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Math. Slovaca 33,1983, No. 4, 329—334 

DOUBLE COVERS AND LOGICS OF GRAPHS II 

BOHDAN ZELINKA 

This paper is a continuation of results from [4]. The considered graphs are 
undirected graphs without loops and multiple edges. 

The main concepts of this topic are the logic of a graph (introduced in [2] and 
based on a more general concept from [1]) and the double cover of a graph [3]. 

Let V(G) be the vertex set of a graph G. If A is a subset of V(G), then by A x 

we denote the set of all vertices of V(G) which are adjacent to all vertices of A in 
G. Further we denote A±J- = (A^)x and for a one-element subset {u} of V(G) we 
write wx and u±J~ instead of {u}± and {u} ± J \ 

Obviously A^A±J~ for each subset A of V(G) and A czB implies B±c:A
± for 

any two subsets A, B of V(G). For each subset A of V(G) we have (A±±)± = 
(A±)±± = A±. If A = 0 , then A±=V(G), A±± = Q. If A = A± X , we say that A is 
±±-closed. The _L±-closed subsets of V(G) form a complete lattice with respect 
to the set inclusion. This lattice together with the unary operation assigning A ^ to 
A (this operation is an operation of complementation on this lattice) is called the 
logic of the graph G and denoted by S£(G). The least element of S£(G) is the empty 

set, its greatest element is V(G). For each AeZ£(G) we have A = f\ a± = 
a e A 1 

u«xx . 
aeA 

Also the following two assertions are evident. For any A cz V(G) we have 

A±= f) a±. For any system {A , } i e t of subsets of V(G), where I is a subscript set, 
a e A 

we have 

(iMy=fw. 
X i e/ / iel 

We shall not reproduce the general definition of the double cover of a graph. We 
shall study only a particular case of double covers — the bipartite double covers. 

If G is a graph with the vertex set V(G), then the bipartite double cover B(G) of 
G is the bipartite graph on the (disjoint) sets V = V(G) and V = {v'\ve V(G)} 
such that if u is adjacent to v in G, then u is adjacent to v' and u' is adjacent to v 
in B(G) and no other edges in B(G) exist. 

We shall consider some properties of graphs concerning the sets A \ 
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Property P I . A graph G has no vertices of the degree 0 or 1 and | u ± n v ± \ = 1 for 
any two distinct vertices u, v of G. 

Property P 2 . For any two vertices u, v of G the inclusion ux cz v± implies u = v. 

Property P 3 . For any two vertices u, v of G the inclusion u±<=1v
± implies 

u± = v±. 

Property P 4 . For any two vertices u, v of G the equality u^ = u x implies w = v. 

Property P5 . For each vertex JC € V(G) and each subset Y cz V(G) the equality 
JC^ = Yx implies JC e Y. 

Property P6 . For each vertex JCG V(G) the element JCX is completely meet-
-irreducible in if(G). 

Evidently P I =>P2--->P3, but not conversely, P 2 = > P 4 , but not conversely, 
and P2<=>P3&P4. 

Proposition 1. A graph G has the property P 5 if and only if it has the properties 
P 4 and P6 . 

Proof. Let G have the properties P4 and P6 . If JCG V(G) and Ycz V(G) are 

such that JCX = Y±, then JCX = f] y±. As G has the property P 6 , we have xL = y± for 

an element y e Y. According to the property P 4 this implies x = y eY. 
Conversely, let G have the property P 5 . Evidently it has also the property P4 . If 

jce V(G) and jc^ = n A f° r a family {A,} I 6 l of elements of i?(G), then x± = 

iel 

PI A,J-L = ( ( J A/•) . According to the property P 5 this implies xeAt for some / e I 
iel \iel / 

and therefore A j c x 1 , which together with JC^CZA, implies x± = Al. Hence JCX is 
completely meet-irreducible in J£(G). • 

Proposition 2. If G, H are graphs with the property P 5 and ^ ( G ) = %(H), then 
G = H. 

Proof. Let qp: if(G)—>!£(H) be an isomorphism. According to the property P 6 
for each JC e V(G) there exists ye V(H) such that (p(x±) = y±. According to the 
property P 4 such an element y is unique. Define the mapping ^ : V(G)-> V(H), 
jct-»y in such a way that q)(x±) = y±. Evidently ty is a bijection. If JC e V(G), 
y e V ( G ) , then {x,y}eE(G) o xey± o x±±czy± o (p(jc-L±)c(p(y-L) o 
cp(jc-L)-Lc^(y)-L o Vto^ctylyy o {xp(x), xp(y)}eE(H). Hence tp is an 
isomorphism of the graphs G and H. B 

Now let G be a graph and let A e <^(G). If A is an atom in £(G), then A = jc±x 

for an element JC e V(G). If A is a dual atom in J£(G), then A = x± for an element 
JC e V(G). These as ertions are evident. 
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Proposition 3. Let G be a graph. Then the following three assertions are 
equivalent: 

(i) G has the property P2. 
(ii) For any vertex u of G, u±JL = {u}. 

