

Let us denote by conv G the system of all sequential convergences on G which satisfy 

the usual conditions (as in the above mentioned papers) except Urysohn's axiom . 

(For a detailed definition cf. Section 1 below.) 

One of the reasons for studying conv G is the fact that the o-convergence on G 
belongs to convG, but it need not belong in general to the system ConvG . For 
example, the o-convergence on the vector lattice S does not satisfy Urysohn's axiom 
(cf. e.g., [13], Chap . I l l , §9). 

Both the systems Conv G and conv G are partially ordered by inclusion. 

For each a G conv G there exists a uniquely determined element a* of Conv G 
such that a -̂  a* and whenever /? G ConvG with a ^ /?, then a* ^ /?. Hence the 
intersection of the interval [a, a*] of conv G with the system Conv G is a one-element 
set. 

Sample results: 
For each cardinal m there exist an ^-group H and a G conv H such that 

card[a,a*] > m . 

The following conditions are equivalent: 

(i) conv G -= Conv G; (ii) card Conv G = 1 . 

Let convG ^ ConvG . Then the set convG \ ConvG is infinite. Moreover, if the 
breadth of G is infinite, then 

card(conv G \ Conv G) ^ 2N° . 

*) Supported by SAV grant 362/91. 
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A constructive description of atoms of ConvG was given in [7]. It will be proved 
below that there are no atoms in conv G. 

The system conv G is a lower semilattice, but it need not be a lattice. If a0 is the 
o-convergence on G and /? £ conv G, then the join a0 V /? does exist in conv G. If G 
is (K0,2)-distributive, then convG is a complete lattice. 

The system ConvG is in a certain sense a closed subset of convG (cf. 2.9). Each 
interval of conv G is a Brouwerian lattice. For the corresponding dual infinite dis­
tributive law the following negative result will be proved. Let the breadth of G 
be infinite and suppose that G is archimedean, orthogonally complete and divisible; 
then there are a n (n £ N) and /? in Conv G such that both the elements /?V( /\ an) 

n£N 
and /\ (/3 V a n ) do exist in convG (and in ConvG), but these elements fail to be 

n£N 
equal. 

1. PRELIMINARIES 

Let G be an ^-group. Next, let g £ G and (gn) £ GN. If gn = g for each n £ N, 
then we write (<7n) = const g. For (hn) £ GN we set (hn) ~ (gn) if there is m £ N 
such that hn = gn for each n £ N with n^ m. 

Let a be a subset of the semigroup (GN)+. Consider the following conditions for 
the set a: 

(I) If (gn) £ a, then each subsequence of (gn) belongs to a. 
(II) Let (gn) £ ( G N ) + . If each subsequence of (gn) has a subsequence belonging to 

a, then (gn) belongs to a. 
(IF) Let (gn) £ a and (ftn) £ (G")+. If (hn) ~ (gn), then (hn) £ a. 
(Ill) Let g £ G. Then const g belongs to a if and only if g = 0. 

The system of all convex semigroups a of (GN)* which satisfy the conditions (I), 
(II) and (III) (or the conditions (I), (IP) and (III)) will be denoted by ConvG (or 
convG, respectively). (Cf. e.g., [10], Section 1.) It is obvious that ConvG C convG. 

For (gn) £ GN, g £ G and a £ convG we put gn —>a g if and only if (\gn— g\) £ a. 
Let a(o) be the set of all sequences (<7n) in G + having the property that there is 

(hn) £ (GN)+ such that (i) /in+i ^ hn is valid for each n £ N; (ii) / \ hn = 0; (iii) 
n€IV 

there is m £ N such that hn ^ gn for each n £ N with n ^ m. (Then we clearly 
have a(o) £ convG.) The set a(o) will be said to be the o-convergence in G. 

As we have already remarked above, a(o) need not belong to ConvG. 
Both ConvG and convG are partially ordered by inclusion. 
For a\ and a 2 in conv G with a\ ^ a2 we denote by [ai ,a 2] the corresponding 

interval of conv G. Let a(d) be the set of all (gn) £ (GN)+ such that the set 
{n £ N: gn ^ 0} is finite. Then a(d) is the least element of both Conv G and 
conv G. 
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Let a G convG. We denote by a* the set of all elements (gn) of (GN)+ such that 
each subsequence of (gn) has a subsequence belonging to a. Clearly a C a*. 

Lemma 1.1. Let a G convG. Then a* G ConvG. Iff3£ ConvG and ft ^ a. 
then P^ a*. 

