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Abstract. The Henstock-Kurzweil and McShane product integrals generalize the notion of
the Riemann product integral. We study properties of the corresponding indefinite integrals
(i.e. product integrals considered as functions of the upper bound of integration). It is shown
that the indefinite McShane product integral of a matrix-valued function A is absolutely
continuous. As a consequence we obtain that the McShane product integral of A over [a, b]
exists and is invertible if and only if A is Bochner integrable on [a, ].
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Let an interval [a,b] C R, —00 < a < b < 400 be given. A pair (7,J) of a point
T € [a,b] and a compact interval J C [a, b] is called a tagged interval, where T is the
tag of J.
A finite collection {(7;, J;): j =1,...,k} of tagged intervals is called an M -system
if
Int(J;) NInt(J;) =0 fori#j

(where Int(J) denotes the interior of the interval J). An M -partition is an M-system
which moreover satisfies

Jj = [a,b].
1

k
j=
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An M-system (M-partition) {(7;,J;): j =1,...,k} for which
TjEJj, j=1,...,k

is called a K-system (K -partition) on [a, b].
In the sequel we assume that every system of tagged intervals {(7;,J;)}%_; is
ordered in such a way that

supJ; <inf J4q, i=1,...,k—1.
In other words, the notation {(7;, [&;,7:])}%_, implies
a<& <m <SS <

Given a positive function §: [a,b] — (0,+00) called a gauge on [a,b], a tagged
interval (7, J) is said to be d-fine if

JC(r=4(r), 7+ (7).

Using this concept we can speak about d-fine systems and d-fine partitions {(7, J;);
j=1,...,k} of the interval [a, b] whenever (75, J;) is d-fine for every j = 1,...,k.
It is a well-known fact that given a gauge 0: [a,b] — (0, +00) there exists a J-fine
K-partition of [a,b]. This result is called Cousin’s lemma.
Assume that Y is a real Banach space with the norm || - ||y. Let us consider a
function f: [a,b] — Y and assume that p is the Lebesgue measure on the real line.

Definition 1.  Assume that f: [a,b] — Y is given. The function f is called
McShane integrable if there is an element My € Y such that for every € > 0 there
exists a gauge ¢ on [a, b] such that

k

S Ftul) MfHY <

i=1

for every 6-fine M-partition {(¢;,J;); ¢ =1,...,k} of [a,b]. The vector My is called
the McShane integral of f over [a,b].

Definition 2.  Assume that f: [a,b] — Y is given. The function f is called
Henstock-Kurzweil integrable if there is an element Ky € Y such that for every € > 0

there exists a gauge ¢ on [a, b] such that

k

Z fti)u(J;) — Ky

i=1

<e
Y

for every d-fine K-partition {(¢;,J;); ¢ =1,...,k} of [a,b]. The vector Ky is called
the Henstock-Kurzweil integral of f over [a,b].
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1. HENSTOCK-KURZWEIL AND MCSHANE PRODUCT INTEGRALS

Assume now that X is a real Banach space. Denote by L(X) the Banach space of
bounded linear operators on X with the usual operator norm given by

Al = [|Allcx) = sup [|Az|x

llzll=1

for A € L(X). By I the identity operator in L(X) will be denoted.
Let J be the set of all compact subintervals in [a, b]. Assume that a point-interval
function V': [a,b] x J — L(X) is given. We denote

1
P(V,D) =[]Vt Ji) = V(tr, SOV (b1, Je—1) ... V(t1, 1),
i=k

where D = {(t;, J;)}F_, is an arbitrary M-partition of [a, b].

Definition 3. A function V: [a,b] X J — L(X) is called McShane product
integrable over [a,b] if there exists Q € L(X) such that for every € > 0 there is a
gauge 6: [a,b] — (0,+00) such that

I1P(V,D) = Q| <e
for every d-fine M-partition D = {(¢;,J;); i =1,...,k} of [a,b].
The operator @ is called the McShane product integral of V' over [a,b] and we use
b
the notation @ = (M) [V (¢, d¢).
Definition 4. A function V': [a,b] x J — L(X) is called Henstock-Kurzweil

product integrable over [a, b] if there exists Q € L(X) such that for every ¢ > 0 there
is a gauge d: [a,b] — (0,+00) such that

IP(V,D) - Q| <e

for every é-fine K-partition D = {(¢;,J;); i =1,...,k} of [a,]].
The operator @ is called the Henstock-Kurzweil product integral of V over [a,b]

b
and we use the notation Q = (HK) [TV (¢, d¢).

Remark 5. A similar concept of product integration was introduced by J. Jarnik
and J. Kurzweil in [2] (see also [5]) for the case of n x n-matrix valued point-interval
functions V' with K-partitions. The corresponding product integral was called the
Perron product integral in [2]. This terminology originates in the well known fact
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that a real function g: [a,b] — R is Perron integrable to the value f: g(t)dt € R if
and only if for every £ > 0 there is a gauge 0 on [a, b] such that

g(t) dt’ <e

for every é-fine K-partition D = {(¢;,J;); i =1,...,k} of [a,b].

The Henstock-Kurzweil and McShane product integrals generalize the notion of
the Riemann product integral. A function V': [a,b] x § — L(X) is called Riemann
product integrable if there exists Q € L(X) such that for every ¢ > 0 there is a
number § > 0 such that

I1P(V,D) - Q| <e
for every K-partition D = {(i, [, a;41])}2_, of the interval [a,b] which satisfies
i1 —a; < 0 for i = 1,... k. The study of the Riemann product integral was
initiated in the work of V. Volterra; a modern treatment of the theory which is due
to P.R. Masani can be found in [3].

