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INTEGRATION; DESCRIPTIVE DEFINITIONS
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Abstract. The Henstock-Kurzweil and McShane product integrals generalize the notion of
the Riemann product integral. We study properties of the corresponding indefinite integrals
(i.e. product integrals considered as functions of the upper bound of integration). It is shown
that the indefinite McShane product integral of a matrix-valued function A is absolutely
continuous. As a consequence we obtain that the McShane product integral of A over [a, b]
exists and is invertible if and only if A is Bochner integrable on [a, b].

Keywords: Henstock-Kurzweil product integral, McShane product integral, Bochner
product integral
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Let an interval [a, b] ⊂ R, −∞ < a < b < +∞ be given. A pair (τ, J) of a point

τ ∈ [a, b] and a compact interval J ⊂ [a, b] is called a tagged interval, where τ is the

tag of J .

A finite collection {(τj , Jj) : j = 1, . . . , k} of tagged intervals is called anM -system

if

Int(Ji) ∩ Int(Jj) = ∅ for i 6= j

(where Int(J) denotes the interior of the interval J). AnM -partition is anM -system

which moreover satisfies
k

⋃

j=1

Jj = [a, b].
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An M -system (M -partition) {(τj , Jj) : j = 1, . . . , k} for which

τj ∈ Jj , j = 1, . . . , k

is called a K-system (K-partition) on [a, b].

In the sequel we assume that every system of tagged intervals {(τi, Ji)}k
i=1 is

ordered in such a way that

supJi 6 inf Ji+1, i = 1, . . . , k − 1.

In other words, the notation {(τi, [ξi, ηi])}k
i=1 implies

a 6 ξ1 6 η1 6 . . . 6 ξk 6 ηk 6 b.

Given a positive function δ : [a, b] → (0, +∞) called a gauge on [a, b], a tagged

interval (τ, J) is said to be δ-fine if

J ⊂ (τ − δ(τ), τ + δ(τ)).

Using this concept we can speak about δ-fine systems and δ-fine partitions {(τj , Jj) ;

j = 1, . . . , k} of the interval [a, b] whenever (τj , Jj) is δ-fine for every j = 1, . . . , k.

It is a well-known fact that given a gauge δ : [a, b] → (0, +∞) there exists a δ-fine

K-partition of [a, b]. This result is called Cousin’s lemma.

Assume that Y is a real Banach space with the norm ‖ · ‖Y . Let us consider a

function f : [a, b] → Y and assume that µ is the Lebesgue measure on the real line.

Definition 1. Assume that f : [a, b] → Y is given. The function f is called

McShane integrable if there is an element Mf ∈ Y such that for every ε > 0 there

exists a gauge δ on [a, b] such that

∥

∥

∥

∥

k
∑

i=1

f(ti)µ(Ji) − Mf

∥

∥

∥

∥

Y

< ε

for every δ-fine M -partition {(ti, Ji) ; i = 1, . . . , k} of [a, b]. The vector Mf is called

the McShane integral of f over [a, b].

Definition 2. Assume that f : [a, b] → Y is given. The function f is called

Henstock-Kurzweil integrable if there is an element Kf ∈ Y such that for every ε > 0

there exists a gauge δ on [a, b] such that

∥

∥

∥

∥

k
∑

i=1

f(ti)µ(Ji) − Kf

∥

∥

∥

∥

Y

< ε

for every δ-fine K-partition {(ti, Ji) ; i = 1, . . . , k} of [a, b]. The vector Kf is called

the Henstock-Kurzweil integral of f over [a, b].
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1. Henstock-Kurzweil and McShane product integrals

Assume now that X is a real Banach space. Denote by L(X) the Banach space of

bounded linear operators on X with the usual operator norm given by

‖A‖ = ‖A‖L(X) = sup
‖x‖=1

‖Ax‖X

for A ∈ L(X). By I the identity operator in L(X) will be denoted.

Let J be the set of all compact subintervals in [a, b]. Assume that a point-interval

function V : [a, b] × J → L(X) is given. We denote

P (V, D) =

1
∏

i=k

V (ti, Ji) = V (tk, Jk)V (tk−1, Jk−1) . . . V (t1, J1),

where D = {(ti, Ji)}k
i=1 is an arbitrary M -partition of [a, b].

Definition 3. A function V : [a, b] × J → L(X) is called McShane product

integrable over [a, b] if there exists Q ∈ L(X) such that for every ε > 0 there is a

gauge δ : [a, b] → (0, +∞) such that

‖P (V, D) − Q‖ < ε

for every δ-fine M -partition D = {(ti, Ji) ; i = 1, . . . , k} of [a, b].

The operator Q is called the McShane product integral of V over [a, b] and we use

the notation Q = (M)
b
∏

a
V (t, dt).

Definition 4. A function V : [a, b] × J → L(X) is called Henstock-Kurzweil

product integrable over [a, b] if there exists Q ∈ L(X) such that for every ε > 0 there

is a gauge δ : [a, b] → (0, +∞) such that

‖P (V, D) − Q‖ < ε

for every δ-fine K-partition D = {(ti, Ji) ; i = 1, . . . , k} of [a, b].

The operator Q is called the Henstock-Kurzweil product integral of V over [a, b]

and we use the notation Q = (HK)
b
∏

a
V (t, dt).

Remark 5. A similar concept of product integration was introduced by J. Jarník

and J.Kurzweil in [2] (see also [5]) for the case of n×n-matrix valued point-interval

functions V with K-partitions. The corresponding product integral was called the

Perron product integral in [2]. This terminology originates in the well known fact
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that a real function g : [a, b] → R is Perron integrable to the value ∫ b

a g(t) dt ∈ R if
and only if for every ε > 0 there is a gauge δ on [a, b] such that

∣

∣

∣

∣

k
∑

i=1

g(ti)µ(Ji) −

∫ b

a

g(t) dt

∣

∣

∣

∣

< ε

for every δ-fine K-partition D = {(ti, Ji) ; i = 1, . . . , k} of [a, b].

The Henstock-Kurzweil and McShane product integrals generalize the notion of

the Riemann product integral. A function V : [a, b] × J → L(X) is called Riemann

product integrable if there exists Q ∈ L(X) such that for every ε > 0 there is a

number δ > 0 such that

‖P (V, D) − Q‖ < ε

for every K-partition D = {(τi, [αi, αi+1])}k
i=1 of the interval [a, b] which satisfies

αi+1 − αi < δ for i = 1, . . . , k. The study of the Riemann product integral was

initiated in the work of V. Volterra; a modern treatment of the theory which is due

to P.R.Masani can be found in [3].

Since evidently every δ-fine K-partition is also a δ-fine M -partition we obtain the

following statement.

Proposition 6. If V : [a, b] × J → L(X) is McShane product integrable then it

is also Henstock-Kurzweil product integrable and

(HK)
b

∏

a

V (t, dt) = (M)
b

∏

a

V (t, dt).

