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Abstract. Given a set of points in the complex plane, an incomplete polynomial is defined
as the one which has these points as zeros except one of them. The classical result known
as Gauss-Lucas theorem on the location of zeros of polynomials and their derivatives is ex-
tended to convex linear combinations of incomplete polynomials. An integral representation
of convex linear combinations of incomplete polynomials is also given.
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1. Introduction

The first to give a mechanical interpretation of the zeros of A′(z) was Gauss in

a note dated between 1836 and 1846 [1] found in a memorandum book devoted to

astronomy. In 1870 Lucas [2] stated and proved the same theorem from which he

got an immediate corollary known in the literature as the Gauss-Lucas theorem. It

states that all the critical points of a nonconstant univariate polynomial A(z) lie

in the convex hull H(z1, z2, . . . , zn) of the zeros of A(z). Furthermore, if the zeros

of A(z) are not collinear and simple, then no critical point lies on the boundary of

H(z1, z2, . . . , zn).

In this note we are concerned with the study of the convex hull of the zeros of

complex polynomials using incomplete polynomials [3]. As a result, a generalization

of the classical and well known Gauss-Lucas theorem [4] is obtained.
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2. Main results

The main result in this section is a theorem which generalizes Gauss-Lucas theorem

on the location of zeros of polynomials and its derivatives. It is based on the concept

of incomplete polynomial. A definition follows.

Definition 1 (Incomplete polynomials). Let z1, z2, . . . , zn be n, not necessarily

distinct, complex numbers. The incomplete polynomials of degree n − 1, associated

with z1, z2, . . . , zn, are the polynomials gk(z), 1 6 k 6 n, given by

(1) gk(z) =

n
∏

j=1

j 6=k

(z − zj)

Let An(z) be a monic polynomial whose zeroes are z1, z2, . . . , zn. That is,

An(z) =
n

∏

k=1

(z − zk).

Notice that the derivative of An(z), normalized to a monic polynomial, is a convex

linear combination of incomplete polynomials. In fact, its derivative, reduced to

monic, is

1

n
A′

n(z) =
n

∑

k=1

1

n
gk(z),

where all the coefficients of the convex linear combination are 1/n. Convex linear

combinations of incomplete polynomials are used throughout this development and,

for simplicity, the following notation is introduced. Let γ = (γ1, γ2, . . . , γn) be

nonnegative real numbers such that
n
∑

k=1

γk = 1. The corresponding convex linear

combination of incomplete polynomials is denoted Aγ

n(z) =
n
∑

k=1

γkgk(z). Note that

Aγ

n(z) is a polynomial of degree n− 1. As pointed out, the derivative, normalized to

be monic is then one of such convex linear combinations.

The fact that the monic derivative is a convex linear combination of incomplete

polynomials motivates the generalization of the Gauss-Lucas theorem to such kind

of polynomials.

Theorem 2. Let z1, z2, . . . , zn be n, not necessarily distinct, complex numbers.

Then, the polynomial Aγ

n(z) =
n
∑

k=1

γkgk(z) has all its zeros in or on the convex hull

H(z1, z2, . . . , zn) of the zeros of An(z) =
n
∏

k=1

(z − zk).

Before giving the proof of the theorem we need the following lemma.
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Lemma 1. Let z1, z2, . . . , zn be complex numbers, some of them being non-zero,

and such that

(2) ω 6 arg zk < ω + π, 1 6 k 6 n,

where ω ∈ R, then their sum
n
∑

k=1

zk cannot vanish.

P r o o f. Geometrically obvious. �

Notice that the preceding lemma also establishes that the point z =
n
∑

k=1

zk lies

inside the convex sector consisting of the origin and all the points z for which ω 6

arg z < ω + π, if all the points zk, 1 6 k 6 n, lie in the same sector.

Proof of theorem 2. First, we write the polynomial Aγ

n(z) as

Aγ

n(z) = An(z)
Aγ

n(z)

An(z)
= An(z)Bn(z),

where

Bn(z) =
Aγ

n(z)

An(z)
=

1

An(z)

n
∑

k=1

γkgk(z) =

n
∑

k=1

γk

z − zk

,

and we proceed by contradiction. In fact, suppose that z♯ is a zero of Aγ

n(z) outside

H(z1, z2, . . . , zn) and let ϕ(z♯) be the angle subtended at z♯ by H. Then, by the

convexity of H, we have 0 6 ϕ(z♯) < π.

Now, we consider the vectors vk = γk/(zk − z♯), γk ∈ R and γk > 0. We claim

that the vectors vk lie inside the convex sector ϕ(z♯). Indeed, wk = zk − z♯ ∈ ϕ(z♯).

Its conjugate inverse is

w−1

k =
[ 1

zk − z♯

]

=
[ zk − z♯

|zk − z♯|2

]

=
zk − z♯

|zk − z♯|2
∈ ϕ(z♯)

and vk = γk/wk = γkw−1

k ∈ ϕ(z♯).Then, according to the previous lemma, every sum

of the vectors vk cannot vanish. Therefore, Bn(z♯) 6= 0 and Aγ

n(z♯) = An(z♯)B(z♯) 6=

0. As this contradicts our hypothesis (z♯ is a zero of Aγ

n(z) outside H), no zero of

Aγ

n(z) can be outside H(z1, z2, . . . , zn) and the theorem is proved.