Since evidently every J-fine K-partition is also a d-fine M-partition we obtain the
following statement.

Proposition 6. If V: [a,b] x J — L(X) is McShane product integrable then it
is also Henstock-Kurzweil product integrable and

(HK) f[ V(t,dt) = (M) f[ V(t,dt).

Let us mention that a similar statement holds also for the integrals based on
integral sums presented in Definitions 1 and 2.

We now introduce a condition concerning the point-interval function V': [a,b] x
J— L(X).

Condition (C). For everyt € [a,b] and { > 0 there exists 0 = o(t) > 0 such that
V(t,J) = I < ¢

for any interval J C [a,b] such that J C (t — o,t + o).

Typical cases of V satisfying condition (C) are
Vi(t, J) =1+ A(t)u(J)
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and
Va(t,J) = A u(J)
where A: [a,b] — L(X) and p is the Lebesgue measure on the real line The corre-

sponding product integrals are usually denoted H(I + A(t) dt) and H eA® 4t These

integrals are particularly interesting since they Can be used to solve the differential
equation ’(t) = Az(t), where z: [a,b] — X.

The following result was proved in [4] for the McShane product integral and in [2]
for the Henstock-Kurzweil product integral (in the case X = R™).

Theorem 7. Consider a function V': [a,b] X § — L(X) such that the McShane
b
(Henstock-Kurzweil) integral [[ V (t,dt) exists and is invertible. If the function V

satisfies condition (C), then for every s € [a,b] the McShane (Henstock-Kurzweil)
product integrals

s b
[Tvan, [Jvtdy
exist, the equality

b s b
[[veay[[vda =]]vEdt)

holds and there exists a constant K > 0 such that

[ f[v(t,dt)H <K, H(ﬁv(t,dt)>_1H <K

for s € [a,b].
Example 8. We now demonstrate the existence of a function A: [a,b] — L(R")

b
such that the McShane product integral (M)]]e4(®) 9* is not invertible. Define
f(z) =—=1/z for z € (0,1] and f(0) = 0. We will show that

1
M)Hef(“")dz =0
0

To simplify the notation we have identified the real function x — f(x) with a 1 x 1
matrix valued function x — {f(x)}. Choose an arbitrary N € N and define

1

z €10,1].
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This is a constant function and we can write 6 instead of §(z). Let
D= {(Tj7 [ozj_l,aj]); j = 17 . .,m}
be a d-fine M-partition of [0, 1], i.e

TJ75<Otj,1§Otj<Tj+5

for j =1,...,m. Since a; —aj_1 <2-0=1/(8-2V), to every i € {1,...,

can find 1nd1ces j1(2) and j2(4) such that

1 1 1 1 2 1
Oéjl(l)€< + = +— —],

{1 211 11)

Consequently,

1<ji(N) <jo(N)<ji1(N—=1)<ja(N —1) < ... < j1(1) < j2(1) < m,

121 1 2 1 1

Qo (i) — Xja (5) 2 2i—1 8 92i 9i g 9i 9itl
and for every j € N such that ji (i) + 1 < j < j2(4) we have

1 1 1 1 1 1

R R U T A S TR L
1 1 1 1 1 1

Tj<0[j+(5 Qi (i) +0< — 71 —§~21+—16-—2N <—2i71’

i.e. 1
27t <« — <2,
Tj
Finally,
m N J2 (%) 1
=Y fey —aa) =Y —(aj —aj-1)
j=1 i=1 j=j (i)+1 7
N
) N
7 1—1
>22 J2 (i) — Jl()) 22 9i+1 72
=1
and

0< JLef @m0 = exp (Zf(Tj)(aj - aj—1)> <e T

Jj=1
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If we choose N € N such that N > —4loge, we have
0< Hef(ﬁ')(aj—aj—l) <&
j=1

for every d-fine M-partition of [0, 1], which means that

1
(M) [J /@9 = 0.
0

Observe that because § is a constant function, the Riemann product integral exists
as well and

1
®R) [J /@ =o.
0

Example 9. Define again f(z) = —1/z for z € (0,1] and f(0) = 0. We will
prove that

M) JJ(1 + f(2)dz) = 0.
0

Given € > 0 we have to show there is a gauge ¢: [0,1] — (0, 00) such that

m

H(l + f(7) (e — aj—l))’ <e

Jj=1

for every d-fine M-partition D = {(7}, [j—1,;])}72, of the interval [0, 1].
The first condition that we impose on § is that 6(z) < x/2 for z € (0,1], which
will guarantee that
L+ f(7j)(ej = @j-1) > 0

for j =1,...,m. This is indeed true in the case 7;=0. Otherwise the inequality

Tj 7(5(7']') < Q-1 < a; < Tj +5(Tj)

implies
1 2-0(1;
1+ f(Tj)(Oéj — Oéj_l) =1- —(aj — Oéj_l) >1-— 7(]) > 0.
Tj Tj
The well-known inequality
21 T < (w)m
m
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(which holds for non-negative numbers 1, . ..