(iii) The set of atoms of £(G) is equal to the set of all one-element subsets of 
V(G). 

Proof, (i) --> (ii). If u e V(G) and v e ux±, then ux = u±x± c t^ and according to 
the property P2 this implies u = v. 

(ii) => (i). If u e V(G), v e V(G) and ux cz v \ then by (ii) we have {v} = v±±c 
u±J~ = {u}, hence u = v. 

(ii)o(iii). This is now evident. • 

Proposition 4. Let G be a graph. Then the following three assertions are 
equivalent: 

(i) G has the property P 3 . 
(ii) The set of atoms of S£(G) is equal to the set of all sets u±JL for u e V(G). 

(iii) The set of dual atoms of J£(G) is equal to the set of all sets u*- for u e V(G). 
Proof. (i)=>(ii). UueV(G), 0±Ae<£(G) a n d A c w 1 1 , then for each a e A 

we have u±c:A
±c:a

± and according to the property P 3 this implies u± = A± = a±. 
Then A = u±J-, because A±± = A. 

(ii) i> (iii). UueV(G), Ae<£(G), A± V(G) and uxc=A, then A±cu±± and 
according to (ii) this implies A± = u±± and hence A = ux. 

(iii) => (i). If u e V(G), v e V(G) and u±cv±
9 then according to (iii) we have 

u± = v±. Hence G has P3 . • 

Proposition 5. Let Gbe a graph, \ V(G)\^2. Then the following two assertions 
are equivalent: 

(i) G has the property P I . 
(ii) The logic !£(G) of G consists of the least element 0, the set of atoms equal to 

the set of all one-element subsets of V(G), the set of dual atoms equal to the 
set of all sets uxforue V(G) and the greatest element V(G) and no atom of 
S£(G) is equal to a dual atom of S£(G). 

Proof, (i) --> (ii). Let G have the property P I . Then it has also the properties 
P2 and P3 . Hence the set of atoms of S£(G) is the set of all one-element subsets of 
V(G) (by Proposition 3) and the set of dual atoms of «S?(G) is the set of all sets ux 

for ueV(G) (by Proposition 4). Let Ae5£(G), A* V(G). Since A = f ) a\ 
a e A 1 

A is either a dual atom of 5£(G), or the intersection of at least two dual atoms of 
!£(G). The property P1 implies that in the latter case | A | ^ 1, hence either A = 0, 
or A is a one-element subset of V(G), i.e. an atom of 5£(G). As G has no vertex of 
the degree 0 or 1, each dual atom of i?(G) contains at least two vertices and it 
cannot be equal to an atom of J£(G). 
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(ii)=^>(i). Let (ii) hold. Then the meet (i.e. the intersection) of any two dual 
atoms is either the least element (i. e. 0), or an atom (i. e. a one-element set). Hence 
\u±nv±\ ^ 1 for any two distinct vertices u, v of G. As no dual atom is equal to an 
atom and as | V(G)| = 2, we have \u±\^2 for each u e V(G) and there is no vertex 
of the degree 0 or 1. • 

Theorem 1. Let G be a graph. Let H be the ordered subset of 5£(G) consisting of 
all JCX and all x±JL for x e V(G) with the ordering induced by that of 5£(G). Let ^ 
be the following ordering on the vertex set V(B(G)) of the bipartite double cover 
B(G) of G: for x, yeV(B(G)), x^yox = y or xeV, y eV and {x,y} is an 
edge in B(G). Let (p: V(B(G))->H be such that (p(x) = x±, (p(x') = x±± for all 
x e V(G). Then cp is an isomorphism of ordered sets if and only if G has the 
property P2 and has no vertices of the degree 0 or 1. 

Proof. Evidently the mapping cp is a surjection and j c^y implies (p(x)ccp(y) 
for any x, y from V(B(G)). If cp is an isomorphism, xe V(G), ye V(G) and 
x± gz y-"-, then x ^ y , because x x = <p(jc) and yL = (p(y). As both JC, y are in V, there 
cannot be x<y and we have jc = y. We have the property P2 . If JC± = 0 for an 
element xeV, then, according to the property P 2 , |V(G) | = 1, which is 
a contradiction. If x± = {y} for some JC e V(G), y e V(G), then (p(x') = x±A- = y± = 

(p(y), which is a contradiction, because JC' + y. Conversely, let G have the property 
P 2 and let it have no vertex of the degree 0 or 1. Let x, y be two vertices of B(G) 
and let cp(x) cz cp(y). We shall consider all possible cases. If both JC, y belong to V, 
then JCX cz y±, which implies x = y according to the property P 2 . If JC, y belong to 
V , then x = z', y = t' for some vertices z, t of G. Then {z} = z±±^t±± = {t} and 
hence JC = y. If JC e V, y e V, then JC = z' for z e V(G) and {z} = z^^ cz y \ which 
implies j c^y . If JCG V, y e V, then y = t' for te V(G) and JC^CZ t±± = {t}, which is 
a contradiction. Thus we have proved that cp is an isomorphism. 