P r o o f . The first assertion is a consequence of [5], Theorem 2; the latter is 
obvious. • 

R e m a r k 1.2. In [12] the author studied several types of kernels in a convergence 
if-group, where "convergence -?-group" denoted an if-group with a fixed convergence 
belonging to ConvG. Nevertheless, the condition (II) was not applied and thus the 
results and their proofs are valid also in the case when the convergence under con­
sideration belongs to conv G. [In the original version (which concerns convergences 
belonging to ConvG), Lemma 4.1 is to be cancelled; namely in the proof of this 
lemma the notion of o-convergence was used. Lemma 4.1 was not applied in the 
proofs of further results of [12].] 

2. THE PARTIALLY ORDERED SYSTEM convG 

Again, let G be an ^-group. If {<*»}ie/ is a nonempty system of elements of conv G, 
then the set f] a,- is nonempty and satisfies the conditions (I), (IP) and (III). Hence 
we have %eI 

Proposition 2.1. Let X ^ 0 be an upper-bounded subset of conv G. Then X is 
a complete lattice. If {ai}t'eI iS a s above, then f] a,- = A a» IS vaiid -J- convG. 

•€I t€I 

We recall the following notation (cf. [5], Section 2). 
Let 0 ^ A C (GN)+. We denote 6A — the set of all (gn) G (GN)+ such that (gn) 

is a subsequence of some sequence belonging to A; 
(A) — the set of all (gn) G (GN)+ having the property that there exist k £ N and 

foi)> (0n)> • • • > (9n) e A such that gn ^ gn + gn + . . . + gn holds for each neN; 
[A] — the set of all (gn) G (GN)+ having the property that there exists (hn) G A 

such that gn ^ hn is valid for each n G N. 
Now, let A0 be the set of all (gn) G (GN)+ that there exists (hn) G A with 

(9n)~(hn). 

Lemma 2.2. Let 0 ^ A C (GN)+. Put B = [(6A)], Bx = B°. Then 
(i) B = 6B = (B), and 
(ii).Bi = flJ=«Bi = (.Bi). 

P r o o f , (i) is a consequence of 1.15 in [6]. It is obvious that 6(A°) = (6A)0, 
(A0) = (A)0 and [A0] = [A]0. Hence (i) implies that (ii) holds. D 
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From the definition of convG and from 2.2 we immediately obtain: 

P r o p o s i t i o n 2 .3 . Let 0 ^ A C (GN)+. Put B = [{6A)]°. If there exists 

O / I / G G such that const g £ B, then there is no a £ conv G with A C a. If there 

is no element g E G such that g -^ 0 and constg £ 5 , then B £ convG; moreover, 

whenever a £ convG and AC. a, then B C a. 

Next, 1.1 yields: 

L e m m a 2 .4 . Let 8 / . 4 C (GN)~*~. Then the following conditions are equivalent: 

(i) There exists a £ C o n v G with AC a. 

(ii) There exists (3 £ conv G witA A C f3. 

P r o p o s i t i o n 2 .5 . There exists an £-group G such that the partially ordered set 

conv G faiis to be a lattice. 

P r o o f . In [6], Example 7.6, it was proved that there exists an ^-group G having 

the property tha t there are a\ and a-i in Conv G such tha t whenever a £ Conv G, 

then ai U 0:2 fails to be a subset of a. Now from 2.4 we obtain tha t whenever 

(3 £ conv G, then a i U a^ fails to be a subset of /?. Therefore the join a\ V c*2 does 

not exist in conv G. • 

By appliyng 2.1, 2.4 and proceeding analogous by as in [5], Theorem 2.6 we obtain: 

P r o p o s i t i o n 2 .6 . The following conditions are equivalent: 

(i) conv G is a lattice. 

(ii) conv G is a complete lattice. 

(iii) conv G has a greatest element. 

L e m m a 2.7. Let {c t ,} , € / be a nonempty subset of conv G. Put A = (J a , and 

B = \(&AJ\. Then the following conditions are equivalent: teI 

(i) B £ conv G. 

(ii) H = V a.'-
iei 

P r o o f . The implication (ii) => (i) is obvious. Clearly A0 = A. Thus, 2.2 and 

2.3 yield t ha t (i) => (ii) is valid. • 

From 2.1 , 2.4, 2.7 and [5], 2 .1, 2.2 and 2.5 we obtain: 

P r o p o s i t i o n 2 .8 . Let { o , } t € / be a nonempty subset of ConvG. 

(a) The meet of the system {<*,},£/ in ConvG coincides with the meet of this 

system in conv G. 

