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Abstract. The paper is devoted to a careful analysis of the shape-preserving properties of
the strongly continuous semigroup generated by a particular second-order differential oper-
ator, with particular emphasis on the preservation of higher order convexity and Lipschitz
classes. In addition, the asymptotic behaviour of the semigroup is investigated as well. The
operator considered is of interest, since it is a unidimensional Black-Scholes operator so that
our results provide qualitative information on the solutions of classical problems in option
pricing theory in Mathematical Finance.
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1. Introduction and notation

The present paper is focused upon studying qualitative and asymptotic proper-

ties of the strongly continuous semigroup (Sm(t))t>0 generated by a second-order

differential operator of the form

(1.1) Lu(x) :=
σ2

2
x2u′′(x) + rxu′(x) − ru(x) (x > 0, σ > 0, r > 0),

acting on a suitable domain, in the setting of weighted continuous function spaces.

Similar operators frequently occur in Mathematical Finance: really, they typically

arise when setting up theoretical models in no-arbitrage pricing theory. In this

respect (1.1) may be regarded as a unidimensional Black-Scholes operator in its

The paper is dedicated to Professor Luigi Albano on the occasion of his 70th birthday.
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simplest form, with volatility and riskless interest rate constant over time and equal

to σ and r, respectively.

The existence of the semigroup (Sm(t))t>0 generated by (1.1), together with its

deep connection with suitable Markov processes, has been established in [3]. In

the same framework, in [1] and [2] the authors, according with a general scheme

of investigation of the interplay between constructive approximation processes and

degenerate evolution problems (see, for instance, [1]–[5] and many of the references

quoted therein), have shown that (Sm(t))t>0 may be written down in terms of suit-

able Post-Widder-type operators Qn, as described in (2.2).

Our purpose hereby is to emphasize how representation (2.2), far from being

merely a theoretical result, turns out to be a powerful tool when investigating quali-

tative properties of the semigroup and, consequently, of the (mild or strong) solution

of the PDE problem (2.6), which, as it is well-known, is given by Sm(t)f at any time

t > 0.

From this viewpoint the paper is organized as follows. We first provide an integral

representation of (Sm(t))t>0 by using some methods developed, in a less general case,

in [4] and based essentially upon the study of the stochastic differential equation

associated with L. In this way we are able to determine the existence of an (oblique)

asymptote of Sm(t)f at +∞.
In the remaining part of the paper, referring solely to the representation (2.2) of

the semigroup through the Qn’s, we show how each Sm(t) preserves higher order

convexity and Lipschitz classes: here we apply some general results (developed in [5]

and using the notion of total positivity as a starting point) about the preservation

properties of positive linear operators having a suitable integral representation and

of their limiting strongly continuous semigroups, if any (see [5, Theorem 2.7 and, in

particular, representation (2.10)]).

A finer analysis is devoted to the properties of Sm(t)f , f being a convex func-

tion with linear growth; the asymptotic behaviour of the semigroup as t → +∞ is
investigated, as well.

Finally, an application to the classical Black-Scholes problem for European call

and put options is presented: in this respect, we point out how some of our results

perfectly match the analogous ones supplied in [7] and [9] but proved through quite

different techniques.

The notation we use throughout the paper is standard enough. If k > 1 is an

integer and I is a real interval, by Ck(I) we denote the vector space of all real-

valued k-times continuously differentiable functions on I. As usual, C(I) and L1(I)

stand for the vector space of all real-valued continuous and Lebesgue integrable,

respectively, functions on I. For any real λ > 0, we denote by eλ the power function

eλ(x) := xλ (x > 0).
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2. The semigroup

For every integer m > 1 let us set

E0
m :=

{

f ∈ C([0,+∞[) : lim
x→+∞

f(x)

1 + xm
= 0

}

,

which becomes a Banach space with respect to the weighted norm ‖f‖m :=

sup
x>0

(|f(x)|/(1 + xm)). Given σ > 0 and r > 0, consider the differential operator

Lu(x) :=
σ2

2
x2u′′(x) + rxu′(x) − ru(x) (x > 0)

acting on the domain

Dm(L) :=

{

u ∈ E0
m ∩C2(]0,+∞[) : lim

x→0+

(σ2

2
x2u′′(x) + rxu′(x)

)

= lim
x→+∞

1

1 + xm

(σ2

2
x2u′′(x) + rxu′(x)

)

= 0

}

.