Let us mention that a similar statement holds also for the integrals based on

integral sums presented in Definitions 1 and 2.

We now introduce a condition concerning the point-interval function V : [a, b] ×

J → L(X).

Condition (C). For every t ∈ [a, b] and ζ > 0 there exists σ = σ(t) > 0 such that

‖V (t, J) − I‖ < ζ

for any interval J ⊂ [a, b] such that J ⊂ (t − σ, t + σ).

Typical cases of V satisfying condition (C) are

V1(t, J) = I + A(t)µ(J)
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and

V2(t, J) = eA(t)µ(J)

where A : [a, b] → L(X) and µ is the Lebesgue measure on the real line. The corre-

sponding product integrals are usually denoted
b
∏

a
(I +A(t) dt) and

b
∏

a
eA(t) dt. These

integrals are particularly interesting since they can be used to solve the differential

equation x′(t) = Ax(t), where x : [a, b] → X .

The following result was proved in [4] for the McShane product integral and in [2]

for the Henstock-Kurzweil product integral (in the case X = Rn ).

Theorem 7. Consider a function V : [a, b] × J → L(X) such that the McShane

(Henstock-Kurzweil) integral
b
∏

a
V (t, dt) exists and is invertible. If the function V

satisfies condition (C), then for every s ∈ [a, b] the McShane (Henstock-Kurzweil)

product integrals
s

∏

a

V (t, dt),

b
∏

s

V (t, dt)

exist, the equality
b

∏

s

V (t, dt)

s
∏

a

V (t, dt) =

b
∏

a

V (t, dt)

holds and there exists a constant K > 0 such that

∥

∥

∥

s
∏

a

V (t, dt)
∥

∥

∥ 6 K,
∥

∥

∥

(

s
∏

a

V (t, dt)
)−1∥

∥

∥ 6 K

for s ∈ [a, b].

Example 8. We now demonstrate the existence of a function A : [a, b] → L(Rn )

such that the McShane product integral (M)
b
∏

a
eA(x) dx is not invertible. Define

f(x) = −1/x for x ∈ (0, 1] and f(0) = 0. We will show that

(M)

1
∏

0

ef(x) dx = 0.

To simplify the notation we have identified the real function x 7→ f(x) with a 1 × 1

matrix valued function x 7→ {f(x)}. Choose an arbitrary N ∈ N and define
δ(x) =

1

16
·

1

2N
, x ∈ [0, 1].
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This is a constant function and we can write δ instead of δ(x). Let

D = {(τj , [αj−1, αj]); j = 1, . . . , m}

be a δ-fine M -partition of [0, 1], i.e.

τj − δ < αj−1 6 αj < τj + δ

for j = 1, . . . , m. Since αj − αj−1 < 2 · δ = 1/(8 · 2N), to every i ∈ {1, . . . , N} we

can find indices j1(i) and j2(i) such that

αj1(i) ∈
( 1

2i
+

1

8
·

1

2i
,

1

2i
+

2

8
·

1

2i

]

,

αj2(i) ∈
[ 1

2i−1
−

2

8
·

1

2i
,

1

2i−1
−

1

8
·

1

2i

)

.

Consequently,

1 < j1(N) < j2(N) < j1(N − 1) < j2(N − 1) < . . . < j1(1) < j2(1) < m,

αj2(i) − αj1(i) >
1

2i−1
−

2

8
·

1

2i
−

1

2i
−

2

8
·

1

2i
=

1

2i+1

and for every j ∈ N such that j1(i) + 1 6 j 6 j2(i) we have

τj > αj−1 − δ > αj1(i) − δ >
1

2i
+

1

8
·

1

2i
−

1

16
·

1

2N
>

1

2i
,

τj < αj + δ 6 αj2(i) + δ <
1

2i−1
−

1

8
·

1

2i
+

1

16
·

1

2N
<

1

2i−1
,

i.e.

2i−1 <
1

τj
< 2i.

Finally,

−
m

∑

j=1

f(τj)(αj − αj−1) >

N
∑

i=1

j2(i)
∑

j=j1(i)+1

1

τj
(αj − αj−1)

>
N

∑

i=1

2i−1(αj2(i) − αj1(i)) >

N
∑

i=1

2i−1 1

2i+1
=

N

4

and

0 <

m
∏

j=1

ef(τj)(αj−αj−1) = exp

( m
∑

j=1

f(τj)(αj − αj−1)

)

< e−
N
4 .

246



If we choose N ∈ N such that N > −4 log ε, we have

0 <

m
∏

j=1

ef(τj)(αj−αj−1) < ε

for every δ-fine M -partition of [0, 1], which means that

(M)

1
∏

0

ef(x) dx = 0.

Observe that because δ is a constant function, the Riemann product integral exists

as well and

(R)

1
∏

0

ef(x) dx = 0.

Example 9. Define again f(x) = −1/x for x ∈ (0, 1] and f(0) = 0. We will

prove that

(M)
1

∏

0

(1 + f(x) dx) = 0.

Given ε > 0 we have to show there is a gauge δ : [0, 1] → (0,∞) such that

∣

∣

∣

∣

m
∏

j=1

(1 + f(τj)(αj − αj−1))

∣

∣

∣

∣

< ε

for every δ-fine M -partition D = {(τj , [αj−1, αj ])}m
j=1 of the interval [0, 1].

The first condition that we impose on δ is that δ(x) < x/2 for x ∈ (0, 1], which

will guarantee that

1 + f(τj)(αj − αj−1) > 0

for j = 1, . . . , m. This is indeed true in the case τj=0. Otherwise the inequality

τj − δ(τj) < αj−1 6 αj < τj + δ(τj)

implies

1 + f(τj)(αj − αj−1) = 1 −
1

τj
(αj − αj−1) > 1 −

2 · δ(τj)

τj
> 0.

The well-known inequality

x1 . . . xm 6

(x1 + . . . + xm

m

)m
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(which holds for non-negative numbers x1, . . . , xm) yields the estimate

0 <

m
∏

j=1

(1 + f(τj)(αj − αj−1)) 6









m
∑

j=1

(1 + f(τj)(αj − αj−1))

m









m

=









1 +

m
∑

j=1

f(τj)(αj − αj−1)

m









m

.

If we now require

δ(x) <
1

16
·

1

2N
, x ∈ [0, 1],

where N is an arbitrary fixed natural number, we have (see Example 8)

m
∑

j=1

f(τj)(αj − αj−1) < −N/4.

Since

lim
k→∞

(

1 −
N/4

k

)k

= e−N/4,

there exists k0(N) ∈ N such that
∣

∣

∣

(

1 −
N/4

k

)k

− e−N/4
∣

∣

∣ < 1/N

for every k > k0(N). If δ(x) < 1/(2 · k0(N)), then every δ-fine M -partition satisfies

αj − αj−1 < 1/k0(N) and therefore consists of m > k0(N) subintervals of [0, 1].

