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STRONG SEPARATIVITY OVER EXCHANGE RINGS

Huanyin Chen, Changsha
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Abstract. An exchange ring R is strongly separative provided that for all finitely gener-
ated projective right R-modules A and B, A ⊕ A ∼= A ⊕ B ⇒ A ∼= B. We prove that an
exchange ring R is strongly separative if and only if for any corner S of R, aS + bS = S

implies that there exist u, v ∈ S such that au = bv and Su + Sv = S if and only if
for any corner S of R, aS + bS = S implies that there exists a right invertible matrix
(

a b

∗ ∗

)

∈ M2(S). The dual assertions are also proved.
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1. Introduction

A ring R is an exchange ring provided that for every right R-module M and two

decompositions M = A ⊕ B =
⊕

i∈I

Ai, where AR
∼= R and the index set I is finite,

there exist submodules A′
i ⊆ Ai such that M = A⊕

(

⊕

i∈I

A′
i

)

(see [3]). An exchange

ring R is strongly separative provided that for all finitely generated projective right

R-modules A and B, A ⊕ A ∼= A ⊕ B ⇒ A ∼= B. Many authors studied strong

separativity for exchange rings (cf. [3]–[6], [8] and [11]–[14]). In [4, Proposition 4.2],

Ara et al. proved that a regular ring R is strongly separative if and only if for

any corner S of R, (a, b) ∈ M1×2(S) implies that there exists an invertible matrix

U ∈ M2(S) such that (a, b)U = (∗, 0), where S is a corner of a ring R provided

that S = eRe for an idempotent e ∈ R. This inspires us to develop new element-

wise characterizations of strongly separative exchange rings. In this paper we prove

that an exchange ring R is strongly separative if and only if for any corner S of R,

aS + bS = S implies that there exist u, v ∈ S such that au = bv and Su + Sv = S
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if and only if for any corner S of R, aS + bS = S implies that there exists a right

invertible matrix

(

a b

∗ ∗

)

∈ M2(S). Furthermore, we prove that a regular ring R

is strongly separative if and only if for any corner S of R, aS + bS = S implies that

there exist u, v ∈ S such that au = bv and r · ann(u) ∩ r · ann(v) = 0. The dual

assertions are also proved.

Throughout this paper, all rings are associative with an identity and all modules

are unital right R-modules. Let A and B be right R-modules. A .⊕ B means that

A is isomorphic to a direct summand of B and A . B means that A is isomorphic to

a submodule of B. We write r(a)(l(a)) for the right (left) annihilator of an element

a ∈ R. N stands for the set of all natural numbers.
2. Unimodular rows

We say that a 1× 2 matrix (a, b) over a ring R is a unimodular row provided that

it is right invertible, i.e., aR+ bR = R. It is well known that a regular ring R is unit-

regular if and only if for any unimodular row (a, b), there exists a y ∈ R such that

a + by ∈ R is invertible (see [7, Proposition 4.12]). In this section, we characterize

strong separativity for exchange rings by virtue of unimodular rows.

Lemma 2.1. Let R be an exchange ring. Then the following conditions are

equivalent:

(1) R is strongly separative.

(2) For any right R-modules A and B, A⊕A ∼= A⊕B .⊕ R implies that A .⊕ B.

P r o o f. (1) ⇒ (2) is trivial.

(2) ⇒ (1) Let A and B be finitely generated projective right R-modules such that

A⊕A ∼= A⊕B. Then we can find n ∈ N such that A .⊕ nR. Since R is an exchange

ring, it follows by [3, Proposition 1.2] that there exist A1, . . . , An .⊕ R such that

A ∼= A1 ⊕ . . .⊕ An. Hence A1 ⊕ (A2 ⊕ . . . ⊕ An ⊕ A) ∼= A1 ⊕ (A2 ⊕ . . .⊕ An ⊕ B).