Corollary. Let G be a graph with the property P I . Let H be the graph obtained 
from the Hasse diagram of !£(G) by deleting the vertices corresponding to V(G) 
and 0. Then H is isomorphic to B(G). 

By the symbol Aut G the automorphism group of a graph G will be denoted. For 
each a e Au tG we define the mapping a' such that a ' ( A ) = { a ( a ) | a € A } for each 
subset A of V(G). Then evidently for each AeS£(G) we have a'(A)e<£(G). 
Further a'(A)± = a'(A±) for each A cz V(G). If A, B are two subsets of V(G), 
then A c z B o a ' ( A ) c z a'(B). The restriction a* of a' onto 3?(G) belongs to the 
automorphism group Auti£(G) of !£(G). The mapping cp: AutG—• Aut!£(G), 
ai->a* is evidently a homomorphism of groups. 

Theorem 2. Let G be a graph. Then (p is an imbedding if and only if G has the 
property PA. If G has the property P2, then cp is an isomorphism. 

Proof. If cp is not a surjection, then there exist mappings a, )3 from AutG such 
that aJ=(3 and a* = j3* and therefore there exists j ceV(G) such that 
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u = a(x)±v = (3(x). Then u x = a(Xy = a*(x^ = p*(x^ = fi(x)± = v±. Hence G 
has not the property P 4 . Conversely, let u, v be two vertices of G such that u + v 
and u± = vJ~. Let a be a mapping of V(G) onto V(G) such that a(u) = v9 

a(v) = u, a(x) = x for any x distinct from u and v. Then a e A u t G . If co is the 
identity automorphism of G, then a^co, a* = co* and (p is not an injection. 

Now suppose that the graph G has the property P 2. Then it has also the property 
P 4 and cp is an injection. Evidently {u}e^£(G) for each vertex ue V(G). Let 
j3 e Aut£(G). Define the mapping a: V(G)--> V(G), x^y so that /3({JC}) = {y}. 

Evidently a e A u t G . If A e i f ( G ) , then A=\/{a}; this implies 0(A) = 
a € A 

V )3({a})= V {a(a)} = a*(A). Hence )3 = a* and cp is a surjection. • 
a € A a e A 

Now consider a graph G with the property P 2. If G has a vertex of the degree 0, 
then G consists only of this vertex. If G has a vertex of the degree 1, then there 
exists a connected component of G isomorphic to the complete graph K2 with two 
vertices; other connected components of G are either isomorphic to K2, or with the 
property P2 and without vertices of the degree 0 or 1. 

Theorem 3. Let G be a graph with the property P2. Then the group of all 
automorphism of B(G) which map V onto V and V onto V is isomorphic to the 
group of all lattice automorphisms of 5£(G). 

R e m a r k . By a lattice automorphism of «S?(G) we mean a bijection of S£(G) 
onto itself which preserves the lattice operations, but need not preserve the 
mapping A*-+A*-. 

Proof. First suppose that G has no vertices of the degree 0 or 1. Then we may 
take the mapping q> from Theorem 1 and consider its inverse <p~\ This is an 
isomorphism of H onto V(B(G)) (as ordered set) which maps the set si of atoms 
of -S?(G) onto V and the set 3) of dual atoms of -S?(G) onto V . Therefore it suffices 
to prove that each automorphism of H which maps si onto si and 3 onto 3 can be 
uniquely extended to an automorphism of SE(G). Let a be an automorphism of H 
which maps si onto si and 3 onto 3. Evidently this is not only an automorphism 
of H, but also an order automorphism of siv3. If ue V(G), then let a0(u) be the 
vertex v of G such that {v} = a({u}). If A is a dual atom of i£(G), then evidently 
a(A)=.{a0(u)\ue A}; therefore the images of dual atoms in a are uniquely 
determined by the images of atoms. As each element of -S?(G) distinct from V(G) 
is an intersection of dual atoms, evidently the unique possible extension of a to 
a lattice automorphism of J£(G) is given by a(A) = {a0(u)\u e A} for each 
A e i?(G). This extension is the image of a in an isomorphism of the group of all 
automorphisms of H which map si onto si and 3 onto 3 onto the group of all 
lattice automorphisms of !£(G). 
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If G has the vertices of the degree 0 or 1, the proof can be easily made using the 

assertions which were written above this theorem. If G has a vertex of the degree 0, 

the proof is trivial. In the case when G has vertices of the degree 1 we take into 

account that the logic of a disconnected graph is isomorphic to the algebra obtained 

from the logics of its connected components by identifying all least elements and all 

greatest elements. 
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ДВОЙНЫЕ ПОКРЫТИЯ И ЛОГИКИ ГРАФОВ II 

Вопо!ап ХеНпка 

Резюме 

Логика графа есть решетка определенных подмножеств множества вершин графа. Двойное 
покрытие графа есть определенный граф, соответствующий заданному графу. Исследуются 
соотношения между этими двумя понятиями. 
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