From these facts we conclude that

0 <

m
∏

j=1

(1 + f(τj)(αj − αj−1)) <
(

1 −
N/4

m

)m

< e−N/4 + 1/N.

It is now easy to complete the proof: Given ε > 0, the number N can be chosen to

be greater than max(2/ε,−4 log(ε/2)). The gauge δ : [0, 1] → (0,∞) is an arbitrary

function such that

δ(x) < min
(x

2
,

1

16
·

1

2N
,

1

2 · k0(N)

)

for x ∈ (0, 1] and

δ(0) < min
( 1

16
·

1

2N
,

1

2 · k0(N)

)

.
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Then

0 <

m
∏

j=1

(1 + f(τj)(αj − αj−1)) < ε

for every δ-fine M -partition of [0, 1], which means that

(M)

1
∏

0

(1 + f(x) dx) = 0.

It is perhaps interesting to note that the Riemann product integral

(R)
1

∏

0

(1 + f(x) dx)

does not exist. This follows from Masani’s result (see [3]) which says that (R)
b
∏

a
(I +

A(x) dx) can exist only for bounded functions; a direct verification is also easy: If

the Riemann integral exists, it must be equal to the McShane integral which is zero.

Therefore for every ε > 0 there is a δ > 0 such that

∣

∣

∣

∣

m
∏

j=1

(1 + f(τj)(αj − αj−1))

∣

∣

∣

∣

< ε

for every partition

0 = α0 6 τ1 6 α1 6 . . . 6 τm 6 αm = 1

such that αj−αj−1 < δ, j = 1, . . . , m. Take such a partition which moreover satisfies

α1 > 0,

1 + f(τj)(αj − αj−1) 6= 0, j = 1, . . . , m

(this can achieved by choosing τj 6= αj − αj−1) and

0 < τ1 <
α1

∣

∣

∣

m
∏

j=2

(1 + f(τj)(αj − αj−1))
∣

∣

∣

−1

+ 1
.

Then

|1 + f(τ1)(α1 − α0)| =
∣

∣

∣1 −
α1

τ1

∣

∣

∣ =
α1

τ1
− 1 >

∣

∣

∣

∣

m
∏

j=2

(1 + f(τj)(αj − αj−1))

∣

∣

∣

∣

−1
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and therefore
∣

∣

∣

∣

m
∏

j=1

(1 + f(τj)(αj − αj−1))

∣

∣

∣

∣

> 1,

which is a contradiction.

This example (together with Example 8) shows that the Riemann product integrals
b
∏

a
(I + A(x) dx) and

b
∏

a
eA(x) dx do not always coincide.

2. The indefinite product integral

Assume that V : [a, b] × J → L(X) satisfies condition (C) and that the integral

(M)
b
∏

a
V (t, dt) exists and is invertible. Let

(1) UM (s) = (M)

s
∏

a

V (t, dt), s ∈ (a, b], UM (a) = I

denote the indefinite McShane product integral of V defined for s ∈ [a, b]. By

Theorem 7 this definition makes sense. We define in a similar way the indefinite

Henstock-Kurzweil product integral

(2) UHK(s) = (HK)
s

∏

a

V (t, dt), s ∈ (a, b], UHK(a) = I

provided (HK)
b
∏

a
V (t, dt) exists and is invertible. Let us note that

(M)

β
∏

α

V (t, dt) = UM (β)U−1
M (α),

(HK)

β
∏

α

V (t, dt) = UHK(β)U−1
HK(α).

Also by Proposition 6 we have UM (s) = UHK(s) if both functions are defined.

The following lemma appeared in [2]; for reader’s convenience we repeat both its

statement and proof.
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Lemma 10. Let V : [a, b]×J → L(X) be McShane (Henstock-Kurzweil) product

integrable with
b
∏

a
V (t, dt) = Q, where Q is an invertible operator. Assume that V

satisfies condition (C). For ε > 0 find a gauge δ : [a, b] → (0, +∞) such that

‖P (V, D) − Q‖ < ε

for every δ-fine M -partition (K-partition) D of [a, b]. Let {(τj , [ξj , ηj ])}r
j=1 be a

δ-fine M -system (K-system) on [a, b]. If we define

U−1(ηj)V (τj , [ξj , ηj ])U(ξj) = I + Zj

for j = 1, . . . , r, U is the corresponding indefinite product integral, then

(3) ‖(I + Zr)(I + Zr−1) . . . (I + Z1) − I‖ 6 ‖Q−1‖ε.

P r o o f. Denote η0 = a and ξr+1 = b. Since the product integral exists over all

intervals of the form [ηj , ξj+1], j = 0, . . . , r, for any ω > 0 there exist gauges δj on

[ηj , ξj+1] such that δj(t) < δ(t) and

(4)
∥

∥

∥P (V, Dj) −

ξj+1
∏

ηj

V (t, dt)
∥

∥

∥ = ‖P (V, Dj) − U(ξj+1)U
−1(ηj)‖ < ω

for every δj-fine M -partition (K-partition) Dj of [ηj , ξj+1]. Composing the parti-

tions, we obtain that

D = D0 ◦ (τ1, [ξ1, η1]) ◦ . . . Dr−1 ◦ (τr, [ξr, ηr]) ◦ Dr

is a δ-fine M -partition (K-partition) of the interval [a, b] and therefore

‖Q − P (V, D)‖

= ‖Q − P (V, Dr)V (τr, [ξr, ηr]) . . . P (V, D1)V (τ1, [ξ1, η1])P (V, D0)‖ < ε.

This yields

‖I − Q−1P (V, Dr)V (τr, [ξr, ηr]) . . . P (V, D1)V (τ1, [ξ1, eta1])P (V, D0)‖

= ‖Q−1(Q − P (V, Dr)V (τr, [ξr, ηr]) . . . P (V, D1)V (τ1, [ξ1, η1])P (V, D0))‖ < ‖Q−1‖ε,

which can be also written in the form

‖I − U(b)−1P (V, Dr)U(ηr)U
−1(ηr)V (τr, [ξr, ηr])U(ξr)U

−1(ξr) . . .(5)

P (V, D1)U(η1)U
−1(η1)V (τ1, [ξ1, η1])U(ξ1)U

−1(ξ1)P (V, D0)‖ < ‖Q−1‖ε.
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Now we take

U−1(ξj+1)P (V, Dj)U(ηj) − I = Wj

for j = 0, 1, . . . , r. Then using (4) and Theorem 7 we obtain

‖Wj‖ = ‖U−1(ξj+1)P (V, Dj)U(ηj) − I‖(6)

6 ‖U−1(ξj+1)‖‖P (V, Dj) − U(ξj+1)U
−1(ηj)‖‖U(ηj)‖

6 ‖U−1(ξj+1)‖‖U(ηj)‖ω 6 K2ω

for j = 0, 1, . . . , r. Looking at the definitions of Zj and Wj we rewrite the inequality

(5) as

‖I − (I + Wr)(I + Zr) . . . (I + W1)(I + Z1)(I + W0)‖ 6 ‖Q−1‖ε.