Let C1 = A2 ⊕ . . .⊕An ⊕A and B1 = A2 ⊕ . . .⊕An ⊕B. Then A1 ⊕C1
∼= A1 ⊕B1

with A1 .⊕ C1. Analogously to [3, Lemma 2.7], we have a refinement matrix

(

A1 C1

A1 A′
1

C′
1

B1 B′
1

D1

)

,

where A′
1

.⊕ C′
1
.
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Clearly, A′
1
⊕ C′

1
∼= A′

1
⊕ B′

1
∼= A1 .⊕ R with A′

1
.⊕ C′

1
. Thus, we have a

refinement matrix

(

A′
1 C′

1

A′
1 A′′

1 C′′
1

B′
1

B′′
1

D′
1

)

,

where A′′
1 . C′′

1 . It follows from A′′
1 ⊕ C′′

1
∼= A′′

1 ⊕ B′′
1
∼= A′

1 with A
′′
1 . C′′

1 that

C′′
1
⊕ C′′

1
∼= C′′

1
⊕ B′′

1
. A′

1
⊕ C′

1
∼= A1 .⊕ R. By assumption we have C′′

1
.⊕ B′′

1
,

and so B′′
1

∼= C′′
1 ⊕ E for a right R-module E. As a result, we get A′

1
∼= A′′

1 ⊕

B′′
1

∼= A′′
1
⊕ C′′

1
⊕ E ∼= A′

1
⊕ E. Since A′

1
.⊕ C′

1
, we see that C′

1
∼= C′

1
⊕ E,

whence C′
1
∼= C′′

1 ⊕ D′
1 ⊕ E ∼= B′′

1 ⊕ D′
1
∼= B′

1, and so C1
∼= B1. This means that

A2 ⊕ (A3 ⊕ . . .⊕An ⊕A) = A2 ⊕ (A3 ⊕ . . .⊕An ⊕B). By iterating this process, we

prove that A ∼= B. Therefore, R is strongly separative, which concludes the proof.

�

Lemma 2.2. Let R be an exchange ring. Then the following conditions are

equivalent:

(1) aR+bR = R implies that there exist u, v ∈ R such that au = bv and Ru+Rv =

R.

(2) For any right R-module A, R⊕R ∼= R⊕A implies that R .⊕ A.

P r o o f. (1) ⇒ (2) Given R⊕R ∼= R⊕A, we have a split exact sequence

0 → A
i
→ R ⊕R

f
→ R → 0.

Thus, there exists a right R-morphism g : R → R ⊕ R such that fg = 1R. Assume

that f(1, 0) = a, f(0, 1) = b and g(1) = (x, y). Then 1 = fg(1) = f(x, y) = ax+ by;

hence, aR + bR = R. By assumption, there exist u, v ∈ R such that au = bv and

Ru + Rv = R. Construct a map ϕ : R → R ⊕ R given by ϕ(r) = (ur,−vr) for any

r ∈ R. Since fϕ = 0, there exists a right R-morphism ω : R → A such that iω = ϕ.

Clearly, su + tv = 1 for some s, t ∈ R. Construct a map ψ : R ⊕ R → R given by

ψ(r1, r2) = sr1 − tr2 for any (r1, r2) ∈ R ⊕ R. It is easy to verify that ψϕ = 1R;

hence, ϕ : R → R ⊕ R is an R-monomorphism. This implies that ω : R → A is an

R-monomorphism, and so R .⊕ A.

(2) ⇒ (1) Suppose that aR + bR = R with a, b ∈ R. Then we have x, y ∈ R

such that ax + by = 1. Define f : R ⊕ R → R by f(r1, r2) = ar1 + br2 for any

(r1, r2) ∈ R ⊕ R and g : R → R ⊕ R by g(r) = (xr, yr) for any r ∈ R. As fg = 1R,

we have a split exact sequence

0 → Ker f
i
→֒ R⊕R

f
→ R→ 0,
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where i is the inclusion map. This implies thatKer f⊕R ∼= R⊕R. By assumption, we

get R .⊕ Ker f , and so we have two R-morphisms ϕ : R→ Ker f and ω : Ker f → R

such that ωϕ = 1R. Thus, iϕ : R → R ⊕ R. Assume that iϕ(1) = (u, v′) ∈ R ⊕ R.