(b) The join of the system {c*»},'e/ in ConvG exists if and only if the join of this 

system in conv G exists, and in this case these joins coincide. 
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If a G conv G and H is an ^-subgroup of G, then we put 

a[H] = a n ( H N ) + . 

It is obvious that a[H] G conv H. 

E x a m p l e 2.9. Consider the vector lattice S (cf. [13], p. 79-80). Let m be a 
cardinal and let I be a set with card I > m. Next, let G, = S for each i G I. We 
denote by G the direct sum J^ G,. 

•€I 

Let i G I. For y G G let </,• be the component of g in G,. We denote by a,- the set 
of all (gn) G (GN)~*~ having the property that there exists m € N such that (<7n,)n^m 

belongs to the set a(o)[G,], and for each j G I with y -̂  i, the sequence (gnj)n^m 

belongs to the set a(d)[Gj]. From 2.9 we infer a,- G convG and that, whenever i(l) 
and i(2) are distinct elements of I, then a»(i) ^ <*t(2)« Next, it is easy to verify that 
a* consists of all (hn) G (GN)~*~ having the property that there exists m G N such 
that ( h n ) n ^ m belongs to a(o)*[G,], and for each j € I with .; ^ i, the sequence 
(hnj)n>m belongs to a(d)[Gj]. 

Now let a be the set of all (xn) G (GN)~*~ which satisfy the following condition: 
there exist m G N and a finite subset Ii of I such that ( x n , ) n ^ m G a(o)[G,] if i G Ii, 
and (xni)n^m G a(f/)[G,] otherwise. Then in view of 2.3 we have a G convG. Next, 
a, < a and a < a V a* for each i G I. Thus a\/ a* ^ a* for each i G I. If i(l) and 
i(2) are distinct elements of I, then aVa* /^ -̂  a V a . / 2 y This yields that the power 
of the interval [a, a*] of conv G is greater or equal to card I > m. 

L e m m a 2.10. The following conditions are equivalent: 
(i) ConvG has a greatest element; 
(ii) convG has a greatest element. 

P r o o f . This is an immediate consequence of 1.1. D 

Proposition 2.11. Assume that the l-group G is (N0,2)-distributive. Then 
conv G is a complete lattice. 

P r o o f . In view of [12], ConvG is a complete lattice. Hence according to 2.10, 
conv G has a greatest element. Now 2.6 implies that convG is a complete lattice. 

D 
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3 . LATTICE ORDERED GROUPS HAVING FINITE BREADTH 

A subset A of G+ is said to be disjoint if a\ A a2 = 0 whenever a\ and a2 are 
distinct elements of A. If G has an infinite disjoint subset, then we say that the 
breadth of G is infinite; otherwise G is said to have a finite breadth. 

Lemma 3.1. Let G be a linearly ordered group, a £ convG, a ^ <*(o). Then 
a = a(o). 

P r o o f . The case a = a(d) being trivial we can suppose that a > a(d)} hence 
there exists (<7n) £ a such that gn(\) ^ yn(2) whenever n(l) and n(2) are distinct 
elements of N. Let 0 < g £ G. Proposition 2.3 yields that the set { n £ J V : ( / n ^ g} 
is finite. Thus for each n £ N there is m(n) £ N such that 

9m(n) = max{(7t : * £ N and t^ n). 

If n(l) and n(2) are positive integers with n(l) < n(2), then (/m(n(i)) ^ 0m(n(2))- By 
applying 2.3 again we get that f\ gm(n) = 0. Thus (gn) £ a(o) and hence a ^ a(o). 

neN 
Therefore in view of the assumption we have a = &(o). • 

Lemma 3.2. LetG\ andG2 be£-groups, a, £ convG, (i = 1 , 2 ) andG = GixG 2 . 
For g € G let g% (i = 1,2) be tbe component of g in G,. Let a be ibe set of ai7 
(<7n) £ (GN)+ having the property that there exists m £ N sucb tbafc (^n)n^m £ <*» 
(i = 1,2). Tben a £ conv G and the mapping (a\, a2) —• a is an isomorphism of the 
partially ordered system conv(Gi x G2) onto convG. 

P r o o f . This can be verified by using 2.3 and applying analogous steps as in 
[4]. Section 4. • 

Similarly, from 2.3 and by applying the same procedure as in the proof of [4], 
Section 5, we obtain: 

Lemma 3.3. Let G and H be t-groups such that G is a lexico extension of H. 
Let a £ Conv H. Next, let (3 be the set of all (gn) £ (GN)+ having the property that 
there exists m £ N such that (gn+m)neN belongs to a. Then ft £ convG and the 
mapping a —* ft is an isomorphism of the partially ordered set conv H onto conv G. 