H (L+ f(m5)(a; —a;j-1)) <
If we now require
1 1
5 L
(@) < 15 3%

, Tm ) yields the estimate

51+ £y — )\
5 fas —ag )\
14+ 222 —
€ [0,1],

where N is an arbitrary fixed natural number, we have (see Example 8)

m

Zf(’rj)(aj -

Since

k—oo

N) € N such that

-5

there exists ko(

for every k > ko(N

a; —aj_1 < 1/ko(N) and therefore consists of m

From these facts we conclude that

m

0< H(l + f(1j) (e

Jj=1

(1 2

s —aimn) < (1-

Oéj_l) < —N/4.

— N4

fe_N/4‘ <1/N

). I d(x) < 1/(2- ko(N)), then every d-fine M-partition satisfies

> ko(N) subintervals of [0, 1].

N/4

m

) <e Ay N.

It is now easy to complete the proof: Given € > 0, the number N can be chosen to

be greater than max(2/e, —4log(e/2)). The gauge 6: [0,1] —

function such that
r 1

d(z )<m1n(

for z € (0,1] and
1
4(0) < min (
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Then
H1+f7'] — Q- 1))<€

for every d-fine M-partition of [0, 1], which means that

1

M) JJa+ )=0.

0
It is perhaps interesting to note that the Riemann product integral

1

R) ] + f(x)da

0

b
does not exist. This follows from Masani’s result (see [3]) which says that (R) []( +

a
A(x)dx) can exist only for bounded functions; a direct verification is also easy: If
the Riemann integral exists, it must be equal to the McShane integral which is zero.
Therefore for every € > 0 there is a § > 0 such that

ﬁ(1+f(%)( —aj))| <e
j=1
for every partition
O=ap<n<ay<...<™Tm<a,=1
such that aj —aj—1 < 6,7 =1,...,m. Take such a partition which moreover satisfies

041>07
L+ f(m)(ay —aj-1) #0, j=1,.

(this can achieved by choosing 7; # o; — aj—1) and

0 << - ai — .
1;12(1 + f(7)(e — Oéj-l))’ +1
Then
i ~1
L+ f(m)(er = ao) = ‘1 Tl Z —-1> ‘H(l + f(m)(a; — aj-1))
j=2
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and therefore

- Q- 1)) >1a

which is a contradiction.

This example (together with Example 8) shows that the Riemann product integrals
b b
[1(I + A(z) dz) and J]e*®) 4® do not always coincide.

a a

2. THE INDEFINITE PRODUCT INTEGRAL

Assume that V': [a,b] x J — L(X) satisfies condition (C) and that the integral
b
(M) J[V(t,dt) exists and is invertible. Let

(1) Un(s) = M) [[V(tdt), s € (a,b], Uni(a) =T

denote the indefinite McShane product integral of V' defined for s € [a,b]. By
Theorem 7 this definition makes sense. We define in a similar way the indefinite
Henstock-Kurzweil product integral

(2) Unk(s) = (HE) [[V(tdt), s € (a,b], Unx(a) =T

b
provided (HK) []V (¢,dt) exists and is invertible. Let us note that

=Un(B)Uy (o),
Unk (B)Uf i (cv).

3
M) [Vt dt)
;

HK) [V (¢, dt) =

Also by Proposition 6 we have Ups(s) = Upk(s) if both functions are defined.
The following lemma appeared in [2]; for reader’s convenience we repeat both its
statement and proof.
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Lemma 10. Let V: [a,b] x J — L(X) be McShane (Henstock-Kurzweil) product
b
integrable with [[ V (t,dt) = Q, where Q is an invertible operator. Assume that V
satisfies condition (C). For ¢ > 0 find a gauge 0: [a,b] — (0,+00) such that

I1P(V,D) - Q| <e

for every d-fine M-partition (K-partition) D of [a,b]. Let {(7;,[&;,n;])}}=1 be a
d-fine M -system (K-system) on [a,b]. If we define

U= )V (75, [6,m))U (&) = I + Z;
for j=1,...,r, U is the corresponding indefinite product integral, then

3) I+ Zo)(I + Zrea) ... (T + Z0) = I < Qe

Proof. Denote g = a and &.41 = b. Since the product integral exists over all
intervals of the form [n;,&;+1], 7 =0,...,r, for any w > 0 there exist gauges J; on
[1’}j,€j+1] such that (5]‘ (t) < J(t) and

£j+1

@ [Py =TTV an| = 1PV D) = Ulg)u ™ o)l <

for every d;-fine M-partition (K -partition) D; of [n;,&;+1]. Composing the parti-
tions, we obtain that

D = Dgo (r1,[1,m])o... Dr—1 0 (7, [y 1)) © Dy
is a d-fine M-partition (K -partition) of the interval [a, b] and therefore

1Q — P(V, D)
= 1@ = P(V, D)V (7, (& 1)) - .- P(V, D)V (1, [€1, m)) P(V; Do) || <e.