For each integer n > r/σ2, let us denote by Qn the positive linear operator defined

as

Qnf(x) :=
(

1 − r

nσ2

)( n2σ2

(nσ2 + r)x

)n 1

Γ(n)
(2.1)

×
∫ +∞

0

exp
(

− n2σ2u

(nσ2 + r)x

)

un−1f(u) du,

where f ∈ E0
m and x > 0.

The main results concerning (L,Dm(L)) and the sequence (Qn)n>r/σ2 are listed

below.

Theorem 2.1 ([3]). The operator (L,Dm(L)) is the generator of a strongly con-

tinuous positive semigroup (Sm(t))t>0 on E
0
m.

Theorem 2.2 ([1]). Let m > 2. Then for each f ∈ E0
m and t > 0,

(2.2) Sm(t)f = lim
n→+∞

Qk(n)
n f in E0

m,

where (k(n))n>1 is an arbitrary sequence of positive integers such that

lim
n→+∞

k(n)/n = σ2t.

It is extremely useful for the sequel to obtain an explicit representation of the

semigroup (Sm(t))t>0 which is easier to handle than (2.2). This is actually provided

in the next theorem, which, however, covers an interest on its own.
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Theorem 2.3. Let m > 1 and t > 0. The operator Sm(t) : E0
m −→ E0

m has the

integral representation

(2.3) Sm(t)f(x) =
e−rt

√
2πt

∫R f(

x · exp
(

σu+
(

r − σ2

2

)

t
)

)

exp(−u2/2t) du,

where f ∈ E0
m and x > 0.

P r o o f. For r = 0 and σ = 1, the proof may be found in [4, Theorem 4.4]. In

the general case r > 0, σ > 0, it runs essentially in the same way except for some

slight changes somewhere and is therefore omitted for the sake of brevity; note that

for each t > 0 (compare with [4, Formula (5), p. 270])

(2.4) ‖Sm(t)‖ = exp

(

(m− 1)
(mσ2

2
+ r

)

t

)

.

Moreover, since Leλ = (λ− 1)
(

1
2λσ

2 + r
)

eλ (0 6 λ < m), a standard argument from

semigroup theory yields

(2.5) Sm(t)eλ = eλ · exp

(

(λ− 1)
(λσ2

2
+ r

)

t

)

for all t > 0.

�

Remark. For a given f ∈ E0
m, the function u(x, t) := Sm(t)f(x) is a mild solution

of the Black-Scholes equation







ut(x, t) =
1

2
σ2x2uxx(x, t) + rxux(x, t) − ru(x, t) (x > 0, t > 0),

u(x, 0) = f(x) (x > 0),

with f ∈ E0
m as the initial datum.

Observe that, according to the probabilistic scheme which underlies the Black-

Scholes model, the above solution may also be obtained directly, in a different way,

by using the Feynman-Kac formula, i.e., through merely probabilistic techniques

(see, e.g., [11, Theorem 8.6, p. 128]).
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3. Asymptotes

Consider the above semigroup (Sm(t))t>0 for m > 1.

Theorem 3.1. If f ∈ E0
m has the asymptote y = ax + b as x → +∞, then each

Sm(t)f has the asymptote y = ax+ be−rt as x→ +∞.

P r o o f. The assertion being clearly obvious for t = 0, let us choose t > 0; using

Theorem 2.3 we compute

lim
x→+∞

Sm(t)f(x)

1 + x
= lim

x→+∞

e−rt

√
2πt

∫R f(xeσu+(r− 1
2
σ2)t)

1 + xeσu+(r− 1
2

σ2)t
(3.1)

× 1 + xeσu+(r− 1
2
σ2)t

1 + x
e−

1
2
u2/t du.

The function y 7→ |f(y)|/(1 + y) is continuous on [0,+∞[ and converges to |a|
when y → +∞ by assumption; therefore it is bounded (let us say, byM) on [0,+∞[.

