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Abstract. The main results of this paper are that

(1) a space X is g-developable if and only if it is a weak-open π image of a metric space,
one consequence of the result being the correction of an error in the paper of Z. Li
and S. Lin;

(2) characterizations of weak-open compact images of metric spaces, which is another
answer to a question in in the paper of Y. Ikeda, C. liu and Y. Tanaka.

Keywords: g-developable, π-mapping, weak-open mapping, CWC-map, uniform weak
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1. Introduction

A. Arhangel’skii [4] showed that a T1-space X has a uniform base if and only if

it is an open compact image of a metric space. As is well known, a space X has

a uniform base if and only if it is a metacompact developable space. R. Heath [9]

showed that a T1-space X is developable if and only if it is an open π image of a

metric space. In this paper characterizations of weak-open compact (π) images of

metric spaces are given in terms of the concept of g-developable spaces, which are

similar to Arhangel’skii’s (Heath’s) above result.

In this paper, all spaces are T2 and all mappings are continuous and surjective.N denotes the set of all natural numbers.
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2. Weak-open π images of metric spaces

Definition 2.1. A cover P =
⋃

x∈X

Px of a space X is called a weak base [5]

for X if it has the following properties:

(1) x ∈
⋂

Px for each x ∈ X ,

(2) if P1, P2 ∈ Px, then there exists P ∈ Px with P ⊂ P1 ∩ P2,

(3) for U ⊂ X , U is open in X if and only if for each x ∈ U there exists P ∈ Px

with P ⊂ U .

Px is called a weak neighborhood base of x in X . If each Px is countable for

x ∈ X , then X is called g-first countable.

For a space X , let g be a map defined on N × X to the power-set of X such that

x ∈ g(n, x) and g(n + 1, x) ⊂ g(n, x) for each n and x; a subset U of X is open if for

each x ∈ U there is an n such that g(n, x) ⊂ U . We call such a map a CWC-map

(countable weakly-open covering map).

As mentioned in [11], X is g-first countable if X has a CWC-map g such that if

xn ∈ g(n, x) for each n, then the sequence {xn} converges to x.

Definition 2.2 ([11]). A space is g-developable if it has a CWC-map g with the

following property: If x, xn ∈ g(n, yn) for each n, then the sequence {xn} converges

to x.

As stated in [19], ifX has a g-first countable CWC-map g such that {st(x, Gn) : x ∈

X, n ∈ N} is a weak base for X , then X is g-developable (where Gn = {g(n, x) :

x ∈ X}). Conversely, let g be a g-developable CWC-map for a space X , then

{st(x, Gn) : x ∈ X, n ∈ N} is a weak base for X . Thus, a g-developable space is

symmetrizable.

Definition 2.3. Let f : X → Y be a mapping.

(1) f is called a π-mapping [1] if (X, d) is a metric space and d(f−1(y), X\f−1(U)) >

0 for each y ∈ Y and a neighborhood U of y in Y .

(2) f is weak-open [21] if there is a weak base B =
⋃

{By : y ∈ Y } for Y and there

is an x(y) ∈ f−1(y) for each y ∈ Y such that for each open neighborhood U

of x(y) in X , By ⊂ f(U) for some By ∈ By.

(3) f is called a sequence-covering mapping [19] if each convergent sequence from Y

is the image of some convergent sequence from X .

(4) f is called a 1-sequence-covering mapping [14] if for each y ∈ Y , there is an

x ∈ f−1(y) such that whenever {yn} is a sequence converging to y in Y , then

there is a sequence {xn} converging to x in X with each xn ∈ f−1(yn).

(5) f is called a σ-locally finite mapping [16], if there exists a base B for X such

that f(B) = {f(B) : B ∈ B} is σ-locally finite in Y .
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Obviously, every compact mapping on a metric space is a π-mapping, and each

1-sequence-covering mapping is a sequence-covering mapping. It is easy to check

that a weak-open mapping is a quotient mapping.

Theorem 2.4. A space X is g-developable if and only if it is a weak-open π image

of a metric space.

P r o o f. Necessity. Suppose that X has a CWC-map g satisfying Definition 2.2.