This yields

11 = QT P(V, D)V (r, [, mr]) - .. PV, D1)V (71, [€1, etar]) P(V, Do) |
= Q7@ — P(V, D)V (7, &) - .. P(V, D)V (11, [, m]) P(V, Do) | < Q" le,

which can be also written in the form

() T =U®) PV, DU 0 )U (o) V (70, [, e DU (E)U (&) -
PV, D)U (1)U~ (m)V (71, [€1, m))U (£)U (&) P(V, Do)|| < [Q " le.
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Now we take
U= (&) P(V, DU (n;) — I = W;

for j =0,1,...,7. Then using (4) and Theorem 7 we obtain

(6) Wil = U~ (&41)P(V, D;)U (n;) — 1|
<N &) PV, Dy) = U (&)U ) U ()|
<NUH &)U ) lw € KPw

for j =0,1,...,7. Looking at the definitions of Z; and W; we rewrite the inequality
(5) as

1T = (T + W)+ Zy) ... (I + W)+ Z0)(I+Wo)l < Qe
Now we have

-+ Z.)...(I+ Z)|
SIHI-UT+Wo)T+Zy)...(I+Wh)(I + Z1)(I + W)l
+I+W)I+Z)...(I+ W)+ Z20)I+Wo)— T+ Zy)...(I+ Z0)|

<@~ e
because (6) implies that
NWI+WHI+Zy)...(I+W)T+Z)T+Wo)— T+ 2Z)...(I+ Z1)|
is arbitrarily small if w > 0 is small enough. O

Theorem 11. Consider a function V': [a,b] x J — L(X) which satisfies condition
b
(C). Assume that the McShane (Henstock-Kurzweil) product integral [V (¢,dt) =
@ exists and is invertible. Then the indefinite integral

(7) U(s) = ﬁ(f-l- A(t)dt), s € (a,b],

U(a)=1
is continuous at every point s € [a, b].

Proof. We present the proof for the McShane product integral only; the proof
for the Henstock-Kurzweil integral case is similar and was given in [2] for the case
X = R", i.e. for the case of n X n matrices.
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Given € > 0 let 6: [a,b] — (0,400) be the gauge such that
IP(V,D) - Q| <e

for every d-fine M-partition D = {(¢;,J;): i =1,...,k} of [a,b]. By condition (C),
for every s € [a,b] and € > 0 there exists o(s) > 0 such that

Vs, J) = I|| <e
for any interval J C [a,b] N (s — 0,5 + o). Assume that s € [a,b) is given and
let t € (s,b] satisfy s < ¢ < s+ do(s), where 0 < dp(s) < min(d(s),o(s)). Let
Dy = {(ti, [ai—1,i]) Y. be a d-fine M-partition of [a, s] and let us set
Dy = Dy o (s,[s,]).

Then D is evidently a d-fine M-partition of [a,t]. We have

U’l(s)P(V, Dy)—I=U Ya)P(V,Dy) — I

(t1, a1, i)V (ti—1, [ag—2,00-1]) ... V(t1, [, n]) — 1

(tr, [ou—1, ])U (1)U (au—1)V (i1, [u—2, cu—1])U (ou—2)
o) ... U(a) U o)V (ty, [, cn)U (o) — T

because U(ag) = U(a) = I. Denote
U~ aj)V(ty, loj-1, as])U (1) — I = Z,
for j =1,...,l. Then Lemma 10 and especially (3) imply
|U=Hs)P(V, Dy) = Il = (I + Z)(I + Zi—v) ... (I + Z1) = 1| < [IQ 7"l
and by Theorem 7 we get
1PV, D1) = U(s)l| < |UIIIUT () P(V, D) = Il < KJIQ™ e
In a fully analogous way we obtain

IP(V. D) =U(®)| < K[Q7"e.
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Now by the form of condition (C) from the beginning of the proof we have

1U(#) = U(s)l| < [P(V, D2) = U @)
+ [PV, D1) = U(s)|| + [[P(V, D2) = P(V, Di)||
<2K(|Q7 e + |P(V, D2) — P(V, Dy)|
= 2K(|Q7 e + [[V (s, [s, ) P(V, D1) — P(V, Dy)|
2K(|Q7 le + |V (s, [s. t])) — || - [|1P(V, Dy)|

<
<2K[Q7Mle + Ke = K(2IQ7 || +1)e

and this proves the continuity of U from the right at the point s. The left continuity
of U at s € (a,b] can be shown analogously. O

The following lemma has been taken over from [2].

k
Lemma 12. Let Ay, Ao, ..., Ax € L(X) with > ||A;|| < 1. Then
i=1

k k 2
[+ ansacy. ey -1-3 4 < (Llad)
i=1 i=1
k
Proof. Put \;= |4 fori=1,...,kand A= > \; < 1. Then
i=1

(T4 M) (1 + g 1) A1+ )

—1+ZA D DR PV WD VD VD VRS SRR Y YRR SO
J2>71 J3>j2>71
< e/\’“e/\’“*1 et =,

Hence
(8) ST D A e Ao A
J2>J1 J3>Jj2>01
=1
<er—1- Z e (e —2) < N2
k=2
Now
k
B=(T+A)I+Ar1)...(I+A) 1= A
i=1
= Z Aj2Aj1 + Z Aj3Aj2Aj1 + .o+ AgAg_1 .. Ay
J2>71 J3>Jj2>751
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Therefore by (8) we obtain

IBIL< Y 1A4ulllAnl+ D 1A IIALIA

J2>J1 J3>Jj2>51

k
et AR A ] A < 22 = (Z ||AZ-||>
=1

2

3. FINITE-DIMENSIONAL CASE

At this point we switch to the case X = R"™; the operators in L(R™) are now
represented by real n x n matrices.
For a matrix A = (a;,;)

i j=1 we define a special norm

o Al = max o

Let us mention that all norms on L(R™) are equivalent. This means in particular
that if || - || is an arbitrary norm defined on the linear space of matrices, then there
is a constant L > 1 such that

1
7 1Al < 1Al < Ll Al -
The following important statement was presented in [2].