Now we have

‖I − (I + Zr) . . . (I + Z1)‖

6 ‖I − (I + Wr)(I + Zr) . . . (I + W1)(I + Z1)(I + W0)‖

+ ‖(I + Wr)(I + Zr) . . . (I + W1)(I + Z1)(I + W0) − (I + Zr) . . . (I + Z1)‖

6 ‖Q−1‖ε

because (6) implies that

‖(I + Wr)(I + Zr) . . . (I + W1)(I + Z1)(I + W0) − (I + Zr) . . . (I + Z1)‖

is arbitrarily small if ω > 0 is small enough. �

Theorem 11. Consider a function V : [a, b]×J → L(X) which satisfies condition

(C). Assume that the McShane (Henstock-Kurzweil) product integral
b
∏

a
V (t, dt) =

Q exists and is invertible. Then the indefinite integral

(7)
U(s) =

s
∏

a

(I + A(t) dt), s ∈ (a, b],

U(a) = I

is continuous at every point s ∈ [a, b].

P r o o f. We present the proof for the McShane product integral only; the proof

for the Henstock-Kurzweil integral case is similar and was given in [2] for the case

X = Rn , i.e. for the case of n × n matrices.
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Given ε > 0 let δ : [a, b] → (0, +∞) be the gauge such that

‖P (V, D) − Q‖ < ε

for every δ-fine M -partition D = {(ti, Ji) : i = 1, . . . , k} of [a, b]. By condition (C),

for every s ∈ [a, b] and ε > 0 there exists σ(s) > 0 such that

‖V (s, J) − I‖ < ε

for any interval J ⊂ [a, b] ∩ (s − σ, s + σ). Assume that s ∈ [a, b) is given and

let t ∈ (s, b] satisfy s < t < s + δ0(s), where 0 < δ0(s) < min(δ(s), σ(s)). Let

D1 = {(ti, [αi−1, αi])}
l
i=1 be a δ-fine M -partition of [a, s] and let us set

D2 = D1 ◦ (s, [s, t]).

Then D2 is evidently a δ-fine M -partition of [a, t]. We have

U−1(s)P (V, D1) − I = U−1(αl)P (V, D1) − I

= U−1(αl)V (tl, [αl−1, αl])V (tl−1, [αl−2, αl−1]) . . . V (t1, [α0, α1]) − I

= U−1(αl)V (tl, [αl−1, αl])U(αl−1)U
−1(αl−1)V (tl−1, [αl−2, αl−1])U(αl−2)

U−1(αl−2) . . . U(α1)U
−1(α1)V (t1, [α0, α1])U(α0) − I

because U(α0) = U(a) = I. Denote

U−1(αj)V (tj , [αj−1, αj ])U(αj−1) − I = Zj

for j = 1, . . . , l. Then Lemma 10 and especially (3) imply

‖U−1(s)P (V, D1) − I‖ = ‖(I + Zl)(I + Zl−1) . . . (I + Z1) − I‖ 6 ‖Q−1‖ε

and by Theorem 7 we get

‖P (V, D1) − U(s)‖ 6 ‖U(s)‖‖U−1(s)P (V, D1) − I‖ 6 K‖Q−1‖ε.

In a fully analogous way we obtain

‖P (V, D2) − U(t)‖ 6 K‖Q−1‖ε.
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Now by the form of condition (C) from the beginning of the proof we have

‖U(t) − U(s)‖ 6 ‖P (V, D2) − U(t)‖

+ ‖P (V, D1) − U(s)‖ + ‖P (V, D2) − P (V, D1)‖

6 2K‖Q−1‖ε + ‖P (V, D2) − P (V, D1)‖

= 2K‖Q−1‖ε + ‖V (s, [s, t])P (V, D1) − P (V, D1)‖

6 2K‖Q−1‖ε + ‖V (s, [s, t]) − I‖ · ‖P (V, D1)‖

6 2K‖Q−1‖ε + Kε = K(2‖Q−1‖ + 1)ε

and this proves the continuity of U from the right at the point s. The left continuity

of U at s ∈ (a, b] can be shown analogously. �

The following lemma has been taken over from [2].

Lemma 12. Let A1, A2, . . . , Ak ∈ L(X) with
k
∑

i=1

‖Ai‖ 6 1. Then

∥

∥

∥

∥

(I + Ak)(I + Ak−1) . . . (I + A1) − I −
k

∑

i=1

Ai

∥

∥

∥

∥

6

( k
∑

i=1

‖Ai‖

)2

.

P r o o f. Put λi = ‖Ai‖ for i = 1, . . . , k and λ =
k
∑

i=1

λi 6 1. Then

(1 + λk)(1 + λk−1) . . . (1 + λ1)

= 1 +

k
∑

i=1

λi +
∑

j2>j1

λj2λj1 +
∑

j3>j2>j1

λj3λj2λj1 + . . . + λkλk−1 . . . λ1

6 eλkeλk−1 . . . eλ1 = eλ.

Hence

∑

j2>j1

λj2λj1 +
∑

j3>j2>j1

λj3λj2λj1 + . . . + λkλk−1 . . . λ1(8)

6 eλ − 1 − λ 6 λ2
∞
∑

k=2

1

k!
= λ2(e − 2) 6 λ2.

Now

B = (I + Ak)(I + Ak−1) . . . (I + A1) − I −
k

∑

i=1

Ai

=
∑

j2>j1

Aj2Aj1 +
∑

j3>j2>j1

Aj3Aj2Aj1 + . . . + AkAk−1 . . . A1.
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Therefore by (8) we obtain

‖B‖ 6
∑

j2>j1

‖Aj2‖‖Aj1‖ +
∑

j3>j2>j1

‖Aj3‖‖Aj2‖‖Aj1‖

+ . . . + ‖Ak‖‖Ak−1‖ . . . ‖A1‖ < λ2 =

( k
∑

i=1

‖Ai‖

)2

.

�

3. Finite-dimensional case

At this point we switch to the case X = Rn ; the operators in L(Rn ) are now

represented by real n × n matrices.

For a matrix A = (ai,j)
n
i,j=1 we define a special norm

(9) ‖A‖⋆ = max
16i,j6n

|ai,j |.

Let us mention that all norms on L(Rn ) are equivalent. This means in particular

that if ‖ · ‖ is an arbitrary norm defined on the linear space of matrices, then there

is a constant L > 1 such that

1

L
‖A‖⋆ 6 ‖A‖ 6 L‖A‖⋆.

The following important statement was presented in [2].