Then 0 = fiϕ(1) = f(u, v′) = au + bv′; hence, au = −bv′. Let v = −v′. Then

au = bv. Clearly, there exists a j : R ⊕ R → Ker f such that ji = 1Ker f . Hence

ωj : R ⊕ R → R. Assume that ωj(1, 0) = s and ωj(0, 1) = t. Then su − tv =

ωj(u, 0) + ωj(0, v′) = ωj(u, v′) = ωjiϕ(1R) = 1R. This shows that Ru+Rv = R, as

asserted. �

Theorem 2.3. Let R be an exchange ring. Then the following conditions are

equivalent:

(1) R is strongly separative.

(2) For any corner S of R, aS + bS = S implies that there exist u, v ∈ S such that

au = bv and Su+ Sv = S.

P r o o f. (2) ⇒ (1) Suppose that A ⊕ A ∼= A ⊕ B .⊕ R. Then we can find

an idempotent e ∈ R such that A ∼= eR. Hence eR ⊕ eR ∼= eR ⊕ B, and so

eR
⊗

R Re ⊕ eR
⊗

R Re
∼= eR

⊗

RRe ⊕ B
⊗

R Re. This implies that eRe ⊕ eRe ∼=

eRe⊕B
⊗

R Re as right eRe-modules. By Lemma 2.2 we get eRe .⊕ B
⊗

R Re. As

a result, we get

A ∼= eR ∼= eRe
⊗

eRe

eR .⊕

(

B
⊗

R

Re
)

⊗

eRe

eR.

Since B .⊕ eR ⊕ eR, we see that (B
⊗

R Re)
⊗

eRe eR
∼= Be

⊗

eRe eR
∼= B and so

A .⊕ B. According to Lemma 2.1, R is strongly separative.

(1) ⇒ (2) Let e ∈ R be an idempotent. Given eRe⊕ eRe ∼= eRe⊕A with a right

eRe-module A, then eR ⊕ eR ∼= eR ⊕ A
⊗

eRe eR. Since R is strongly separative,

we have eR ∼= A
⊗

eRe eR, and then eR
⊗

RRe
∼= (A

⊗

eRe eR)
⊗

RRe as right eRe-

modules. Thus, eRe ∼= A as right eRe-modules. According to Lemma 2.2, we obtain

the result. �

Following Ara et al. (see [4]), we say that a regular ring R has cancellation of

small projectives provided it is strongly separative. Theorem 2.3 shows that a regular

ring R having cancellation of small projectives can be characterized by an analogue

of stable rank one.

Corollary 2.4. Let R be an exchange ring. Then the following are equivalent:

(1) R is strongly separative.

(2) For any corner S of R and any n > 2, a1S + a2S + . . . + anS = S implies

that there exist u1, u2, . . . un ∈ S such that a1u1 + a2u2 + . . . + anun = 0 and

Su1 + Su2 + . . .+ Sun = S.

420



P r o o f. (2) ⇒ (1) is trivial by Theorem 2.3.

(1) ⇒ (2) Let S be a corner ofR and n > 2. Suppose that a1S+a2S+. . .+anS = S.

Since R is strongly separative, so is S by [3, Lemma 1.5]. In view of [3, Theorem 3.3],

the stable rank of S is less than 2. Thus, we have some y3, . . . , yn, z3, . . . , zn ∈ S

such that

(a1 + a3y3 + . . .+ anyn)S + (a2 + a3z3 + . . .+ anzn)S = S.

By virtue of Theorem 2.3, there exist u, v ∈ S such that

(a1 + a3y3 + . . .+ anyn)u+ (a2 + a3z3 + . . .+ anzn)v = 0

and Su+ Sv = S. This implies that

a1u+ a2v + a3(y3u+ z3v) + . . .+ an(ynu+ znv) = 0.

Furthermore, we see that

Ru+Rv +R(y3u+ z3v) + . . .+R(ynu+ znv) = R,

and therefore we complete the proof. �

3. The symmetry

We say that a 2 × 1 matrix
( a

b

)

over a ring R is a unimodular column provided

that it is left invertible, i.e., Ra + Rb = R. In this section we characterize strongly

separative exchange rings by using unimodular columns and give the dual of Theo-

rem 2.3. As an application, we prove that strong separativity for exchange rings is

symmetric.