Set Gn = {g(n, x) : x ∈ X} = {Gα : α ∈ An} for each n ∈ N. Let An be the

space with discrete topology. Put M = {α = (αn) ∈
∏

n∈NAn : {Pαn
: n ∈ N} forms

a network at some point x(α) in X}, and equip M with the subspace topology

induced from the usual product topology of the discrete spaces An. We define a

distance function d on M as follows. For each α, β ∈ M , if α = β, then d(α, β) = 0,

if α 6= β, then d(α, β) = 1/n, where n is the smallest natural number such that

αn 6= βn. Hence d is a metric on M . We define f : M → X by f(α) = x(α). It is

easy to check that f is continuous and surjective.

(1) f is a weak-open mapping. For each x ∈ X and n ∈ N, let g(n, x) = Gγn
,

then γ = (γn) ∈ M and γ ∈ f−1(x). Set Bn = {β ∈ M : the i-th coordinate of β

is γi, for all i 6 n}. It is easy to check that {Bn : n ∈ N} is a local decreasing base
of γ = (γi) in M , and f(Bn) =

⋂

i6n

Gγi
= Gγn

. Let U be any open neighborhood

of γ in M ; then there exists m ∈ N such that Bm ⊂ U . Hence f(Bn) ⊂ f(U). If we

set Bx = {g(n, x), n ∈ N} and B =
⋃

x∈X

Bx, then B is a weak base for X which

satisfies Definition 2.3 (2). Therefore f is a weak-open mapping.

(2) f is a π mapping. Suppose that x ∈ X and U is an open neighborhood of x. It

is not difficult to show that st(x, Gn) ⊂ U for some n ∈ N. For α ∈ f−1(x), β ∈ M ,

if d(α, β) < 1/n, then αi = βi for all i 6 n. Hence f(β) =
⋂

i∈NGβi
= Gβn

⊂ U . Thus

d(f−1(x), X \ f−1(U)) > 1/n. It follows that f is a π mapping.

Sufficiency. Suppose X is a weak-open π image of a metric space M under f . Let

P =
⋃

x∈X

Px be the weak base for X satisfying Definition 2.3 (2). For each x ∈ X ,

there is α(x) ∈ f−1(x) satisfying Definition 2.3 (2). Set g(n, x) = f(B(α(x), 1/n))

for each x ∈ X and n ∈ N, where B(α, 1/n) = {β ∈ M : d(α, β) < 1/n}.

(1) g is a g-first countable CWC-map for X . Suppose that U is a subset

of X such that for each x ∈ U there is n with g(n, x) ⊂ U . As f is weak-open

and B(α(x), 1/n) is an open neighborhood of α(x), there is P ∈ Px such that

P ⊂ f(B(α(x), 1/n)) ⊂ U . So U is open in X . On the other hand, suppose that

U is an open subset of X . For each x ∈ U , we then have B(α(x), 1/m) ⊂ f−1(U)

for some m ∈ N. Hence g(m, x) = f(B(α(x), 1/m)) ⊂ U .
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(2) g possesses the desired property: if x, xn ∈ g(n, yn) for each n, then the se-

quence {xn} converges to x. Suppose that U is an open neighborhood of x in X .

Then there is n ∈ N such that d(f−1(x), X\f−1(U)) > 1/n. Taking a natural number

m > n, if x ∈ f(B(α(z), 1/m)) = g(m, z), then (f−1(x) ∩ B(α(z), 1/m)) 6= ∅. Sup-

pose B(α(z), 1/m)) ( f−1(U), then d(f−1(x), X \ f−1(U)) < 2/m 6 1/n, a contra-

diction. Hence B(α(z), 1/m)) ⊂ f−1(U), f(B(α(z), 1/m)) ⊂ U . So st(x, Gm) ⊂ U ,

hence xn converges to x. Therefore X is g-developable. �

Lemma 2.5 ([21]). Let f : X → Y be a weak-open mapping. If X is first

countable, then f is a 1-sequence-covering mapping.

We recall that X is a Cauchy space [2] if X has a symmetric such that each

convergent sequence is Cauchy. K.B. Lee [11] showed that a space X is g-develoable

if and only if it is a Cauchy space. Y. Tanaka [20] characterized sequence-covering

quotient π images of metric spaces by Cauchy spaces. Hence we have the following

result.