On the other hand, for any given x > 0

1 + xeσu+(r− 1
2
σ2)t

1 + x
6 max{1, eσu+(r− 1

2
σ2)t} for all u ∈ R

so that the absolute value of the integrand in (3.1) is bounded from above by M ·ψ,
where ψ(u) := sup

{

e−
1
2
u2/t, e−(u−σt)2/(2t)+rt

}

(u ∈ R).
Since ψ ∈ L1(R), the application of the dominated convergence theorem in (3.1)

immediately yields

lim
x→+∞

Sm(t)f(x)

1 + x
=

e−rt

√
2πt

∫Raeσu+(r− 1
2
σ2)te−

1
2
u2/t du

= a
1√
2πt

∫R e−(u−σt)2/(2t) du = a

or, equivalently,

(3.2) lim
x→+∞

Sm(t)f(x)

x
= a.

Now it is easily seen that for any x > 0

(3.3) Sm(t)f(x)−ax =
e−rt

√
2πt

∫R(f(x ·eσu+(r− 1
2
σ2)t)−ax ·eσu+(r− 1

2
σ2)t

)

e−
1
2
u2/t du.
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The function y 7→ |f(y) − ay| is continuous on [0,+∞[, tends to |b| as y → +∞,
whence it is bounded on [0,+∞[. The dominated convergence theorem does the job

as before and we get

lim
x→+∞

(Sm(t)f(x) − ax) =
e−rt

√
2πt

∫R be− 1
2
u2/t du = be−rt,

which, together with (3.2), accomplishes the proof. �

4. Total positivity and preservation of higher order convexity

and Lipschitz classes

In this section we shall use the same notation, definitions and results as those

appearing in [5]. It is not difficult to see that the Qn’s defined in (2.1) are positive

linear operators with totally positive kernels (see [5, Section 2, Example 3.4]).

A direct computation gives

(4.1) Qnek = ankek for every k = 0, 1, . . . ,m− 1

where explicitly

(4.2) ank :=
(

1 − r

nσ2

)(

1 +
r

nσ2

)k k−1
∏

j=0

(

1 +
j

n

)

.

Consequently (see [5, (2.8)]),

(4.3) lk := lim
n→+∞

(ank)n = exp

(

(k − 1)
( r

σ2
+
k

2

)

)

.

Now let q > 0 be an integer. A function f ∈ E0
m is called q-convex if all its divided

differences on q + 1 points in [0,+∞[ are nonnegative; if f is q-times continuously

differentiable, then f is q-convex iff f (q) > 0 on [0,+∞[.

If M > 0, we say that f ∈ E0
m belongs to the Lipschitz class Lipq(M) if

|∆q
hf(x)| 6 Mhq

for all x > 0 and h > 0; here, as usual, ∆q
hf(x) denotes the q-th order difference of f

with step h at x, i.e.,

∆q
hf(x) :=

q
∑

i=0

(−1)i

(

q

i

)

f(x+ (q − i)h).

Taking into account (4.1), (4.2) and (4.3), from [5, Theorem 2.7] and the subse-

quent remarks, we deduce the next result concerning some shape-preserving proper-

ties of the semigroup (Sm(t))t>0.
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Theorem 4.1. Let t > 0. Then the following statements hold true:

(a) If f ∈ E0
m is q-convex, then Sm(t)f is q-convex for all q = 0, 1, . . . ,m.

(b) Sm(t)(E0
m ∩ Lipq(M)) ⊂ Lipq(M · exp((q − 1)(1

2qσ
2 + r)t)) for all M > 0 and

q = 0, 1, . . . ,m− 1. In particular, Sm(t)(E0
m ∩ Lip1(M)) ⊂ Lip1(M).

This result can be viewed as expressing the qualitative properties of the solution

of problem (2.6) (see [5, Remark 2.10]).

We also observe that in [1] and [2] the authors proved (a) for q = 1, 2 and the

inclusion

Sm(t)(E0
m ∩ Lip1(M)) ⊂ Lip1

(

M · exp
(2rt

σ2

))

,

which should be compared with the corresponding (b) just stated above.