Lemma 13. Let 0 < θ < 1/9. Assume that Z1, Z2, . . . , Zr ∈ L(Rn ) are such that

for every p-tuple {j1, . . . , jp} ⊂ {1, 2, . . . , r} with j1 < j2 < . . . < jp the inequality

(10) ‖(I + Zjp
)(I + Zjp−1

) . . . (I + Zj1) − I‖⋆ 6 θ

holds. Then

(11)

r
∑

j=1

‖Zj‖⋆ 6 4n2θ.

P r o o f. By (10) we have

(12) ‖Zj‖⋆ = ‖(I + Zj) − I‖⋆ 6 θ, j = 1, . . . , r.
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Denote Zj = (zj;i,k)n
i,k=1 and for l, m ∈ {1, 2, . . . , n} set

J(l, m) = {j ∈ {1, . . . , r}; ‖Zj‖⋆ = max
i,k

|zj;i,k| = |zj;l,m|}.

In case (11) is not valid we can find a couple l, m ∈ {1, 2, . . . , n} such that

∑

j∈J(l,m)

‖Zj‖⋆ > 4θ.

Put

J+ = {j ∈ J(l, m) ; zj;l,m > 0}, J− = J(l, m) \ J+.

Then either
∑

j∈J+

zj;l,m > 2θ

or

−
∑

j∈J−

zj;l,m > 2θ.

Assume e.g. that the first inequality occurs. By (12) we have zj;l,m = ‖Zj‖⋆ 6 θ for

j ∈ J+ and therefore there is a subset J∗
+ ⊂ J+ such that

(13) 2θ <
∑

j∈J∗

+

zj;l,m 6 3θ.

Hence

(14) 2θ <

∥

∥

∥

∥

∑

j∈J∗

+

Zj

∥

∥

∥

∥

⋆

=
∑

j∈J∗

+

‖Zj‖⋆ =
∑

j∈J∗

+

zj;l,m 6 3θ <
1

3
.

The matrices Zj , j ∈ J∗
+ satisfy the assumptions of Lemma 12 and therefore

∥

∥

∥

∥

∏

j∈J∗

+

(I + Zj) − I −
∑

j∈J∗

+

Zj

∥

∥

∥

∥

⋆

6

(

∑

j∈J∗

+

‖Zj‖⋆

)2

6 9θ2.

By (10) we get

∥

∥

∥

∥

∑

j∈J∗

+

Zj

∥

∥

∥

∥

⋆

6

∥

∥

∥

∥

∏

j∈J∗

+

(I + Zj) − I −
∑

j∈J∗

+

Zj

∥

∥

∥

∥

⋆

+
∥

∥

∥

∏

j∈J∗

+

(I + Zj) − I
∥

∥

∥

⋆
6 9θ2 + θ

and by (14) also

2θ <
∥

∥

∥

∑

j∈J∗

+

Zj

∥

∥

∥

⋆
6 9θ2 + θ.

Therefore θ > 1/9, which is a contradiction. �
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At this moment it should be pointed out that an analog of the preceding Lemma 13

does not hold for infinite-dimensional Banach spaces. The counter-example from [5],

p. 389 concerns the Banach space X = c0.

For this reason we restrict our considerations to the case X = Rn in the sequel.

Using Lemma 13 we prove the next result (see [2]).

Theorem 14. Consider a function V : [a, b]×J → L(Rn ) which satisfies condition

(C). Assume the McShane (Henstock-Kurzweil) product integral
b
∏

a
V (t, dt) = Q

exists and is invertible.

Given 0 < ε < (9‖Q−1‖⋆)−1, find a gauge δ : [a, b] → (0, +∞) such that

‖P (V, D) − Q‖⋆ < ε

for every δ-fine M -partition (K-partition) D of [a, b]. Let {(τj , [ξj , ηj ])}r
j=1 be a

δ-fine M -system (K-system) on [a, b]. Define

U−1(ηj)V (τj , [ξj , ηj ])U(ξj) = I + Zj , j = 1, . . . , r,

U is the corresponding indefinite product integral. Then

(15)

r
∑

j=1

‖Zj‖⋆ 6 4n2‖Q−1‖⋆ε

and

(16)

r
∑

j=1

∥

∥

∥V (τj , [ξj , ηj ]) −

ηj
∏

ξj

V (t, dt)
∥

∥

∥

⋆
6 4K2n2‖Q−1‖⋆ε,

where K is the constant from Theorem 7.

P r o o f. By (3) from Theorem 10 we have the inequality

‖(I + Zjp
)(I + Zjp−1

) . . . (I + Zj1) − I‖⋆ 6 ‖Q−1‖⋆ε <
1

9

for every p-tuple {j1, . . . , jp} ⊂ {1, 2, . . . , r} with j1 < j2 < . . . < jp. Hence by

Lemma 13 we obtain
r

∑

j=1

‖Zj‖⋆ 6 4n2‖Q−1‖⋆ε.
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To show (16) we take into account that for j = 1, . . . , r we have

V (τj , [ξj , ηj ]) −

ηj
∏

ξj

V (t, dt) = V (τj , [ξj , ηj ]) − U(ηj)U
−1(ξj) = U(ηj)ZjU

−1(ξj)

Hence

∥

∥

∥

∥

V (τj , [ξj , ηj ]) −

ηj
∏

ξj

V (t, dt)

∥

∥

∥

∥

⋆

6 ‖U(ηj)‖⋆‖Zj‖⋆‖U−1(ξj)‖⋆.

Now (15) and Theorem 7 imply (16). �

The following theorem also appeared in [2].

Theorem 15. Consider a function V : [a, b]×J → L(Rn ) which satisfies condition

(C). Assume that the product integral (HK)
b
∏

a
V (t, dt) = Q exists and is invertible.

Then there exists a set E ⊂ [a, b], µ(E) = 0 such that for every ε > 0, t ∈ [a, b] \ E,

there is ϑ > 0 such that

(17) ‖V (t, [x, y]) − UHK(y)U−1
HK(x)‖⋆ 6 ε(y − x)

provided t − ϑ < x 6 t 6 y < t + ϑ, x, y ∈ [a, b].

P r o o f. Assume that T ⊂ [a, b] is the set of all t ∈ [a, b] for which (17) holds;

set E = [a, b] \T . Given r ∈ N denote by Er the set of t ∈ [a, b] such that there exist

sequences xl = xl(t), yl = yl(t), l ∈ N with
xl 6 t 6 yl, yl − xl → 0 as l → ∞

and

(18) ‖V (t, [xl, yl]) − UHK(yl)U
−1
HK(xl)‖⋆ >

1

r
(yl − xl).