Lemma 13. Let 0 < 0 < 1/9. Assume that Zy,Zs,...,Z, € L(R") are such that
for every p-tuple {j1,...,jp} C{1,2,...,7} with j1 < ja < ... < jp the inequality

(10) (I+Z)I+Zj,)...(I+Z5) —I|x <0
holds. Then
(11) > N1ZjlIx < 4n®6.

j=1

Proof. By (10) we have

(12) 1Zill% = (T + Z5) = Illse <0, 5 =1,...,m
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Denote Z; = (zj;i,k)i =, and for [,m € {1,2,...,n} set

JUm) ={j e {l,-...r} 1 Zjll% = max|zjix] = [2jml}-

In case (11) is not valid we can find a couple I,m € {1,2,...,n} such that
Y 1Zil > 46.
JEJ(l,m)
Put

J+ = {] € J(lvm) > Zgsl,m 2 O}’ Jo = J(lvm) \ JJr'

Z Zjilm > 20

JeJ+

— Z Zjil,m > 26.

jeJ -

Then either

or

Assume e.g. that the first inequality occurs. By (12) we have z;;.m = || Z;]|x < 6 for
J € J4 and therefore there is a subset J; C J; such that

(13) 20 < Y zjum < 30.

JET

Hence

(14) 20 <

> 7

JEJL

Z 1Z;ll% = Z Zjm < 30 <

*  jeJ: j€d;

The matrices Z;, j € J satisfy the assumptions of Lemma 12 and therefore

[u+z)-1-% 2z <( T 1zl) <o

JETE JETL * Jegr

By (10) we get

27 N <‘ Iu+rz)-1-% 2 *+H 11 (HZJ-)JH* < 96% + 0
JeJ} JeJ} JEJL JEJ}
and by (14) also
20 < HZ Z|, < 962 + 6.
JjeJy
Therefore 6 > 1/9, which is a contradiction. O
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At this moment it should be pointed out that an analog of the preceding Lemma 13
does not hold for infinite-dimensional Banach spaces. The counter-example from [5],
p- 389 concerns the Banach space X = ¢p.

For this reason we restrict our considerations to the case X = R" in the sequel.
Using Lemma 13 we prove the next result (see [2]).

Theorem 14. Consider a function V': [a,b] xJ — L(R™) which satisfies condition

b
(C). Assume the McShane (Henstock-Kurzweil) product integral [[V (¢t,dt) = Q

exists and is invertible.
Given 0 < e < (9]|Q||x) "}, find a gauge §: [a,b] — (0, +0oc) such that

IP(V,D) = Qllx <e

for every d-fine M-partition (K-partition) D of [a,b]. Let {(7j,[{;,n;])};=, be a
0-fine M -system (K -system) on [a,b]. Define

U )V (75, (&, mDU (&) = T+ Z5, G=1,...,m,

U is the corresponding indefinite product integral. Then

(15) S NZjllx < 402(1Q | we
Jj=1
and
T 3
(16) S|Vl - [TV |, <42n21Q 7 ke,
Jj=1 &5

where K is the constant from Theorem 7.

Proof. By (3) from Theorem 10 we have the inequality

_ 1
I+ Zi )+ Zj, ) (T + Zgy) = Il < Q7 Iwe < 9

for every p-tuple {j1,...,75p} C {1,2,...,7} with j1 < j» < ... < j,. Hence by
Lemma 13 we obtain

.
D N1ZjlIx < 4n2)|Q ! |ne.
j=1
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To show (16) we take into account that for j = 1,...,r we have

V(7. (&5 m5)) HV t,dt) = V(7 [&:ms]) — U(nj)Uil(fj) = U(nj)ZjUil(fj)
Hence

H (5. le52ms)) Htht <N Z 1T~ ()

Now (15) and Theorem 7 imply (16). O

The following theorem also appeared in [2].

Theorem 15. Consider a function V': [a,b] xJ — L(R™) which satisfies condition
b
(C). Assume that the product integral (HK) [V (¢,dt) = Q exists and is invertible.

Then there exists a set E C [a,b], u(E) = 0 such that for every € > 0, ¢t € [a,b] \ E,
there is ¥ > 0 such that

(17) V([ y) = Uk (9)Ug i (@) |5 < ey — )

providedt —9 <z <t<y<t+19, z,y € [a,b].

Proof. Assume that T C [a,b] is the set of all ¢ € [a, b] for which (17) holds;
set E = [a,b]\T. Given r € N denote by E, the set of ¢ € [a, b] such that there exist
sequences x; = z;(t), yi = yi(t), l € N with

o <t<y, y—x—0 as [ — o0

and

(18) IV (& s i) = Usese () U e (@)l > (31 — ).