The preservation of 2-convexity is a financially significant qualitative property of

the solution of (2.6); the corresponding financial interpretation is presented in [7]

(see also [9, Remark 3.17 (2), p. 108]).

Remark. Two different approaches are discussed in [7] in order to prove the

preservation of 2-convexity. By virtue of [5, Theorem 2.3], the above Theorem 4.1

may also be proved without passing through the representation (2.2), but simply

checking out the total positivity of the kernel in the integral representation (2.3) and

taking into account (2.5). The existence of the explicit integral representation (2.3)

of the semigroup is, in this sense, a very lucky circumstance: in general, we are not

aware of the existence of such integral representations for the semigroups consid-

ered in [5], where, consequently, the preservation properties are studied using only

representations of the type (2.2) (see [5, Theorem 2.7 and formula (2.10)]).

For other preservation results in similar frameworks we refer the reader, for in-

stance, to [6], [8] and [10].

5. Convex functions with linear growth

In this section we consider 2-convex functions, i.e., classical convex functions.

Proposition 5.1. Let f ∈ E0
m be a convex function with f(0) 6 0 and t > s > 0.

Then Sm(t)f > Sm(s)f > f .

P r o o f. For a given x0 > 0 there exist p, q ∈ R such that pe1 + qe0 6 f and

px0 + q = f(x0). According to (2.5), we already know that for all t > 0

(5.1) Sm(t)e0 = e−rte0, Sm(t)e1 = e1,
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and therefore, since q 6 f(0) 6 0, one gets

pe1 + qe0 6 pe1 + qe−rte0 = Sm(t)(pe1 + qe0) 6 Sm(t)f.

In particular,

f(x0) = px0 + q = (pe1 + qe0)(x0) 6 Sm(t)f(x0),

which, together with Sm(t)f(0) = e−rtf(0) > f(0) (see (2.3)), yields Sm(t)f > f for

all t > 0.

Now choose t > s > 0 and recall that, due to (a) in Theorem 4.1, the func-

tion Sm(s)f is convex as well, satisfying, in addition, Sm(s)f(0) = e−rsf(0) 6 0.

Applying what was just proved to Sm(s)f gives

Sm(t− s)(Sm(s)f) > Sm(s)f,

i.e., Sm(t)f > Sm(s)f > f , which is the desired conclusion. �

Proposition 5.2 (Asymptotic behaviour). Let a, b, c ∈ R and f ∈ E0
m be such

that

(5.2) ae1 + be0 6 f 6 ae1 + ce0.

Then for all t > 0

(5.3) be−rte0 6 Sm(t)f − ae1 6 ce−rte0

and, consequently,

(5.4) lim
t→+∞

Sm(t)f = ae1 uniformly on [0,+∞[.

P r o o f. It is a direct consequence of (5.1) and of the positivity of the semigroup.

�

Let us remark that all the functions f described in [9, Figs. 3.5–3.8, pp. 148–149]

satisfy (5.2) with suitable constants a, b, c ∈ R.
In the next proposition, which basically follows from Theorem 3.1 and Proposi-

tions 5.1 and 5.2, we collect the main properties of Sm(t)f , f being a convex function

with linear growth.
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Corollary 5.1. Let f ∈ E0
m be a convex function satisfying (5.2). Then the limit

(5.5) l := lim
x→+∞

(f(x) − ax)

exists and is finite; in addition, the following statements hold true:

(a) For each t > 0, Sm(t)f has the asymptote y = ax+ le−rt as x→ +∞.
(b) The sharp inequalities

(5.6) ae1 + le−rte0 6 Sm(t)f 6 ae1 + f(0)e−rte0 (t > 0)

are satisfied and, consequently, (5.4) is still valid.

(c) If, in addition, f(0) 6 0, then the family of convex functions (Sm(t)f)t>0 is

increasing with respect to t and satisfies Sm(t)f > f .