Lemma 3.4. (a) Let G\, G2 and G be as in 3.2. Let a; be the o-convergence on 
d (i = 1, 2). Next, let a be as in 3.2. Then a is the o-convergence on G. 

(b) Let G and A be as in 3.3 and let a be the o-convergence on H. Next, let ft be 
as in 3.3. Then ft is the o-convergence on G. 

The p r o o f is easy. 
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It is well-known that each i?-group having a finite breadth can be built up from 
a finite number of linearly ordered groups by forming direct products and lexico 
extensions (cf. [1], [2]). Next, if G is a linearly ordered group, then a(o) G ConvG. 
Thus Lemmas 3.1-3.4 and [4], Theorem 3.9 yield: 

Proposition 3.5. Let G be an t-group having a finite breadth. Then conv G = 
ConvG. 

Lemma 3.6. Let G be an t-group having a finite breadth. Then G is comletely 
distributive. 

P r o o f . This is an easy consequence of the fact that each interval [ti,v] of G 
with u <v has a subinterval [ui, vi] such that u\ < v\ and [tii, v\\ is linearly ordered. 

D 

Propositon 3.7. Let G be an t-group having a finite breadth. Then convG is a 
complete lattice. 

P r o o f . It suffices to apply 2.12 and 3.6. D 

4. THE SYSTEM convG\ConvG 

The main results of this section concern the case when the breadth of G is finite. 
Let (xn) G (GN)+, A = {(xn)}. If a = [{6A)]° and a E convG, then in view of 

2.3, a is the least element of conv G which contains (xn). In this case a will be said 
to be a principal convergence generated by the sequence (xn). 

The following assertion is obvious. 

Lemma 4.1. Let a be an atom of conv G. Then a is a principal convergence 
generated by each sequence (xn) G a with (xn) £ a(d)(G). 

Lemma 4.2. Let (xn),(yn) G (GN)+, xn ^ xn+i for each n G N. Put A = 
{(xn)}. Then the following conditions are equivalent: 

(i) There are positive integers k\ and m such that ym+n -̂  k\xn for each n G N. 

(n)(yn)e[(6A)\\ 

P r o o f . The implication (i) => (ii) obviously holds. Assume that (ii) is valid. 
Then there exist subsequences (zn), (zn)} . . . , (zn) of (xn) and positive integers k 
and m such that 

ym+n ^k(zn+zl + ... + zn) 

is valid for each n £ N. Since zn ^ xn for j = 1, 2, . . . , t we infer that (i) holds. D 
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Corollary 4.2.1. Let a be a principal convergence in G which is generated by 
a strictly decreasing sequence (xn). Let (yn) G a. Assume that (yn) is strictly 
decreasing. Let m and k\ be as in 4.2. Then the set 

{neN: y2n < kixn} 

is infinite. 

P r o o f . Let n G N, n > m. Then y2n < t/m+n, in view of 4.2 the relation 
t/2n < k\xn is valid. • 

Lemma 4.3. Assume that G is linearly ordered. Let a G conv G, a ^ a(d). Then 
there exists (xn) G a such that xn > xn+i for each n G N, and f\ xn = 0. 

P r o o f . Since a -/ a(d) there is (yn) G a such that yn ^ 0 for each n £ N. 
Denote zn = y\ A y2 A . . . A yn. Hence 0 < zn -̂  yn for each n G N; thus (zn) G a. 
According to 2.3, for each n G N there is m G N with m > n such that zm < zn. 
Thus there is a subsequence (xn) of (zn) such that xn > xn+i for each n G N. 
Clearly (xn) G a. Hence f\ xn = 0. • 

n£N 

Lemma 4.4. Let a G conv G and let (xn) be a strictly decreasing sequence be­
longing to a. Then a fails to be an atom in convG. 

P r o o f . By way of contradiction, suppose that a is an atom of conv G. From 
(xn) G a we infer that f\ xn = 0. Next, a is a principal convergence generated by 

neN 
(xn). We construct by induction a subsequence (/n) of (xn) as follows. 

We put t\ = x\. Suppose that t\) t2, ..., tm are already defined. From f\ xn = 0 
neN 

we obtain /\ (m + l)xn = 0. Hence there is n(l) G N such that £n(i) < tm and 
neN 

(m -f l)xn(i) ^ -r2(m+i). We put <m + i = xn(i). 
The relation X2(m-fi) ^ (m -f lj^m+i is valid for each m £ N. Hence if k\ G N, 

m E N and m -f 1 > ki, then 

£2 (m+l) ^ *l^m+l-

In view of 2.3 there exists a principal convergence /? which is generated by (/n) . 
Clearly (tn) G a and hence ft -̂  a . Next, according to 4.2.1 the sequence (xn) does 
not belong to /?. Hence j3 < ct, which is a contradiction. • 

Lemma 4.5. Let G be a linearly ordered. Then conv G has no atom. 