Corollary 2.6. For a space X , the following assertions are equivalent:

(1) X is a weak-open π image of a metric space.

(2) X is a 1-sequence-covering quotient π image of a metric space.

(3) X is a sequence-covering quotient π image of a metric space.

(4) X is a Cauchy space.

(5) X is a g-developable space.

Example 2.7. There exists a g-metrizable space which is not a weak-open π image

of a metric space.

L. Foged [6] showed that there is a g-metrizable space which is not g-developable.

By Theorem 2.4, the g-metrizable space is not a weak-open π image of a metric

space.

Remark 2.8. Example 2.7 shows that Theorem 2.2 [13] is wrong. And

Lemma 2.1 [13] is not correct either, see Example 16 [16].

Examining the proof of Theorem 2.2 [13], we see that (1) and (3) of the theorem

are equivalent. Thus we have the following result.

Theorem 2.9 ([12], [13], [16]). For a regular space X , the following assertions

are equivalent:

(1) X is a weak-open σ-image of a metric space.

(2) X is a 1-sequence-covering σ-image of a metric space.

(3) X is a compact-covering quotient π σ-image of a metric space.

(4) X is a g-metrizable space.
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3. Weak-open compact images of metric spaces

Definition 3.1 ([8]). Let P be a cover of a space X . P is called a cs-network

if whenever {xn} is a sequence converging to a point x ∈ X and U is a neighborhood

of x, then {x} ∪ {xn : n > m} ⊂ P ⊂ U for some m ∈ N and some P ∈ P.

Definition 3.2 ([3]). LetP be a cover of a space X . P is called a point-regular

cover for X if {P ∈ (P)x : P ( U} is finite for each open neighborhood U of x.

P is called a point-regular cs-network (weak base) for X if P is called a point-

regular cover and a cs-network (weak base) for X .

Definition 3.3 ([3]). Let P be a cover of a space X . P is called a uniform

regular cover for X , if whenever P ′ is a countable infinite subset of (P)x, then P ′

is a network for x in X .

Definition 3.4 ([7]). Let X be a space.

(1) Let x ∈ P ⊂ X . P is called a sequential neighborhood of x in X if whenever

{xn} is a sequence converging to the point x, then {xn : n > m} ⊂ P for some

m ∈ N.
(2) Let P ⊂ X . P is called a sequential open subset in X if P is a sequential

neighborhood of x for each x ∈ P .

(3) X is called a sequential space if each sequential open subset in X is open.

For a space X , set W (X) = {x ∈ X : {x} is a weak neighborhood of x} and

W (X) = {{x} : x ∈ W (X)}.

Proposition 3.5. For a space X , the following assertions are equivalent:

(1) X has a point finite g-developable CWC-map g (i.e. Gn = {g(n, x) : x ∈ X} is

point finite for each n ∈ N).
(2) X has a uniform weak base.

P r o o f. (1) ⇒ (2). Set G =
⋃

n∈NGn. For each x ∈ X , let G ′ be a countable

subset of (G )x, and set G ′ = {g(nk, xk) : k ∈ N}. Then {nk : k ∈ N} is an infinite
set. Suppose that U is an open neighborhood of x, then there is m ∈ N such that
st(x, Gm) ⊂ U . Taking k ∈ N with nk > m, then x ∈ g(nk, xk) ⊂ st(x, Gm) ⊂ U .

Hence G is a uniform weak base for X .

(2) ⇒ (1) Let P =
⋃

x∈X

Px be a uniform weak base for X .

(i) P is point countable. For x ∈ X , suppose that (P)x is not countable. For

y 6= x, as P is a uniform weak base for X , hence {P ∈ (P)x : y ∈ P} is finite. So

there are an infinite subset {Pn : n ∈ N} of (P)x, xn ∈ Pn \ {x} and k ∈ N such
that ord(xn, (P)x) = k for each n. Note that P is a uniform weak base for X ,
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hence xn → x. Since a weak base for X is a cs-network for X , there are a subset

{Fn : n ∈ N} of (P)x and a subsequence {xnj
} of {xn} such that {xni

: i > j} ⊂

Fj ⊂ X \ {xni
: i < j}, j ∈ N. So ord(xnj

, (P)x) > j, a contradiction. Therefore

P is point countable.