P r o o f. The function f − ae1, being convex and bounded on [0,+∞[ because of

our assumption and (5.2), is necessarily decreasing and therefore the limit l in (5.5)

exists and, specifically, b 6 l 6 c. Moreover, y = ax + l is the asymptote of f as

x→ +∞, and
le0 6 f − ae1 6 f(0)e0,

which easily implies (a) (by virtue of Theorem 3.1) and (b). To see that the left-

hand side inequality in (5.6) is sharp it suffices to let x → +∞; for the right-
hand side inequality, take x = 0. The proof is now accomplished, since (c) restates

Proposition 5.1. �

6. The function ϕ(x) := (x−K)+

Let K > 0, ϕ(x) := (x−K)+ (x > 0) and assume m > 2, so that ϕ ∈ E0
m.

Thus ϕ is a positive, increasing and convex function in Lip1(1) with e1 −Ke0 6

ϕ 6 e1; moreover, according to (5.5), l = −K and, of course, ϕ(0) = 0. We are

therefore in a position to apply Corollary 5.1 (see also Theorem 4.1).

Corollary 6.1. The following assertions are true:

(i) (Sm(t)ϕ)t>0 is an increasing (with respect to t) family of positive, increasing,

convex functions in Lip1(1) such that for any t > 0, ϕ 6 Sm(t)ϕ 6 e1 (whence

Sm(t)ϕ(0) = 0).

(ii) Each Sm(t)ϕ has the asymptote y = x−Ke−rt as x→ +∞.
(iii) (e1 −Ke−rte0)

+ 6 Sm(t)ϕ 6 e1 for all t > 0.

(iv) lim
t→+∞

Sm(t)ϕ = e1 uniformly on [0,+∞[.
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Consider now the function h(p) := (p − 1)pp/(1−p) (p > 1). It may be readily

shown that h is strictly increasing on ]1,+∞[ and

(6.1) lim
p→1+

h(p) = 0, lim
p→+∞

h(p) = sup
p>1

h(p) = 1.

The next result provides information about the behaviour of Sm(t)ϕ(x) when x →
0+.

Proposition 6.1. If the positive constant K appearing in ϕ fulfils K > h(p) for

some p ∈ ]1,m[, then

(6.2) 0 6 Sm(t)ϕ 6 ep · exp

(

(p− 1)
(pσ2

2
+ r

)

t

)

for all t > 0 whence (d/dx)Sm(t)ϕ(x)|x=0 = 0. In particular, if K > 1, then

(6.2) holds true for all p ∈ ]1,m[.

P r o o f. By direct computation one may easily check that in the case K = h(p)

for a certain p ∈ ]1,m[, the graphs of ϕ and ep are tangent at a point with the

abscissa p1/(1−p) and therefore 0 6 ϕ 6 ep, which in turn implies (6.2) on account

of (2.5). Of course, the same happens a fortiori if K > h(p). The last part of the

assertion is a consequence of (6.1), because 1 > h(p) for all p ∈ ]1,m[. �

Remarks.

(1) By using Theorem 2.3 and [11, Exercise 8.6, p. 154], we deduce that

u(x, t) := Sm(t)f(x) =
e−rt

√
2πt

∫R(x · exp
((

r − σ2

2

)

t+ σu
)

−K

)+

e−
1
2
u2/t du

is the solution of (2.6) with f(x) = (x−K)+ (x > 0).

(2) The inequalities (iii) in Corollary 6.1 may be found, with different notation, in [9,

p. 124, Prop. 3.29, (3.39)], where they are proved by using financial arguments.

(3) The function ϕ(x) = (x −K)+ is important in connection with European call

options. When discussing European put options, a similar role is played by

the function ψ(x) := (K − x)+ (see, for instance, [9, Chap. 3]). The methods

presented above can be used in order to investigate the properties of the func-

tions Sm(t)ψ, too. In particular, since ϕ − ψ = e1 − Ke0, for all t > 0 we

have

Sm(t)ψ = Sm(t)ϕ − e1 +Ke−rte0.

(4) We finally point out that more realistic and, consequently, more sophisticated

models in option pricing theory lead to a multidimensional (non autonomous)

Black-Scholes operator; the study of this case, however, lying beyond the limits

of the present paper, will be the object of our future investigations.
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