Lemma 3.1. Let R be an exchange ring. Then the following conditions are

equivalent:

(1) Ra+Rb = R implies that there exist u, v ∈ R such that ua = vb and uR+vR =

R.

(2) For any right R-module A, R⊕R ∼= R⊕A implies that R .⊕ A.

P r o o f. (1) ⇒ (2) Given R⊕R ∼= R⊕A, then we have a split exact sequence

0 → R
i
→ R⊕R

f
→ A→ 0.
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So we can find a right R-morphism j : R ⊕ R → R such that ji = 1R. Assume

that j(1, 0) = x, j(0, 1) = y and i(1) = (a, b). Then 1 = ji(1) = j(a, b) = xa + yb

and so Ra + Rb = R. By assumption, there exist u, v ∈ R such that ua = vb and

uR + vR = R. Construct a map ϕ : R ⊕ R → R given by ϕ(r1, r2) = ur1 − vr2 for

any (r1, r2) ∈ R ⊕ R. For any r ∈ R, ϕi(r) = ϕ(ar, br) = uar − vbr = 0, so ϕi = 0.

Thus, we can find a right R-morphism ω : A → R such that ωf = ϕ. Obviously,

we have s, t ∈ R such that us + vt = 1; hence, ϕ(sr,−tr) = usr + vtr = r for any

r ∈ R. This means that ϕ : R ⊕ R → R is an R-epimorphism. Hence ω : A → R is

an R-epimorphism. As a result, we get R .⊕ A.

(2) ⇒ (1) Suppose that Ra+ Rb = R with a, b ∈ R. Then we have x, y ∈ R such

that xa + yb = 1. Define j : R ⊕ R → R by j(r1, r2) = xr1 + yr2 for any r1, r2 ∈ R

and i : R → R⊕R by i(r) = (ar, br) for any r ∈ R. Then ji = 1R, and so the exact

sequence

0 → R
i
→ R⊕R

σ
→ Coker i→ 0

splits, where σ is the natural R-epimorphism. Thus we have R ⊕ R ∼= R ⊕ Coker i.

By hypothesis, we have R .⊕ Coker f . So there exists an R-epimorphism ϕ :

Coker f → R, and then ϕσ : R⊕R → R. Assume that ϕσ(1, 0) = u and ϕσ(0, 1) =

−v. Then 0 = ϕσi(1) = ϕσ(a, b) = ua − vb, i.e., ua = vb. Clearly, ϕσ is a

split R-epimorphism. Hence we can find τ : R → R ⊕ R such that ϕστ = 1R. Let

τ(1) = (s, t) ∈ R⊕R. Then 1 = ϕστ(1) = ϕσ(s, t) = us−vt. Therefore uR+vR = R,

as asserted. �

Theorem 3.2. Let R be an exchange ring. Then the following conditions are

equivalent:

(1) R is strongly separative.

(2) For any corner S of R, Sa+ Sb = S implies that there exist u, v ∈ S such that

ua = vb and uS + vS = S.

P r o o f. (2) ⇒ (1) Let S be a corner of R. Then S is an exchange ring

by [1, Proposition 1.3]. For any right S-module A, it follows by Lemma 3.1 that

S ⊕ S ∼= S ⊕ A implies that S .⊕ A. According to Lemma 2.2 and Theorem 2.3,

R is strongly separative.

(1) ⇒ (2) Let S be a corner of R. Then S is an exchange ring. For any right

S-module A, it follows by Theorem 2.3 and Lemma 2.2 that S ⊕ S ∼= S ⊕A implies

that S .⊕ A. Therefore we complete the proof by Lemma 3.1. �

Let Ur(S) and Uc(S) denote the sets of all unimodular rows and unimodular

columns over S, respectively.
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Corollary 3.3. Let R be an exchange ring. Then the following conditions are

equivalent:

(1) R is strongly separative.

(2) For any corner S of R and any x ∈ Uc(S), there exists y ∈ Ur(S) such that

yx = 0.

(3) For any corner S of R and any x ∈ Ur(S), there exists y ∈ Uc(S) such that

xy = 0.

P r o o f. (1) ⇒ (2) For any corner S of R and any x =
( a

b

)

∈ Uc(S), it follows

by Theorem 3.2 that there exist u, v ∈ S such that ua = vb and uS + vS = S.