(ii)P has the property (∗): {R ∈ P : P ⊂ R} is finite for each P ∈ P. Otherwise,

there is an infinite subset {Pn : n ∈ N} of P \ {P} such that P ⊂ Pn for each n.

By (i), X is g-first countable, hence X is a sequential space. If P is a single point,

then since a weak neighborhood is a sequential neighborhood, P is a sequential open

subset of X , thus P is open in X and Pn ⊂ P for some Pn, a contradiction. If P is

not a single point, then we may suppose that {x, y} ⊂ P , thus there is n ∈ N such
that x ∈ Pn ⊂ X − {y}, a contradiction.

(iii) Put Pm = {H ∈ P : if H ⊂ P ∈ P, then P = H}. Then Pm is a point

finite cover for X . For P ∈ P, by Property (∗), there is H ∈ Pm with P ⊂ H , thus

Pm is a cover for X . For x ∈ X , if (Pm)x is infinite, we denote it by {Hn : n ∈ N}.
SinceP is a uniform weak base for X , there is a weak neighborhood P ∈ P of x and

we may assume P ⊂ H1. Taking xn ∈ (Hn+1 \H1), then xn → x and {xn} ∩ P = ∅,

a contradiction. Therefore Pm is a point finite cover for X .

(iv) Put P ′ = (P \ Pm) ∪ W (X). Then P ′ is a uniform weak base for X . Let

U be an open neighborhood of x and we may assume x /∈ W (X). Then there are

distinct elements P1, P2 and P of Px with x ∈ P ⊂ P1 ∩ P2 ⊂ P1 ∪ P2 ⊂ U . Thus

P ∈ P ′, P ′ is a weak base for X . Hence P ′ is a uniform weak base for X .

(v)X has a point finite g-developable CWC-map g. PutP1 = Pm,Pn+1 = [(P\
⋃

{Pj : j 6 n}) ∪ W (X)]m, n ∈ N. It is easy to see that Pn+1 refines Pn for each

n ∈ N , and P =
⋃

n∈NPn by the property (∗). For each x ∈ X , n ∈ N, if x ∈ W (X),

then we define g(n, x) = {x}. If x /∈ W (X), since eachPn is point finite, we may as-

sume that Px = {Pi : i ∈ N} = {P1, P2, . . . , Pk1
, Pk1+1, . . . , Pk2

, Pk2+1, . . . , Pkn
. . .}

with Pi ∈ Pmn
when kn−1 < i 6 kn and mn < mn+1 (where k0 = 0). We define

g(n, x) =
⋂

j6kn

Pj . Since each Pn is point finite and Pn+1 refines Pn for n ∈ N,
Gn = {g(n, x) : x ∈ X} is point finite for each n ∈ N. Let U be a subset of X such

that for each x ∈ U , g(n, x) ⊂ U for some g(n, x). Then there is P ∈ Px with

P ⊂ g(n, x). Hence U is open in X , thus g is a g-first CWC-map for X . To complete

the proof, we need only to show that {st(x, Gn) : x ∈ X, n ∈ N} is a weak base for X .
Let U be an open neighborhood of x and suppose that st(x, Gn) ( U for each n ∈ N.
Then there are xn, x ∈ g(n, yn) with xn /∈ U for each n ∈ N. Note that if Pn ∈ Pn

then {Pn : n ∈ N} are different from each other. Thus there is an infinite subsetP ′′

of (P)x such that each element ofP
′′ contains some g(n, yn). SinceP is a uniform

weak base for X , there is P ∈ P ′′ such that g(n, yn) ⊂ P ⊂ U for some g(n, yn),
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a contradiction. Hence st(x, Gn) ⊂ U for some n ∈ N, and {st(x, Gn) : n ∈ N} is a
weak base for X . �

Theorem 3.6. The following assertions are equivalent for a space X .

(1) X is a weak-open compact image of a metric space.