Then E =
∞
⋃

r=1
Er. Assume that µe(E) > 0, where µe(E) is the outer measure of the

set E ⊂ [a, b]. Then there is an r ∈ N such that µe(Er) > 0. Choose ε > 0 such that

ε <
1

9
‖Q−1‖⋆,

4K2n2‖Q−1‖⋆ε <
1

2r
µe(Er)(19)
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(K > 0 is the constant from Theorem 7). Find a gauge δ on [a, b] such that

‖P (V, D) − Q‖⋆ < ε

for every δ-fine K-partition D of [a, b]. For t ∈ E find l0(t) ∈ N such that
t − δ(t) < xl(t) 6 t 6 yl(t) < t + δ(t)

for all l > l0. The system of intervals

{[xl(t), yl(t)]; t ∈ E, l > l0(t)}

is a Vitali cover of the set E and by the Vitali covering theorem it contains a finite

subsystem of intervals {[ξj , ηj ]}s
j=1 for which

τj − δ(τj) < ξj 6 τj 6 ηj < τj + δ(τj), τj ∈ E, j = 1, 2, . . . , s,

ηj 6 ξj+1, j = 1, 2, . . . , s − 1

and

µe

(

E \
s

⋃

j=1

[ξj , ηj ]

)

<
1

2
µe(Er).

Hence
s

∑

j=1

(ηj − ξj) > µe

(

E ∩
s

⋃

j=1

[ξj , ηj ]

)

>
1

2
µe(Er).

This inequality together with (18) and (19) yields

s
∑

j=1

‖V (τj , [ξj , ηj ]) − UHK(ηj)U
−1
HK(ξj)‖⋆

=

s
∑

j=1

∥

∥

∥V (τj , [ξj , ηj ]) −

ηj
∏

ξj

V (t, dt)
∥

∥

∥

⋆

>
1

r

s
∑

j=1

(ηj − ξj) >
1

2r
µe(Er) > 4K2n2‖Q−1‖⋆ε,

a contradiction to (16) from Theorem 14. Therefore µe(Er) = 0 for every r ∈ N and
µe(E) = 0, which yields µ(E) = 0. �

Let us now turn our attention to the classical case when

(20) V (t, J) = I + A(t)µ(J),

where A : [a, b] → L(Rn ) and µ is the Lebesgue measure on the real line. As was

mentioned in Section 1, the function V given by (20) satisfies condition (C). First

we prove the following corollary of Theorem 15.
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Corollary 16. Consider a function A : [a, b] → L(Rn ) such that the product

integral (HK)
b
∏

a
(I + A(t) dt) exists and is invertible. Then for

UHK(s) = (HK)
s

∏

a

(I + A(t) dt), s ∈ (a, b],(21)

UHK(a) = I

the derivative U̇HK(t) exists for almost all t ∈ [a, b] and

(22) U̇HK(t) = A(t)UHK(t)

for almost all t ∈ [a, b].

P r o o f. Given ε > 0, by Theorem 15 there exists a set E ⊂ [a, b], µ(E) = 0

such that for every ε > 0, t ∈ [a, b] \ E there is ϑ > 0 such that

‖I + A(t)(y − x) − UHK(y)U−1
HK(x)‖⋆ 6 ε(y − x)

provided t − ϑ < x 6 t 6 y < t + ϑ and x, y ∈ [a, b]. Take t ∈ [a, b] \ E. Then

‖I + A(t)(y − t) − UHK(y)U−1
HK(t)‖⋆ 6 ε(y − t)

for y ∈ [t, t + ϑ). Hence

∥

∥

∥

UHK(t)U−1
HK(t) − UHK(y)U−1

HK(t)

y − t
+ A(t)

∥

∥

∥

⋆
6 ε

and
∥

∥

∥

UHK(y) − UHK(t)

y − t
U−1

HK(t) − A(t)
∥

∥

∥

⋆
6 ε

for y ∈ (t, t + ϑ). This means that

∥

∥

∥

UHK(y) − UHK(t)

y − t
− A(t)UHK(t)

∥

∥

∥

⋆
6 ε‖UHK(t)‖⋆,

i.e. U̇+
HK(t) (the derivative from the right of UHK at the point t) exists and

U̇+
HK(t) = A(t)UHK (t).

A similar relation for the derivative from the left leads to the conclusion that for

t /∈ E the derivative U̇HK(t) exists and

U̇HK(t) = A(t)UHK (t).

�
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Theorem 17. Assume that the product integral (HK)
b
∏

a
(I + A(t) dt) exists and

is invertible. Then the indefinite integral UHK : [a, b] → L(Rn) satisfies the following

condition:

(SL) Let η > 0, N ⊂ [a, b], µ(N) = 0. Then there exists δ : N → (0, +∞) such that

if {(τj , [ξj , ηj ])}r
j=1 is a δ-fine K-system and τj ∈ N for j = 1, 2, . . . , r, then

(23)

r
∑

j=1

‖UHK(ηj) − UHK(ξj)‖⋆ 6 η.

Theorem 17 was proved in [2]; let us mention that the above presented condition

(SL) is the so called strong Lusin condition. By the results of Corollary 16 and

by Theorem 17 we know that the indefinite product integral UHK : [a, b] → L(Rn )

possesses a derivative almost everywhere in [a, b] and satisfies the strong Lusin con-

dition. Since every McShane product integrable function is also Henstock-Kurzweil

product integrable, the theorem is also valid for the indefinite product integral

UM : [a, b] → L(Rn ). We now prove an even stronger statement.

Theorem 18. Assume that the product integral (M)
b
∏

a
(I + A(t) dt) = Q exists

and is invertible. Then the indefinite McShane product integral UM satisfies the

following condition:

(AC) For every ̺ > 0 there is a σ > 0 such that if {[ξj , ηj ]}r
j=1 are non-overlapping

intervals in [a, b], then
r
∑

j=1

(ηj − ξj) < σ implies

r
∑

j=1

‖UM (ηj) − UM (ξj)‖⋆ < ̺.

P r o o f. Given ̺ > 0 take ε > 0 such that ε < (9‖Q−1‖⋆)−1 and

4K3n2‖Q−1‖⋆ε <
̺

2
,

where K > 0 is the constant from Theorem 7. For this ε > 0 there is a gauge

δ : [a, b] → (0, +∞) such that for V (t, J) = A(t)µ(J) we have

‖P (V, D) − Q‖⋆ < ε

for every δ-fine M -partition D = {(ti, [ui, vi])}
q
i=1 of [a, b]. Let us fix such an M -

partition D and put

σ =
̺

2K( max
i=1,...,q

‖A(ti)‖⋆ + 1)
.
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Assume that [ξj , ηj ] ⊂ [a, b], j = 1, . . . , r, are non-overlapping intervals with
r
∑

j=1

(ηj − ξj) < σ and consider the sum
r
∑

j=1

‖UM (ηj) − UM (ξj)‖⋆.