An immediate consequence of the last theorem is the following
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Corollary 1 (Gauss-Lucas Theorem). The convex hull of the zeros of a polyno-

mial An(z) contains all the zeros of its derivative A′
n(z).

P r o o f. Setting γk = 1/n, 1 6 k 6 n in the preceding theorem the result

immediately follows. �

Note that in the case of multiple zeros of An(z), the γk
′s are still equal to 1/n,

but repeated as many times as the multiplicity of the repeated zero.

Next, we consider convex linear combinations of incomplete polynomials and we

obtain another generalization of Gauss-Lucas theorem. Let An(z) = zn +
n−1
∑

k=0

akzk

be a monic complex polynomial whose zeros z1, z2, . . . , zm have multiplicities

α1, α2, . . . , αm,
m
∑

k=1

αk = n. The incomplete polynomials associated with An(z)

can be expressed as gk(z) =
m
∏

j=1

(z − zj)
αj−δjk , 1 6 k 6 m, where δjk is the

Kronecker delta. We denote by Aγ

n(z) the polynomial of degree n − 1 defined by

Aγ

n(z) =
m
∑

k=1

γkgk(z) where γ = (γ1, γ2, . . . , γm), with γk ∈ R (1 6 k 6 m). The

following theorem holds.

Theorem 3. Let An(z) be a monic complex polynomial whose zeros z1, z2, . . . , zm

have multiplicities α1, α2, . . . , αm,
m
∑

k=1

αk = n. Then, a monic polynomial of degree

n − 1 is a convex linear combination of incomplete polynomials, with a vector of

positive components γ = (γ1, γ2, . . . , γm),
m
∑

k=1

γk = 1, namely Aγ

n(z) =
m
∑

k=1

γkgk(z),

if and only if,

1

2πi

∮

C

Aγ

n(z)

An(z)
dz = 1,

Res
(Aγ

n(z)

An(z)
, z = zk

)

> 0, k = 1, 2, . . . , m,

for a contour C containing all the zeros of An(z).

P r o o f. ⇒) Since Aγ

n(z) =
m
∑

k=1

γkgk(z) with γk > 0, 1 6 k 6 m, and
m
∑

k=1

γk = 1,

then

1

2πi

∮

C

Aγ

n(z)

An(z)
dz =

1

2πi

∮

C

m
∑

k=1

γkgk(z)

An(z)
dz

=
m

∑

k=1

γk

1

2πi

∮

C

gk(z)

An(z)
dz =

m
∑

k=1

γk = 1.
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Moreover, the residues satisfy

Res
(Aγ

n(z)

An(z)
, z = zk

)

= Res
(

m
∑

j=1

γjgj(z)

An(z)
, z = zk

)

= Res
(

m
∑

j=1

γj

z − zj

, z = zk

)

= γk > 0.

⇐) We consider the integral

(3)
1

2πi

∮

C

Aγ

n(z)

An(z)

dz

z − ζ

where C is a circle centered at the origin and of radius r with r > max
16k6m

{|zk|}, and

|ζ| < r. First, evaluation of (3) outside of contour C is always zero provided that the

degree of Aγ

n(z) is at most n− 1. Hence, assuming that the degree of Aγ

n(z) is n− 1,

we have

1

2πi

∮

C

Aγ

n(z)

An(z)

dz

z − ζ
= Res

( Aγ

n(z)

(z − ζ)An(z)
, z = ζ

)

+

m
∑

i=1

Res
( Aγ

n(z)

(z − ζ)An(z)
, z = zk

)

=
Aγ

n(ζ)

An(ζ)
+

m
∑

i=1

Res
( Aγ

n(z)

(z − ζ)An(z)
, z = zk

)

= 0.

Taking into account that

Res
( Aγ

n(z)

(z − ζ)An(z)
, z = zk

)

= −
1

ζ − zk

Res
(Aγ

n(z)

An(z)
, z = zk

)

and the preceding equality, we obtain

Aγ

n(ζ)

An(ζ)
=

m
∑

k=1

1

ζ − zk

Res
(Aγ

n(z)

An(z)
, z = zk

)

from which we get

Aγ

n(ζ) =

m
∑

k=1

γkgk(ζ)

where

γk = Res
(Aγ

n(z)

An(z)
, z = zk

)

.

Note that
m
∑

k=1

γk = 1 implies that Aγ

n(z) is a monic polynomial and the fact

that γk > 0 (1 6 k 6 n) guarantees that Aγ

n(z) =
m
∑

k=1

γkgk(z) is a convex linear

combination. �

An immediate consequence of the preceding result is
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Theorem 4 (Gauss-Lucas Theorem generalized). Let An(z) be a monic complex

polynomial whose zeros z1, z2, . . . , zm have multiplicities α1, α2, . . . , αm,
m
∑

k=1

αk = n,

and let An−1(z) be a polynomial of degree n−1 such that, for a contour C containing

all the zeros of An(z),

1

2πi

∮

C

An−1(z)

An(z)
dz = 1,

Res
(An−1(z)

An(z)
, z = zk

)

> 0, k = 1, 2, . . . , m.

Then, all the zeros of An−1(z) lie inside of the convex hull H(z1, z2, . . . , zm).

Observe that setting An−1(z) = Aγ

n(z) with γ = (1/n, 1/n, . . . , 1/n) into the

preceding result immediately follows the Gauss-Lucas Theorem.
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