Let y = (u,−v). Then y ∈ Ur(S). In addition, we have yx = (u,−v)
( a

b

)

= 0, as

required.

(2) ⇒ (1) For any corner S of R, Sa + Sb = S implies that there exist u, v′ ∈ S

such that (u, v′)
( a

b

)

= 0 and uS + v′S = S. Let u = −u′. Then ua = vb and

uS + vS = S. In view of Theorem 3.2, R is strongly separative.

(1) ⇔ (3) is proved in the same manner. �

We use Ro to denote the opposite ring of a ring R. As a consequence of Theo-

rem 3.2, we now derive

Theorem 3.4. An exchange ring R is strongly separative if and only if so is the

opposite ring Ro.

P r o o f. (1) ⇒ (2) Let R be a strongly separative exchange ring. In view of [10,

Proposition], Ro is an exchange ring. For any So = eoRoeo with idempotent eo ∈ Ro,

Soao + Sobo = So with ao, bo ∈ So implies that aS + bS = S. Clearly, e ∈ R is an

idempotent. In view of Theorem 2.3, we can find u, v ∈ R such that au = bu and

Su+ Sv = S. Thus, uoao = vobo and uoSo + voSo = So. It follows by Theorem 3.2

that Ro is strongly separative.

(2) ⇒ (1) is symmetric. �

Corollary 3.5. An exchange ring R is strongly separative if and only if for all

finitely generated projective left R-modules A and B, A ⊕ A ∼= A ⊕ B implies that

A ∼= B.

P r o o f. Let R be an exchange ring. Clearly, the opposite ring Ro is strongly

separative if and only if for all finitely generated projective left R-modules A and B,

A⊕A ∼= A⊕B implies that A ∼= B. Therefore we complete the proof by Theorem 3.4.

�
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By Theorem 3.4 and [6, Corollary 5] we prove that an exchange ring R is strongly

separative if and only if for any finitely generated projective left R-module C, 2C ⊕

A ∼= C ⊕B implies that C ⊕A ∼= B for any left R-modules.

4. Completion of matrices

In [6, Theorem 5], the author proved that an exchange ring R is strongly separative

if and only if every regular matrix over any corner of R admits a diagonal reduc-

tion. In this section we characterize strongly separative exchange rings by virtue of

completion of matrices over their corners.

Theorem 4.1. Let R be an exchange ring. Then the following conditions are

equivalent:

(1) R is strongly separative.

(2) For any corner S of R, aS + bS = S implies that there exists a right invertible

matrix

(

a b

∗ ∗

)

∈M2(S).

P r o o f. (1) ⇒ (2) Let S be a corner of R. Then S is a strongly separative

exchange ring by [3, Lemma 1.5]. Suppose that aS + bS = S with a, b ∈ S. Then

we can find a′, b′ ∈ S such that aa′ + bb′ = 1S . Let α = (a, b), β =

(

a′

b′

)

. Then

αβ = 1S . Let {ε} and {η1, η2} be bases of S and S ⊕ S, respectively. Construct two

right S-morphisms

ϕ : S → S ⊕ S, ϕ(ε) = (η1, η2)β;

ω : S ⊕ S → S, ω(η1, η2) = εα.

Obviously, ωϕ = 1S . Thus, we have a split exact sequence

0 −→ Kerω −→ S ⊕ S
ω

−→ S −→ 0.

This implies that S ⊕ S = Kerω ⊕ C for a right S-module C. In addition, C ∼= S.

As a result, Kerω ∼= S. Let {δ1} and {δ2} be bases of Kerω and C, respectively.

Then {δ1, δ2} and {η1, η2} are both bases of S ⊕ S and so there exists an invertible

matrix

(

c11 c12

c21 c22

)

such that

(η1, η2) = (δ1, δ2)

(

c11 c12

c21 c22

)

.
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One easily checks that

Kerω =

{

(η1, η2)

(

r1

r2

)

: εα

(

r1

r2

)

= 0, r1, r2 ∈ S

}

=

{

(δ1, δ2)

(

c11 c12

c21 c22

)(

r1

r2

)

: εα

(

r1

r2

)

= 0, r1, r2 ∈ S

}

.