P r o o f . This is a consequence of 4.3 and 4.4. 
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In the remaining par t of the present section we assume tha t G is a nonzero £-group 

having a finite breadth. Thus (cf. [1] or [2]) there are nonzero linearly ordered convex 

^-subgroups G i , G2, • • •, G m of G such tha t 

(i) if H -^ {0} is a convex linearly ordered subgroup of G, then there is a uniquely 

determined i € {1, 2 , . . . , m} such tha t H C G t ; 

(ii) if 0 < gi G G, for each i G {1, 2 , . . . , m } , then {5^1, ̂ 2, • • •, 9m} is a maximal 
disjoint subset of G. 

Let- {<7i> <72> • • •»9m) be a fixed subset of G with the property as in (ii). D 

L e m m a 4 .6 . Let a be a principal element of conv G which is genetated by (xn), 

a ^ &(d). Then there are i G { 1 , 2 , . . . , m} and (?/n) G ct such that 0 < yn G G, for 

each n G N. 

P r o o f . Let i G { 1 , 2 , . . . , m } . Denote x n = x n A <7,. In view of the condition 

(ii) above we conclude tha t for some i, the set {n G N: xn -^ 0} is infinite. Hence 

for this i, there is a subsequence (yn) of (xn) having the desired properties . 

For i G I — { 1 , 2 , . ..,m} and /? G conv G, we denote by /( /?) the set of all 

sequences (vn) in G + which have the following property: there exists m £ N (de­

pending on (vn)) such tha t the sequence (vn A g , ) n ^ m belongs to /?, and vn Agj = 0 

whenever n ^ m and j G i ' \ { i } . D 

The following lemma is an obvious consequence of 2.3. 

L e m m a 4 .7 . Let i G I; next, iet /?i and fa he the elements of conv G t . Then 

/(A) e convo. If/?! < /?2, then / (f t ) < /(/?2). 

L e m m a 4 .8 . Let G be an i-group of a finite breadth. Then conv G has no atom. 

P r o o f . By way of contradiction, suppose tha t a is an a tom of conv G. Hence 

a is principal. Let (xn) and (yn) be as in 4.6. Then there is a principal element (3 

of conv Gi which is generated by (yn). Hence /(/?) ^ a and a(d) -^ / ( /? ) . Since a 

is an a tom we infer tha t a = / ( / ? ) . Also, /? fails to be the least element of conv Gi . 

Thus according to 4.5 there is fa G convG, with fa < fa In view of 4.7 we obtain 

tha t f(fa) G convG and {(fa) < <*, which is a contradiction . 

Let us remark tha t the above lemma will be sharpened in Section 5 below. D 

Coro l lary 4 .9 . Let G be an i-group having a finite breadth. Assume that 

card Conv G > 1. Then the set conv G \ Conv G is infinite. 

P r o o f . According to [4], Theorem 6.5, the set C o n v G is finite. Next, in view 

of card C o n v G > 1 there is a G C o n v G with a -^ a(d). Hence the assertion follows 

from 4.8. D 
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L e m m a 4.10. Let G be an t-group having a finite breadth. Then the following 
conditions are equivalent: 

(i) cardConvG = 1. 
(ii) The set conv G \ Conv G is finite. 

P r o o f . The implication (ii) => (i) is obvious. Let (i) be valid. By way of 
contradiction, suppose that card conv G > 1. Hence there is a G convG with a ^ 
a(d). Without loss of generality we can assume that a is principal. Let (xn) and 
(yn) be as in 4.6. There exists /? C conv G, such that (yn) G ft- Hence according to 
4.3 there is (tn) G (GN)+ such that tn > 2n+i for each n G N and / \ tn = 0. By 

applying [5], Theorem 2.2 we get the ConvG / {a(c.1)}, which is a contradiction. 
D 

Lemma 4.11. Let G be an t-group of finite breadth. Then the following condi­
tions are equivalent: 

(i) card ConvG > 1. 
(ii) The set conv G \ Conv G is infinite. 