<

Then £ = |J E,. Assume that u.(E) > 0, where p.(E) is the outer measure of the
r=1
set E C [a,b]. Then there is an r € N such that p.(F,) > 0. Choose € > 0 such that

1 -1
<z )
e < Q7

_ 1
(19) AR Q ™ xe < o He(Er)



(K > 0 is the constant from Theorem 7). Find a gauge ¢ on [a, b] such that
IP(V,D) = Qllx <e
for every é-fine K-partition D of [a,b]. For t € E find ly(t) € N such that
t—0(t) <z(t) <t <y(t) <t+4(t)
for all [ > ly. The system of intervals

{[z(), wi(D)]; t € B, 1= 1o(t)}

is a Vitali cover of the set E and by the Vitali covering theorem it contains a finite
subsystem of intervals {[{;,7;]};_; for which

i — 5(7]) <§J \Tj <17] <TJ+6(TJ)7 Tj GE? j:172a"'757
N <&, J=1,2,...,s—1

. e <E\ _Lijl[éj,nj]) < %/Le(Er)'

Hence
S

> ¢ ( L_J fgm]) > 1ue(Er)

j=1 -
This inequality together with (18) and (19) yields

Z IV (75, [€5,m5]) — U ) U i (65) 1

— Zs: HV(ij [&5m5)) — ﬁv(t,dt)H*
= &j

1 1 _
> - > mj—&)> o he(Er) > AK*n?)|Q ™ |xe,
=1

a contradiction to (16) from Theorem 14. Therefore p.(E,) = 0 for every r € N and
te(E) = 0, which yields u(E) = 0. O

Let us now turn our attention to the classical case when
(20) V(t,J) =1+ Alt)u(J),

where A: [a,b] — L(R"™) and p is the Lebesgue measure on the real line. As was
mentioned in Section 1, the function V' given by (20) satisfies condition (C). First
we prove the following corollary of Theorem 15.
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Corollary 16. Consider a function A: [a,b] — L(R™) such that the product
b
integral (HK) [[(I + A(¢) dt) exists and is invertible. Then for

a

(21) Unk(s) = (HK) f[(l + A(t)dt), s € (a,b],
Upk(a)=1 ’

the derivative Up i (t) exists for almost all t € [a,b] and

(22) Unk(t) = A(t)Upk ()

for almost all t € [a, b].

Proof. Given ¢ > 0, by Theorem 15 there exists a set E C [a,b], u(E) =0
such that for every € > 0, t € [a,b] \ E there is ¥ > 0 such that

1+ Ay = 2) = Unx (U (@)% < ely — )
provided t — ¥ <z <t<y<t+9and z,y € [a,b]. Take t € [a,b] \ E. Then
17+ A6y =) = Unk @)U (D)% < ey — 1)
for y € [t,t + ). Hence

H Uk (U (t) = Unk (y)Ugc(t)
y—1

+ A(t)H* <e

and

H Unk(y) — Unk(t)
y—1
for y € (t,t 4+ ¢). This means that
H Unk(y) — Unk(t)

y—1t

Uk () = AW)|, <

~ AUk (1), <ellUak®llx.
i.e. U (t) (the derivative from the right of Uy at the point t) exists and

Uik (t) = A(t)Unk (1)

A similar relation for the derivative from the left leads to the conclusion that for
t ¢ E the derivative U (t) exists and

Unx(t) = A) Uk (t).
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b
Theorem 17. Assume that the product integral (HK) [[(I + A(t) dt) exists and
is invertible. Then the indefinite integral Uy i : [a,b] — L(R™) satisfies the following
condition:
(SL) Let n > 0, N C [a,b], u(N) = 0. Then there exists §: N — (0,+o00) such that
if {(7j,[&5,m;])}}=, is a 0-fine K-system and 7; € N for j =1,2,...,r, then

r

(23) > MUk (3) = Une () [l < -

j=1

Theorem 17 was proved in [2]; let us mention that the above presented condition
(SL) is the so called strong Lusin condition. By the results of Corollary 16 and
by Theorem 17 we know that the indefinite product integral Ugk: [a,b] — L(R™)
possesses a derivative almost everywhere in [a, b] and satisfies the strong Lusin con-
dition. Since every McShane product integrable function is also Henstock-Kurzweil
product integrable, the theorem is also valid for the indefinite product integral
Upr: [a,b] — L(R™). We now prove an even stronger statement.

b
Theorem 18. Assume that the product integral (M) [[(I + A(t)dt) = Q exists

and is invertible. Then the indefinite McShane product integral U); satisfies the
following condition:
(AC) For every ¢ > 0 there is a 0 > 0 such that if {[{;,n;]}}_, are non-overlapping

intervals in [a,b], then ) (n; — ;) < o implies
j=1

Z 1Un(nj) — Unt(§5) 1% < o
=1

Proof. Given p > 0 take ¢ > 0 such that e < (9]|Q!||x)~! and

4

27

where K > 0 is the constant from Theorem 7. For this € > 0 there is a gauge
d: [a,b] — (0,400) such that for V(¢,J) = A(t)u(J) we have

AKn?)|Q 7 lxe <

[P(V,D) = Qllx <e

for every d0-fine M-partition D = {(¢;, [u;,v;])}{_; of [a,b]. Let us fix such an M-
partition D and put
0
2K( max [|A(t:)] +1)°

i=1,...,q

g =
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Assume that [¢;,n;] C [a,b], j = 1,...,r, are non-overlapping intervals with
r

,
> (n; — &) < o and consider the sum > [|[Un(n;) — Un (&) %-
j=1 j=1

By subdividing the intervals [{;, n;] if necessary, we can assume that every interval

[€;,n;] belongs to an interval [u;, v;] of the fixed partition D. For each i =1,...,q
let