By subdividing the intervals [ξj , ηj ] if necessary, we can assume that every interval

[ξj , ηj ] belongs to an interval [ui, vi] of the fixed partition D. For each i = 1, . . . , q

let

Mi = {j; 1 6 j 6 r with [ξj , ηj ] ⊂ [ui, vi]}

and let us take τj = ti if j ∈ Mi. Now we have

‖UM(ξj) − UM (ηj)‖⋆ = ‖[I − UM (ηj)U
−1
M (ξj)]UM (ξj)‖⋆

6 ‖UM (ξj)‖⋆(‖I + A(τj)(ηj − ξj) − UM (ηj)U
−1
M (ξj)‖⋆ + ‖A(τj)(ηj − ξj)‖⋆)

and by Theorem 7 we get

r
∑

j=1

‖UM (ηj) − UM (ξj)‖⋆ 6 K

r
∑

j=1

‖I + A(τj)(ηj − ξj) − UM (ηj)U
−1
M (ξj)‖⋆

+ K max
i=1,...,q

‖A(ti)‖⋆

r
∑

j=1

(ηj − ξj).

It is easy to check that for the points τj and the intervals [ξj , ηj ], j = 1, . . . , r the

assumption of Theorem 14 is satisfied if ξj and ηj are ordered properly. Using (16)

from Theorem 14 we obtain the inequality

r
∑

j=1

‖UM (ηj) − UM (ξj)‖⋆ 6 4K3n2‖Q−1‖⋆ε + K max
i=1,...,q

‖A(ti)‖⋆σ

<
̺

2
+

̺

2
= ̺

and the statement is proved. �

Condition (AC) in Theorem 18 says that the indefinite product integral UM :

[a, b] → L(Rn ) is absolutely continuous in [a, b].

The special norm ‖·‖⋆ of matrices was used in the previous parts for technical rea-

sons only. Note that according to (9) the proofs can be modified in a straightforward

way for any norm of matrices.
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4. Equivalent functions

Definition 19. Functions V1, V2 : [a, b] × J → L(Rn ) are called M -equivalent

(K-equivalent) if for every ε > 0 there is a gauge δ : [a, b] → (0,∞) such that

m
∑

j=1

‖V1(τj , [αj−1, αj ]) − V2(τj , [αj−1, αj ])‖ < ε

for every δ-fine M -partition (K-partition) {(τj , [αj−1, αj ])}m
j=1 of [a, b].

Theorem 20. Let V1, V2 : [a, b] × J → L(Rn ) be M -equivalent (K-equivalent)

functions. Assume that V1 satisfies condition (C) and that the McShane (Henstock-

Kurzweil) integral
b
∏

a
V1(t, dt) exists and is invertible. Then the McShane (Henstock-

Kurzweil) integral
b
∏

a
V2(t, dt) exists as well and the two product integrals have the

same value.

P r o o f. The Henstock-Kurzweil version is proved in [2]; the proof for the

McShane product integral can be carried out in the same way (replacingK-partitions

with M -partitions). �

Corollary 21. Consider a function A : [a, b] → L(Rn ). Then the following con-

ditions are equivalent:

1) (M)
b
∏

a
(I + A(t) dt) exists and is invertible.

2) (M)
b
∏

a
eA(t) dt exists and is invertible.

If one of these conditions is fulfilled, then

(M)

b
∏

a

(I + A(t) dt) = (M)

b
∏

a

eA(t) dt.

P r o o f. The functions

V1(t, [x, y]) = I + A(t)(y − x),

V2(t, [x, y]) = eA(t)(y−x)

satisfy condition (C). According to Theorem 20 it is sufficient to show that V1 and

V2 are equivalent. For x < y we have

‖I + A(t)(y − x) − eA(t)(y−x)‖ =

∥

∥

∥

∥

∞
∑

k=2

A(t)k(y − x)k

k!

∥

∥

∥

∥

6 ‖A(t)‖2(y − x)2e‖A(t)‖(y−x).
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Let δ : [a, b] → (0,∞) be an arbitrary function such that

δ(t) < min
( 1

2‖A(t)‖
,

ε

2e(b − a)‖A(t)‖2

)

whenever ‖A(t)‖ > 0. Then for every δ-fine M -partition {(τj , [αj−1, αj ])}
m
j=1 we

have

αj − αj−1 < 2δ(τj)

and

m
∑

j=1

‖I + A(τj)(αj − αj−1) − eA(τj)(αj−αj−1)‖

6

m
∑

j=1

‖A(τj)‖
2(αj − αj−1)

2e‖A(τj)‖(αj−αj−1) <

m
∑

j=1

ε(αj − αj−1)

b − a
= ε.

�

5. Bochner product integral

Let X be a Banach space. Assume that B : [a, b] → L(X) is a step-function, i.e.

there exist points

a = s0 < s1 < . . . < sm−1 < sm = b

and operators B1, . . . , Bm ∈ L(X) such that B(x) = Bk for x ∈ (sk−1, sk), k =

1, 2, . . . , m. We have

b
∏

a

eB(t) dt =

1
∏

k=m

sk
∏

sk−1

eB(t) dt = eBm(sm−sm−1)eBm−1(sm−1−sm−2) . . . eB1(s1−s0)

(where the product integrals exist for example in the sense of Riemann).

Definition 22. A function f : [a, b] → X is called Bochner integrable if there

is a sequence of step functions fk : [a, b] → X , k ∈ N, such that
lim

k→∞
(L)

∫ b

a

‖fk(x) − f(x)‖ dx = 0,

where (L) denotes the Lebesgue integral.

In the monograph [1] the following definition of product integral is given (in finite-

dimensional case).
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Definition 23. Assume that A : [a, b] → L(X) is Bochner integrable. The

Bochner product integral (B)
b
∏

a
eA(t) dt is defined by

(24) (B)
b

∏

a

eA(t) dt = lim
n→∞

b
∏

a

eAn(t) dt

where {An}∞n=1 is any sequence of step-functions convergent to A in the L1 sense,

i.e.

lim
n→∞

(L)

∫ b

a

‖An(s) − A(s)‖ ds = 0.

It is known that a function f : [a, b] → Rn is Bochner integrable if and only if

it is Lebesgue integrable. For X = Rn we have L(X) = Rn×n and a function

A : [a, b] → Rn×n is Bochner product integrable if and only if its components are

Lebesgue integrable functions.

Definition 24. A function f : [a, b] → X has the property S∗M if for every

ε > 0 there is a gauge δ : [a, b] → (0,∞) such that

k
∑

i=1

l
∑

j=1

‖f(ti) − f(sj)‖µ(Ji ∩ Lj) < ε

for any δ-fine M -partitions {(ti, Ji)}k
i=1 and {(sj , Lj)}l

j=1 of [a, b].

Theorem 25. Let X be a finite-dimensional Banach space, f : [a, b] → X . Then

the following conditions are equivalent:

1) f is Bochner integrable.

2) f is McShane integrable.

3) f has the property S∗M.

P r o o f. A function f : [a, b] → X is Bochner integrable if and only if it has

the property S∗M (see Theorem 5.1.4 in [6]). Moreover, in a finite-dimensional

Banach space, a function is McShane integrable if and only if it has the property

S∗M (Proposition 5.2.1 in [6]). �

The following theorem was proved in [1]:

Theorem 26. Let A : [a, b] → L(Rn ) be Bochner integrable. Then the Bochner

product integral (B)
b
∏

a
eA(t) dt is an invertible matrix.