P r o o f . This is a consequence of 4.9 and 4.10. D 

5. T H E CASE OF ^-GROUPS HAVING INFINITE BREADTH 

We denote by D the system of all sequences (xn) £ (GN)+ which satisfy the 
following conditions: 

(i) xn > 0 for each n G N; 
(ii) xn A xm = 0 whenever n and m are distinct positive integers. 
Hence D ^ 0 if and only if the breadth of G is infinite. 
From [4], Theorem 7.3 we obtain 

Lemma 5.1. Let (xn) G D. Then there exists a G ConvG such that (xn) G a. 

Lemma 5.2. Let (xn) G D, A = {(xn)}. Then [(SA)]° G convG. 

P r o o f . This is a consequence of 5.1 and 2.3. D 

Let (xn) G D. Denote 

2/1 = *i\ 

2/2 = 2/3 = x2; 

2/4 = V5 = 2/6 = -P35 
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L e m m a 5 .3 . Let (xn), (yn) and A be as above. Then (yn) does not belong to 

[(6A)]\ 

P r o o f . By way of contradiction, assume tha t (yn) belongs to [(#-4)] . Hence 

there exist subsequences ( x n ) , (xn), ..., (x™) of (xn) and positive integers k, ki, m 

such tha t 

yn ^ k ! ( x n - f x n - F . . . + x n ) 

is valid for each n € N with n > m. 

Let n G N be such tha t n > m and n > 2. Then yn = £ n ( i ) for some n ( l ) < n. 

Hence t/nAxJ
n = 0 for each j G { 1 , 2 , . . . , k } and therefore yn £ fci(xn + .rn-r- . . .-f-cn), 

which is a contradiction . D 

L e m m a 5 .4 . Let (xn) and A be as above. Then [(6A)] does not belong to 

C o n v G . 

P r o o f . Let (yn) be as above. Each subsequence (zn) of (yn) has a subsequence 

(tn) such tha t (tn) is a subsequence of (xn)) whence (tn) G [(^-4)1 . On the other 

hand, in view of 5.3 the sequence (yn) does not belong to [(6A)] . Hence [(6-4)]° 

fails to be an element of Conv G. D 

L e m m a 5.5 . Let (xn) and (x'n) be sequences belonging to D. Assume that xn A 

x'm = 0 whenever n and m are positive integers. Let A = {(-c n )} , A' — { ( # „ ) } . 

Then[(6A)]"^[(6A')]\ 

P r o o f . By an obvious verification. D 

If G has infinite breadth, then there exist (x™) in D (m = 1, 2, . . . ) such tha t 
xrTm ^ xnY2} = ^ whenever m ( l ) and m(2) are distinct positive integers and n ( l ) , 

n(2) are arbitrary positive integers . Hence 5.4 and 5.5 yield 

P r o p o s i t i o n 5.6. Let G be an l-group with infinite breadth. Then the set 

conv G \ Conv G is infinite. 

This result can be slightly sharpened if we apply the following argument . Let 

(xj^) be as above. For 0 ^ M C N let OLM be the convergence which is generated by 

the S(M) = { 0 C ) } m G M . -•*., ocM = [(<5S(M))]°. (From 2.3 we infer tha t , in fact, 

OLM 6 conv G.) Next, if Mi and M2 are nonempty subsets of N with Mi -^ M2, then 

<*Mi 7̂  « M 3 - Moreover, analogously as in 5.5 we have OLM £ C o n v G . 

Thus we obtain 

T h e o r e m 5 . 6 . 1 . Let G be an £-group with infinite breadth. Then c a r d ( c o n v G \ 

Conv G) ^ 2*o. 

From 5.6 and 4.11 we obtain 
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C o r o l l a r y 5 .7 . Let G be an t-group. Then either (i) convG = C o n v G , or (ii) 

the set conv G \ Conv G is infinite. The condition (i) is valid if and only if Conv G is 

a one-element set. 

The following assertion is easy to verify. 

L e m m a 5.8 . An t-group G has a finite breadth if and only if there exists a finite 

set M = {a i , a 2 , . . . , a m } in G such that M is a maximal disjoint subset of G and 

each interval [0, a,] (i G { 1 , 2 , . . . , m}) is a chain. 

Let us denote by S(G) the set of all x G G + such that the interval [0, x] of G is a 

chain, and whenever (xn) is a sequence of elements in [0,x] with xn > £ n +i for each 

n G N, then the relation ^ xn = 0 fails to hold. 
nGIV 

P r o p o s i t i o n 5 .9 . Let G be an t-group. Then convG = C o n v G if and only if 

there exists a finite subset Si of S(G) such that S\ is a maximal disjoint subset of 

G. 

P r o o f . The case G = {0} is trivial; suppose that G ?- {0}. 

Assume tha t conv G = C o n v G . Hence in view of 5.6, the breadth of G is finite. 