M;={j; 1<j<r with [§,n;] C [wi,v]}

and let us take 7; = ¢; if j € M;. Now we have

U (&) = Uni(n)llse = 11T = Une(0)Ung (6100 (65) 1%
< NUmEN s (I + Alm) (5 — &) — Uni03)Unt (€)% + JA(T) (05 — &)%)

and by Theorem 7 we get

Z 1Un(n;) = Un (€)1 < KZ I+ A(m)(m; — &) = Une (i) U7 (€)1

T

K max A D005 - &),

..... =
It is easy to check that for the points 7; and the intervals [¢;,7;], j = 1,...,r the
assumption of Theorem 14 is satisfied if ¢; and n; are ordered properly. Using (16)
from Theorem 14 we obtain the inequality

.....

and the statement is proved. O

Condition (AC) in Theorem 18 says that the indefinite product integral Up:
[a,b] — L(R™) is absolutely continuous in [a, b].

The special norm || || % of matrices was used in the previous parts for technical rea-
sons only. Note that according to (9) the proofs can be modified in a straightforward
way for any norm of matrices.

262



4. EQUIVALENT FUNCTIONS

Definition 19. Functions Vi, Va: [a,b] X J — L(R™) are called M-equivalent
(K-equivalent) if for every € > 0 there is a gauge ¢: [a,b] — (0,00) such that

Yo IVilm g1, a5)) = Valry, a1, a))ll < &
j=1

for every d-fine M-partition (K-partition) {(7j, [ovj—1,a;])} 72, of [a, b].

Theorem 20. Let V1,V5: [a,b] x J — L(R™) be M-equivalent (K-equivalent)
functions. Assume that Vy satisfies condition (C) and that the McShane (Henstock-

b
Kurzweil) integral [[ Vi (¢, dt) exists and is invertible. Then the McShane (Henstock-

b
Kurzweil) integral [] Va(¢,dt) exists as well and the two product integrals have the
same value.
Proof. The Henstock-Kurzweil version is proved in [2]; the proof for the

McShane product integral can be carried out in the same way (replacing K-partitions
with M-partitions). O

Corollary 21. Consider a function A: [a,b] — L(R™). Then the following con-

ditions are equivalent:
b
1) (M) [](I + A(t)dt) exists and is invertible.

a

b
2) (M) [JeA® 9 exists and is invertible.
If one of these conditions is fulfilled, then

b b
M) ] + At dt) = (v [ [ e .

a

Proof. The functions

Vit o)) = T+ A(t)y — @),
Va(t, [2,y]) = MO

satisfy condition (C). According to Theorem 20 it is sufficient to show that V; and
V5 are equivalent. For z < y we have

i AW (y — =)

I+ At)(y —2) — A2 = X

k=2
< AW |P(y = 2)2elAOIw—2),
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Let §: [a,b] — (0,00) be an arbitrary function such that

. 1 €
0 < iv (S 7w

whenever [|A(t)|| > 0. Then for every d-fine M-partition {(7;,[a;—1,;])}jL; we

have
o — o1 < 2(5(7'])

and

DT+ A(m) (a5 = ajr) = A @)
j=1

m

< ) (i —ai—1 E(OZ‘—Oé'_l)
< IA)IP (g — ag-1)elAmlies e  §7 RG22l

j=1 j=1

5. BOCHNER PRODUCT INTEGRAL

Let X be a Banach space. Assume that B: [a,b] — L(X) is a step-function, i.e.
there exist points
a=5<81<...<8m-1<8n=2>

and operators By,..., By, € L(X) such that B(z) = By, for ¢ € (sx—1,5k), k =
1,2,...,m. We have

b 1 Sk
HeB(t) dt — H H eB(t) dt — eBm,(Sm,_Sﬁm—l)eBm,fl(Sm,fl_sﬁm—2) . eB] (81—80)
a

k=m Sk—1

(where the product integrals exist for example in the sense of Riemann).

Definition 22. A function f: [a,b] — X is called Bochner integrable if there
is a sequence of step functions f: [a,b] — X, k € N, such that

b
Jim (©) [ 15 = fa)] do =0,

where (L) denotes the Lebesgue integral.

In the monograph [1] the following definition of product integral is given (in finite-
dimensional case).
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Definition 23.  Assume that A: [a,b] — L(X) is Bochner integrable. The
b
Bochner product integral (B) []eA® 9t is defined by

b b
(24) (B)HeA(t) dt — lim HeAn“) dt

where {4,,}22, is any sequence of step-functions convergent to A in the L' sense,

i.e.

lim ( / [l An( A(s)]|ds = 0.

’nﬁOO

It is known that a function f: [a,b] — R™ is Bochner integrable if and only if
it is Lebesgue integrable. For X = R™ we have L(X) = R™ ™ and a function
A: la,b] — R™*™ is Bochner product integrable if and only if its components are
Lebesgue integrable functions.

Definition 24. A function f: [a,b] — X has the property S* M if for every
€ > 0 there is a gauge §: [a,b] — (0, 00) such that

ko1
3 X0 = S0 L) <

for any d-fine M-partitions {(t;, Ji)}i_; and {(s;, L;)};=; of [a,].

Theorem 25. Let X be a finite-dimensional Banach space, f: [a,b] — X. Then
the following conditions are equivalent:

1) f is Bochner integrable.

2) f is McShane integrable.

3) f has the property S*M.