Let
(

c11 c12

c21 c22

)(

r1

r2

)

=

(

s1

s2

)

.

Then

Kerω =

{

(δ1, δ2)

(

s1

s2

)

: εα

(

c11 c12

c21 c22

)−1(

s1

s2

)

= 0, s1, s2 ∈ S

}

=

{

(δ1, δ2)

(

s1

s2

)

: α

(

c11 c12

c21 c22

)−1(

s1

s2

)

= 0, s1, s2 ∈ S

}

.

Let

α

(

c11 c12

c21 c22

)−1

= (t1, t2).

Then

Kerω =

{

(δ1, δ2)

(

s1

s2

)

: t1s1 + t2s2 = 0, s1, s2 ∈ S

}

= δ1S.

Clearly, δ1 ∈ Kerω, and so

(δ1, δ2)

(

1

0

)

∈ Kerω.

This infers that t1 = 0. As a result,

αβ = (0, t2)

(

c11 c12

c21 c22

)

β = t2(c21, c22)β.

As αβ = 1S, we see that t2k = 1S for a k ∈ S. This shows that t2(1S − kt2) = 0,

and so δ2(1S − kt2) ∈ Kerω. Thus, we get 1S − kt2 = 0, i.e., t2 ∈ S is invertible.

Furthermore, α = (t2c21, t2c22) is the first row of an invertible matrix

(

0 1

1 0

)(

1 0

0 t2

)(

c11 c12

c21 c22

)

,

as required.
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(2) ⇒ (1) Let S be a corner of R. Suppose that aS + bS = S with a, b ∈ S. By

assumption, there exists a right invertible matrix

(

a b

∗ ∗

)

∈ M2(S). So we have

s, t ∈ S and

(

c11 c12

c21 c22

)

∈M2(S) such that

(

a b

s t

)(

c11 c12

c21 c22

)

=

(

1 0

0 1

)

2×2

.

Thus ac12 + bc22 = 0 and sc12 + tc22 = 1. Let u = c12 and v = −c22. Then au = bv

and Su+Sv = S. In view of Theorem 2.3, we conclude that R is strongly separative.

�

Corollary 4.2. Let R be an exchange ring. Then the following conditions are

equivalent:

(1) R is strongly separative.

(2) For any corner S of R, Sa + Sb = S implies that there exists a left invertible

matrix

(

a ∗

b ∗

)

∈M2(S).

P r o o f. (1) ⇒ (2) Let S be a corner of R. Suppose that Sa + Sb = S with

a, b ∈ S. Then So is a corner of Ro and aoSo + boSo = So. Since R is strongly

separative, so is So from Theorem 3.4. According to Theorem 4.1, we can find a

right invertible matrix

(

ao bo

∗o ∗o

)

∈M2(S
o). This means that

(

a ∗

b ∗

)

∈M2(S) is

left invertible, as required.

(2) ⇒ (1) Let So be a corner of Ro. Suppose that aoSo + boSo = So with

ao, bo ∈ So. Then Sa+ Sb = S. By assumption, there exists a left invertible matrix
(

a ∗

b ∗

)

∈ M2(S). This means that

(

ao bo

∗o ∗o

)

∈ M2(S
o) is right invertible. By

virtue of Theorem 4.1, Ro is strongly separative. It follows by Theorem 3.4 that R is

strongly separative. �

Analogously, we prove that an exchange ring R is strongly separative if and only

if for any corner S of R, aS + bS = S implies that there exists an invertible matrix
(

a b

∗ ∗

)

∈ M2(S) if and only if for any corner S of R, Sa + Sb = S implies that

there exists an invertible matrix

(

a ∗

b ∗

)

∈M2(S).
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5. Regular rings

A ring R is regular provided that for every a ∈ R there exists x ∈ R such that a =

axa. Clearly, every regular ring is an exchange ring. In this section we characterize

strongly separative regular rings in terms of annihilators.

Lemma 5.1. Let R be a regular ring. Then the following conditions are equiva-

lent:

(1) aR + bR = R implies that there exist u, v ∈ R such that au = bv and

r · ann(u) ∩ r · ann(v) = 0.