Thus there exists a set M with the properties as in 5.8. Pu t S\ = M. Let i G I 

and suppose that a,- does not belong to S(G). Then there exists a strictly decreasing 
sequence (xn) in [0, a,] such tha t / \ xn = 0. There exists a G Conv G with (xn) G a . 

n£N 
Clearly (xn) (£ a(d), whence a / a(a I), which contradicts 5.7. Therefore Si C S(G). 

Conversely, assume that there is a finite subset Si = { a i , . . . ,<7m} of S(G) such 

tha t Si is a maximal disjoint subset of G. By 5.8 the breadth of G is finite. By 

virtue of 3.5 the relation conv G = Conv G is valid. • 

Again, let (xn) G D. Pu t zn = x^n for each n G N• We denote by a and /? the 
elements of conv G generated by (xn) and (zn), respectively. Using this notat ion we 
have the following lemma. 

L e m m a 5 .10 . /? < a. 

P r o o f . Since (zn) is a subsequence of (xn), the relation (zn) G c* holds. Thus 

fi $C a . By way of contradiction, suppose tha t /3 = a. Then there are k, k\} m G N 

and subsequences (zn), (-?n), . . .,* (z„) of (z n ) such that 

*„<*i(*J + z2+ ... + **) 

is valid for each n £ N with n > m. But the relation ( x n ) G I? implies that if n is 

odd, then this relation cannot hold. • 
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Corollary 5.11. Let a £ convG. Assume that a contains a sequence belonging 
to D. Then a fails to be an atom of conv G. 

Lemma 5.12. Let a £ convG, a ^ a(d). Then at least one of the following 
conditions is valid: 

(i) a contains a strictly decreasing sequence. 
(ii) a contains a sequence belonging to D. 

P r o o f . Assume that (i) does not hold. We have to verify that (ii) is valid. 
Since a ^ a(d) there exists (xn) £ a such that xn > 0 for each n £ N. We construct 
a sequence (yn) as follows. 

When defining t/i we distinquish two cases. 

(a) First, suppose that the set {n £ N: x\ A xn = 0} is infinite. Then we put 
t/i = x\. Further, for constructing 3/2, 2/3, ••• we apply the subsequence of (xn) 
consisting of those xn which satisfy the condition x\ Axn = 0. 

(bl) Suppose that the set {n £ N: X\ A xn = 0} is finite and that the interval 
[0, x\] is a chain. Then by the same argument as in the proof 4.3 we can verify 
that there exists a strictly decreasing subsequence of the sequence (x\ A xn) such 
that all elements of this subsequence belong to the interval [0, i i ] . This subsequence 
obviously belongs to a, which is a contradiction. 

(b2) Assume that the set {n £ N: x\ Axn = 0} is finite and that the interval [0, £1] 
fails to be a chain. Hence there are elements X\\ and x\2 such that 0 < xu < x\ is 
valid for i = 1, 2 and xu A X\2 — 0. 

If the set {n £ N: x\\ Axn = 0} is finite, then we put t/i = X\2 and for constructing 
2/2,2/3, • • we apply the sequence consisting of those x\\ Axn which are distinct from 0. 

If the set {n £ N: i n A xn = 0 } is infinite, then we put t/i = x\\ and for 
constructing j/2, 2/3, • • • we apply the sequence consisting of those xn which satisfy 
the condition x\\ A xn = 0. 

The next induction step is obvious. In this way we arrive at a sequence which 
belongs to a fl D. • 

Theorem 5.13. The partially ordered set conv<? has no atom. 

P r o o f . This is a consequence of 5.12, 5.11 and 4.4. • 
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6. INFINITE DISTRIBUTIVE LAWS 

In this section we shall investigate the question whether the infinite distributive 
laws must be valid in conv G. 

Let a t(i G I) and /? be elements of conv G. 

Lemma 6.1. Assume that \J at does exist in convG. Then both /?A( V a*) and 
«€/ «€/ 

V (P A a t) exist in conv G and 
*€/ 

(1) /?A(V"«) = V ^ A a ' ) . 
«€/ »€/ 

P r o o f . In view of 2.1, the element 7 = P A(\J a t) exists in convG. Clearly 
«€/ 

P jVat -̂  7 for each i G / . Hence \/ (0 A a t) exists in convG and \/ (P A a t) ^ 7. 
«€/ »€/ 

Let (xn) G 7. Thus (xn) G /? and in view of 2.7 there are i(l) , t(2), . . . , i(m) in 
7, (yn) G ar,-(i), . • -, (:C) ^ a«(m) such that xn ^ yn -h yn + . . . -h Ĵ 1 is valid for 
each n £ N. Hence there are elements xn in G with 0 -̂  xn ^ y^ (j = 1, 2, . . . , 
m; n = 1,2,...) such that xn = xn 4- xn -f . . . + x™ for each nGiV. Then (xn) G ,5 
for .; = 1, 2, . . . , m and hence (xn) € \/ (ft A a,). Thus the relation (1) holds. • 

«€/ 

In view of 2.8 we obtain 

Corollary 6.2. Let a, (t G / ) and /? be elements of ConvG such that \/ a t does 
•€/ 

exist in Conv G. Then the relation (1) is valid in Conv G. 