Proof. A function f: [a,b] — X is Bochner integrable if and only if it has
the property S*M (see Theorem 5.1.4 in [6]). Moreover, in a finite-dimensional
Banach space, a function is McShane integrable if and only if it has the property
S* M (Proposition 5.2.1 in [6]). O

The following theorem was proved in [1]:

Theorem 26. Let A: [a b] — L(R™) be Bochner integrable. Then the Bochner

t

product integral (B) H eAM At js an invertible matrix.

The following theorem was proved in [4]:
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Theorem 27. If A: [a,b] — L(X) has the property S*M then the product
b b
integrals (B) []eA® 9 and (M) [JeA® ¢ exist and

b b
(B) H eA(t) dt _ (M) H eA(t) dt.

Notice that the paper [4] uses a different terminology: Our McShane product inte-
gral is called the Bochner product integral there, while our Bochner product integral

b
is referred to as the Lebesgue-type product integral and is denoted by (L) []e4® 4,

As a consequence of Theorem 25, Theorem 26, Theorem 27 and Corollary 21 we
obtain the following statement.

Corollary 28. Let A: [a,b] — L(R™) be Bochner integrable. Then

b

b b
(B) HeA(t) dt _ (M) HeA(t) dt— (M) H([ + A(t)dt),

a

where all the above product integrals are guaranteed to exist.

Theorem 29. Let A: [a,b] — L(R™) be given. If there is an absolutely con-
tinuous function U: [a,b] — L(R"™) such that U~'(s) exists for every s € [a,b] and
U'(s) = A(s)U(s) for almost all s € [a,b], then A is Bochner integrable.

Proof. The function U~! is measurable since the components u;; (i,j =

1,...,n) of U are measurable and

(25) U~1(s) = { (1);21?58)%(5) }”

(where Uj;(s) is the minor obtained from U(s) by deleting the j-th row and i-th

column). Since U is continuous and invertible on [a, b] we have

ij=1

m:= min |detU(x)| > 0.
z€Ja,b]

It is also possible to find a constant M > 0 such that |u;;(s)] < M for every s € [a,b]
and i,7 =1,...,n. From (25) we get

_ detUji(s)| _ (n—1)! Mt
Lo < et Un(s)]
||U (S)H* = \detU(s)| ~ m )

i.e. the function U~ is bounded.
The components of U’ are Lebesgue integrable (because U is absolutely con-

1

tinuous), U~! is measurable and bounded. Therefore the components of A(s) =

U'(s)U~(s) are Lebesgue integrable and A is Bochner integrable. O
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The following theorem may be regarded as a descriptive definition of the McShane

product integral.

Theorem 30. Consider a function A: [a,b] — L(R™). Then the McShane prod-
b
uct integral (M) [[(I + A(t) dt) exists if and only if there is an absolutely contin-

uous function U: [a,b] — L(R™) such that U~'(s) exists for every s € [a,b] and
U'(s) = A(s)U(s) for almost all s € [a,bl; in this case

b

) [+ Ay dt) =U®)U (a).

a

Proof. The first part of the theorem is easily proved by combining the results
from Corollary 16, Theorem 18, Theorem 29 and Corollary 28: The McShane product

b
integral (M) [[(I + A(t)dt) exists if and only if there is an absolutely continuous

function U: [a,b] — L(R™) such that U~!(s) exists for every s € [a,b] and U’(s) =
A(s)U(s) for almost all s € [a, b].

Now take an arbitrary function U which satisfies the conditions stated above.
Define

S

V(s) =) [+ A@t)dt)

a

and let W(s) = U~(s)V(s) for s € [a,b]. The functions U and V are absolutely
continuous. Using again the formula

U™'(s) = { (_1);—:5 dUeZs()]ji(S) }ijl

we see that U~! and consequently W are absolutely continuous functions. The
equality U'U~! = V'V~ almost everywhere implies

W =UW=UYVv+u WV =-U WU VUV
=-v'vvtv+u'vvitv=u'Wwv !t -UU Hv =0

almost everywhere on [a, b], i.e. W is a constant function. The proof is completed by
observing that

b
M) [T + Aty dt) = V(b) = UB)W (b) = UB)W (a) = U(L)U(a).

a
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Theorem 31. Consider a function A: [a,b] — L(R™) such that the McShane
b
product integral (M) [[(I 4+ A(t) dt) exists and is invertible. Then A is also Bochner

integrable and

b

b
M) [T + A(t)dt) = (B) [[ e

Proof. Define

From Theorem 18 and Corollary 16 we know that U is absolutely continuous and
U'(s) = A(s)U(s) almost everywhere on [a,b]. According to Theorem 7 the matrix
U~1(s) exists for every s € [a,b]. To complete the proof apply Theorem 29 and
Corollary 28. O

The following theorem describes the relation between the McShane product inte-
gral and the Bochner product integral.

Theorem 32. For every A: [a,b] — L(R™) the following conditions are equiva-
lent:

1) A is Bochner integrable.
b
2) The McShane product integral (M) [[(I 4+ A(t) dt) exists and is invertible.

b
3) The McShane product integral (M) [[ eA(¥) 4 exists and is invertible.

a

If one of these conditions is fulfilled, then

b b
(B) [T e M) [+ A®) dt) = (M) [J e @

a a

Proof. An easy consequence of Corollary 28, Theorem 21 and Theorem 31. [

As shown in Examples 8 and 9, the invertibility condition in the statement of
Theorem 32 cannot be left out.
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