(2) For any right R-module A, R⊕R ∼= R⊕A implies that R . A.

P r o o f. (1) ⇒ (2) Given R⊕R ∼= R⊕A, then we have a split exact sequence

0 → A
i
→ R ⊕R

f
→ R → 0.

So there is a right R-morphism g : R → R ⊕ R such that fg = 1R. Assume that

f(1, 0) = a, f(0, 1) = b and g(1) = (x, y). Then aR + bR = R. By assumption,

there exist u, v ∈ R such that au = bv and r · ann(u) ∩ r · ann(v) = 0. Con-

struct a map ϕ : R → R ⊕ R given by ϕ(r) = (ur,−vr) for any r ∈ R. For

any r ∈ R, fϕ(r) = f(ur,−vr) = aur − bvr = 0. Hence fϕ = 0. As a result,

there exists a right R-morphism ω : R → A such that iω = ϕ. If ω(r) = 0, then

ϕ(r) = (0, 0). Hence (ur,−vr) = (0, 0), and so ur = −vr = 0. This implies that

r ∈ r · ann(u) ∩ r · ann(v) = 0. Thus ω : R → A is an R-monomorphism, and so

R . A.

(2) ⇒ (1) Suppose that aR + bR = R with a, b ∈ R. Then we have x, y ∈ R

such that ax + by = 1. Define f : R ⊕ R → R by f(r1, r2) = ar1 + br2 for any

(r1, r2) ∈ R ⊕ R and g : R → R ⊕ R by g(r) = (xr, yr) for any r ∈ R. Analogously

to Lemma 2.2, we get R ⊕ R ∼= R ⊕ Ker f . By hypothesis, we have R . Ker f . So

there exists an R-monomorphism ϕ : R → Ker f , and so iϕ : R → R ⊕ R. Assume

that iϕ(1) = (u, v′) ∈ R ⊕ R. Then 0 = fiϕ(1) = f(u, v′) = au + bv′. Let v = −v′.

Then au = bv. Given any z ∈ r · ann(u) ∩ r · ann(v), we have uz = −v′z = 0. As a

result, iϕ(z) = iϕ(1)z = (u, v′)z = (0, 0). Since both i and ϕ are R-monomorphisms,

we deduce that z = 0; hence, r · ann(u)∩ r · ann(v) = 0. The proof is completed. �

Theorem 5.2. A regular ring R is strongly separative if and only if for any

corner S of R, aS + bS = S implies that there exist u, v ∈ S such that au = bv and

r · ann(u) ∩ r · ann(v) = 0.

P r o o f. Let S be a corner of R. Suppose that aS+bS = S with a, b ∈ S. In view

of Theorem 2.3, there exist u′, v′ ∈ S such that au′ = bv′ and Su′+Sv′ = S. For any
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right S-module A, it follows by Lemma 2.2 that S⊕S ∼= S⊕A implies that S .⊕ A.

Therefore there exist u, v ∈ S such that au = bv and r · ann(u) ∩ r · ann(v) = 0

from Lemma 5.1. Conversely, we prove that R is strongly separative by Lemma 5.1,

Lemma 2.2 and Theorem 2.3. �

Corollary 5.3. A regular ring R is strongly separative if and only if for any

corner S of R, Sa+ Sb = S implies that there exist u, v ∈ S such that ua = vb and

l · ann(u) ∩ l · ann(v) = 0.

P r o o f. Let S be a corner of R. Assume that Sa+ Sb = S with a, b ∈ S. Then

aoSo + boSo = So. In view of Theorem 3.4 and Theorem 2.3, we can find u, v ∈ S

such that aouo = bovo and r · ann(uo) ∩ r · ann(vo) = 0. As a result, ua = vb and

l · ann(u) ∩ l · ann(v) = 0.

Conversely, assume that aoSo + boSo = So with ao, bo ∈ So. Then Sa + Sb = S.

By assumption, there exist u, v ∈ S such that ua = vb and l · ann(u)∩ l · ann(v) = 0.

Thus, aouo = bovo and r · ann(uo) ∩ r · ann(vo) = 0. In view of Theorem 2.3, Ro is

strongly separative. Therefore we complete the proof by Theorem 3.4. �
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