Corollary 6.3. Each intervai of conv G is a Brouwerian lattice. 

Corollary 6.4. (Cf. [5], Theorem 2.5.) Each interval of ConvG is a Brouwerian 
lattice. 

Proposition 6.5. Let G be a lattice ordered group of infinite breadth. Assume 
that G is orthogonally complete and divisible. Then there are ft and a n (n G N) in 
Conv G such that both ft V ( /\ an) and /\ (/? V an) do exist in Conv G, but these 
elements fail to be equal. neN neN 

For proving this we need some auxiliary results. 
For a nonempty subset A of (GN)+ we denote by A* the system of all (xn) G 

(GN)+ such that for each subsequence (yn) of (xn) there exists a subsequence (zn) 
of (yn) with (zn) eA. 

We shall apply the following (slightly modified) version of 2.3. (Cf. also [4].) 
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Proposition 6.6. Let A be a nonempty subset of(GN)+. 
(i) If there is 0 ^ g G G+ such that const g G [(£-4)] , then there is no a G Conv G 

with A C a . 
(ii) If there is no element g G G with g / 0 such that const g G [(^-4)] , then 

[(6 A)] G Conv G and whenever a G Conv G with AC a, then a D [(6 A)] . 

If the condition from (ii) is satisfied, then A is said to be regular and the system 
[(£-4)] is called the convergence in Conv G which is generated by A. If, moreover, 
A = {(xn)} is a one-element set, then (xn) is said to be regular. 

Now assume that G has an infinite breadth and that G is orthogonally complete, 
divisible and archimedean. 

There exists (xn) in (GN)+ such that (xn) G D. Next, because G is orthogonally 
complete, for each t G N there exists yt = Vxn(n G N, n > t). 

For each fixed t G N we consider the sequence (̂ -J/n)-

Lemma 6.7. Let t G N. Then the sequence (^yt) is regular. 

P r o o f . This is an immediate consequence of 6.6 and of the fact that G is 
archimedean. 

In view of 6.7 there exists at G ConvG such that at is generated by the sequence 
(^yt) in ConvG. • 

The above Lemmas 6 .8-6 .11 are also consequences of 6.6. 

L e m m a 6.8. Let t G N. Next, let 0 < a G G, a A yt = 0 and (un) G at. Then 
there is m £ N such that a A un = 0 for each n G N with n^ m. 

Corollary 6.8.1. /\ an = cr(d). 
n€-V 

For * G N we put z< = xi V £2 V . . . V xt. Let A be the system of all sequences 

(nZt)neN> w n e r e * r u n s o v e r - ^ 

L e m m a 6.9. The set A is regular. 

According to 6.9 there exists 0 G ConvG which is generated by A in ConvG. 

L e m m a 6.10. Let (vn) G P. Then there are m(l) and m(2) G N such that, 
whenever n G N, n ^ m(l) and 0 < a G G, a A xm = 0 for each m < m(2), then 
vn A a = 0. 

Put x = V xn . From 6.10 we infer 
nG-V 

Corollary 6.10.1. The sequence (^x) does not belong to /?. 

L e m m a 6.11. Let t G N. Then the set A U at is regular. 
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Corollary 6.12. Let t e N. Then the join P V at does exist in Conv G. 

Lemma 6.13. Let t e N. Then (±x) e P V at. 

P r o o f . We have x = zt + yt. Next, (^zt) e P and (^yt) e at. Therefore 
(£*n )e / ?Var , . D 

P r o o f of 6.5. In viev of 6.13 the relation (^x) e /\ (P V at) is valid. Next, 
t'€-V 

6.8A yields that /?V( ^ at) = p. Thus according to 6.10.1 the sequence (-xn) does 
teN n 

not belong to /? V ( ^ a t ) , which completes the proof. • 
teN 

Finally, 6.5 and 2.8 yield: 

Corollary 6.14. In 6.5f the set ConvG can be replaced by convG. 
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