The following theorem was proved in [4]:
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Theorem 27. If A : [a, b] → L(X) has the property S∗M then the product

integrals (B)
b
∏

a
eA(t) dt and (M)

b
∏

a
eA(t) dt exist and

(B)

b
∏

a

eA(t) dt = (M)

b
∏

a

eA(t) dt.

Notice that the paper [4] uses a different terminology: Our McShane product inte-

gral is called the Bochner product integral there, while our Bochner product integral

is referred to as the Lebesgue-type product integral and is denoted by (L)
b
∏

a
eA(t) dt.

As a consequence of Theorem 25, Theorem 26, Theorem 27 and Corollary 21 we

obtain the following statement.

Corollary 28. Let A : [a, b] → L(Rn ) be Bochner integrable. Then

(B)

b
∏

a

eA(t) dt = (M)

b
∏

a

eA(t) dt = (M)

b
∏

a

(I + A(t) dt),

where all the above product integrals are guaranteed to exist.

Theorem 29. Let A : [a, b] → L(Rn ) be given. If there is an absolutely con-

tinuous function U : [a, b] → L(Rn) such that U−1(s) exists for every s ∈ [a, b] and

U ′(s) = A(s)U(s) for almost all s ∈ [a, b], then A is Bochner integrable.

P r o o f. The function U−1 is measurable since the components uij (i, j =

1, . . . , n) of U are measurable and

(25) U−1(s) =
{ (−1)i+j detUji(s)

detU(s)

}n

i,j=1

(where Uji(s) is the minor obtained from U(s) by deleting the j-th row and i-th

column). Since U is continuous and invertible on [a, b] we have

m := min
x∈[a,b]

| detU(x)| > 0.

It is also possible to find a constantM > 0 such that |uij(s)| 6 M for every s ∈ [a, b]

and i, j = 1, . . . , n. From (25) we get

‖U−1(s)‖⋆ 6
| detUji(s)|

| detU(s)|
6

(n − 1)! Mn−1

m
,

i.e. the function U−1 is bounded.

The components of U ′ are Lebesgue integrable (because U is absolutely con-

tinuous), U−1 is measurable and bounded. Therefore the components of A(s) =

U ′(s)U−1(s) are Lebesgue integrable and A is Bochner integrable. �
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The following theorem may be regarded as a descriptive definition of the McShane

product integral.

Theorem 30. Consider a function A : [a, b] → L(Rn ). Then the McShane prod-

uct integral (M)
b
∏

a
(I + A(t) dt) exists if and only if there is an absolutely contin-

uous function U : [a, b] → L(Rn ) such that U−1(s) exists for every s ∈ [a, b] and

U ′(s) = A(s)U(s) for almost all s ∈ [a, b]; in this case

(M)

b
∏

a

(I + A(t) dt) = U(b)U−1(a).

P r o o f. The first part of the theorem is easily proved by combining the results

from Corollary 16, Theorem 18, Theorem 29 and Corollary 28: The McShane product

integral (M)
b
∏

a
(I + A(t) dt) exists if and only if there is an absolutely continuous

function U : [a, b] → L(Rn ) such that U−1(s) exists for every s ∈ [a, b] and U ′(s) =

A(s)U(s) for almost all s ∈ [a, b].

Now take an arbitrary function U which satisfies the conditions stated above.

Define

V (s) = (M)

s
∏

a

(I + A(t) dt)

and let W (s) = U−1(s)V (s) for s ∈ [a, b]. The functions U and V are absolutely

continuous. Using again the formula

U−1(s) =
{ (−1)i+j detUji(s)

detU(s)

}n

i,j=1

we see that U−1 and consequently W are absolutely continuous functions. The

equality U ′U−1 = V ′V −1 almost everywhere implies

W ′ = (U−1V )′ =
(

U−1
)′

V + U−1V ′ = −U−1U ′U−1V + U−1V ′

= −U−1U ′U−1V + U−1V ′V −1V = U−1(V ′V −1 − U ′U−1)V = 0

almost everywhere on [a, b], i.e. W is a constant function. The proof is completed by

observing that

(M)

b
∏

a

(I + A(t) dt) = V (b) = U(b)W (b) = U(b)W (a) = U(b)U−1(a).

�
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Theorem 31. Consider a function A : [a, b] → L(Rn ) such that the McShane

product integral (M)
b
∏

a
(I + A(t) dt) exists and is invertible. Then A is also Bochner

integrable and

(M)

b
∏

a

(I + A(t) dt) = (B)

b
∏

a

eA(t) dt.

P r o o f. Define

U(s) = (M)

s
∏

a

(I + A(t) dt).

From Theorem 18 and Corollary 16 we know that U is absolutely continuous and

U ′(s) = A(s)U(s) almost everywhere on [a, b]. According to Theorem 7 the matrix

U−1(s) exists for every s ∈ [a, b]. To complete the proof apply Theorem 29 and

Corollary 28. �

The following theorem describes the relation between the McShane product inte-

gral and the Bochner product integral.

Theorem 32. For every A : [a, b] → L(Rn ) the following conditions are equiva-

lent:

1) A is Bochner integrable.

2) The McShane product integral (M)
b
∏

a
(I + A(t) dt) exists and is invertible.

3) The McShane product integral (M)
b
∏

a
eA(t) dt exists and is invertible.

If one of these conditions is fulfilled, then

(B)

b
∏

a

eA(t) dt = (M)

b
∏

a

(I + A(t) dt) = (M)

b
∏

a

eA(t) dt.

P r o o f. An easy consequence of Corollary 28, Theorem 21 and Theorem 31. �

As shown in Examples 8 and 9, the invertibility condition in the statement of

Theorem 32 cannot be left out.

268



References

[1] J.D.Dollard and C.N.Friedman: Product Integration with Applications to Differential
Equations. Addison-Wesley Publ. Company, Reading, Massachusetts, 1979. zbl

[2] J. Jarník and J.Kurzweil: A general form of the product integral and linear ordinary
differential equations. Czech. Math. J. 37 (1987), 642–659. zbl

[3] P.R.Masani: Multiplicative Riemann integration in normed rings. Trans. Am. Math.
Soc. 61 (1947), 147–192. zbl

[4] Š. Schwabik: Bochner product integration. Math. Bohem. 119 (1994), 305–335. zbl
[5] Š. Schwabik: The Perron product integral and generalized linear differential equations.
Časopis pěst. mat. 115 (1990), 368–404. zbl

[6] Š. Schwabik and Ye Guoju: Topics in Banach Space Integration. World Scientific, Sin-
gapore, 2005. zbl

Authors’ address: A n t o n í n S l a v í k, Š t e f a n S chwa b i k, Mathematical Institute,
Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1, Czech Republic.

269


		webmaster@dml.cz
	2020-07-03T17:16:04+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