(2) X has a point finite g-developable CWC-map g.

P r o o f. (1) ⇒ (2) Let X be a weak-open compact image of a metric space M

under f . By Theorem 1.3.3 [15], there is a sequence {Pn} of open covers of M such

that {st(K, Pn) : n ∈ N} is a neighborhood base of K in M for each K ∈ K (M)

(whereK (M) is the collection of all compact subsets ofM). By the paracompactness

of M , we may assume that each Pn is local finite and Pn+1 refines Pn for each

n ∈ N. Thus f(Pn) is a point finite cover of X for each n ∈ N. Let B =
⋃

x∈X

Bx be

a weak base for X and let α(x) ∈ f−1(x) for x ∈ X satisfying Definition 2.3 (2). For

each n ∈ N and x ∈ X , there exists Pn ∈ Pn with α(x) ∈ Pn. For this Pn there exists

Bn ∈ Bx with Bn ⊂ f(Pn). Put g(n, x) =
⋂

j6n

Bj , then Gn = {g(n, x) : x ∈ X} is

point finite for each n ∈ N. Suppose that U is an open subset of X for x ∈ U , then

f−1(x) ⊂ f−1(U), so there exists n ∈ N such that st(f−1(x), Pn) ⊂ f−1(U). Hence

g(n, x) ⊂ st(x, Gn) ⊂ st(x, f(Pn)) ⊂ U . Conversely, let U be a subset of X such

that for each x ∈ U there exists n ∈ N with g(n, x) ⊂ U . By the definition of g(n, x),

we have B ⊂ g(n, x) ⊂ U for some B ∈ Bx. As B is a weak base for X , U is open

in X . Therefore g is a g-first countable CWC-map for X . Similarly, as shown above,

{st(x, Gn) : x ∈ X, n ∈ N} is a weak base for X , so g is a point finite g-developable

CWC-map for X .

(2) ⇒ (1) Put Gn = {g(n, x), x ∈ X}, n ∈ N, then each Gn is point finite. It is

easy to check that {Gi : i ∈ N} is a network of x if x ∈ Gi ∈ Gi for each i ∈ N.
Set Gn = {Gα : α ∈ An}, n ∈ N, and M =

{

α = (αn) ∈
∏

n∈NAn : {Gαn
: n ∈ N}

forms a network at some point x(α) in X
}

, and equipM with the subspace topology

induced from the usual product topology of the discrete spaces An. Then M is a

metric space. We define f : M → X by f(α) = x(α). It is easy to see that f is a

continuous and surjective mapping.

(i) f is a weak-open mapping. As in the proof of Theorem 2.4, f is a weak-open

mapping

(ii) f is a compact mapping. For each x ∈ X , i ∈ N, set
Ci = {α ∈ Ai : x ∈ Gα ∈ Gi};

then
∏

i∈NCi is a compact subset of
∏

i∈NAi. If α = (αi) ∈
∏

i∈NCi, then x ∈
⋂

i∈NGαi
,

α ∈ M and f(α) = x. So
∏

i∈NCi ⊂ f−1(x). On the other hand, if α = (αi) ∈ f−1(x),
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then x ∈
⋂

i∈NGαi
. Hence α ∈

∏

i∈NCi, f−1(x) ⊂
∏

i∈NCi. Thus f−1(x) =
∏

i∈NCi, and

f is a compact mapping. �

Corollary 3.7. The following assertions are equivalent for a space X .

(1) X is a weak-open compact image of a metric space.

(2) X is a 1-sequence-covering quotient compact image of a metric space.

(3) X is a sequence-covering quotient compact image of a metric space.

(4) X has a point-regular weak base.

(5) X is a sequential space with a point-regular cs-network.

(6) X has a uniform weak base.

(7) X has a point finite g-developable CWC-map.

(3) ⇔ (4) was shown in [10], (2) ⇔ (3) ⇔ (4) ⇔ (5) ⇔ (6) were shown by S. Lin

and P. Yan [17], which answered a question from [10]: For a sequential space X

with a point-regular cs-network, characterize X by means of a nice image of a metric

space. Thus Corollary 3.7 is another answer to the question.
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