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Abstract. In the present paper we deal with generalized MV -algebras (GMV -algebras, in
short) in the sense of Galatos and Tsinakis. According to a result of the mentioned authors,
GMV -algebras can be obtained by a truncation construction from lattice ordered groups.
We investigate direct summands and retract mappings of GMV -algebras. The relations
between GMV -algebras and lattice ordered groups are essential for this investigation.
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1. Introduction

In [5], the notion of generalized MV -algebra (GMV -algebra, in short) has been

introduced; it has been studied in the context of residuated lattices.

The fundamental result of [5] is Theorem (A). From this it follows that each

GMV -algebra can be represented by using lattice ordered groups. For a detailed

formulation of this result, cf. Section 2 below.

In the present paper we apply the mentioned representation for investigating direct

summands and retract mappings of GMV -algebras.

LetM be a GMV -algebra and let ℓ(M) be the underlying lattice ofM. Further,

let A be a subalgebra of M. We prove that A is a direct summand of M iff the

underlying lattice ℓ(A) of A is an internal direct factor of the lattice ℓ(A).
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The main result concerning retract mappings of GMV -algebras is Theorem (C)

presented in Section 7 below.

We recall that the investigation of direct summands of some types of algebraic

structures is frequent in the literature. E.g., a rather large series of papers has dealt

with direct summands of abelian groups; cf. the references given in [4].

The related notion of direct product decomposition of MV -algebras was dealt

with in [9]; for the case of pseudo MV -algebras cf. [10] and [20] (under a different

terminology).

Retract mappings and retracts of lattice ordered groups were investigated in [13],

[14], [15], [16]. Retract mappings of MV -algebras were studied in [17].

An important tool in the investigation of the relation between GMV -algebras and

lattice ordered groups that is applied in [5] is the negative cone of a lattice ordered

group. In the introduction of [5], the authors mention the papers of Chang [1],

Mundici [18] and Dvurečenskij [3] on MV -algebras and pseudo MV -algebras; here

the authors write: ‘It should be noted that all the three authors have expressed their

results in terms of the positive cone rather than the negative cone.’ Hence in this

respect, the method of [5] differs from that of [1], [3], [18].

We also remark that the term ‘generalizedMV -algebra’ was applied in a different

sense in [17]; in the sense of [17], this term is equivalent to the notion of pseudo

MV -algebra (cf. [3], [6], [7], and also [10], [11], [12], [19] and [20]).

In what follows, the term ‘GMV -algebra’ will be used in the sense of [5].

2. Preliminaries

For the sake of completeness, we recall some basic definitions. We also quote some

results of [5].

A residuated lattice is an algebra L = (L;∧,∨, ·, \, /, e) of type (2, 2, 2, 2, 2, 0) such

that (L;∧,∨) is a lattice, (L; ·, e) is a monoid and for each x, y, z ∈ L,

x · y 6⇔ x 6 z/y ⇔ y 6 x \ z.

A residuated lattice is commutative if xy = yx for each x, y ∈ L; it is integral if

x ∧ e = x for each x ∈ L.

The negative cone of a residuated lattice L is an algebra L− = (L−;∧,∨, ·, \L− ,

/L− , e) where

L− = {x ∈ L : x 6 e},

x \L− y = (x \ y) ∧ e, x/L−y = (x/y) ∧ e.

Then L− is a residuated lattice as well.
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A generalized MV -algebra (GMV -algebra, in short) is a residuated lattice satis-

fying the identities

x/((x ∨ y) \ x) = x ∨ y = (x/(x ∨ y)) \ x.

If L is a GMV -algebra, then its negative cone L− is a GMV -algebra as well.

Let P be a partially ordered set. A mapping γ : P → P is a closure operator on

P if γ(x) 6 γ(y) whenever x 6 y, x 6 γ(x) and γ(γ(x)) = x. Put γ(P ) = Pγ . Then

γ(x) = min{t ∈ Pγ : x 6 t}

for each x ∈ P ; hence the mapping γ is uniquely determined by the set Pγ .

Let L be a residuated lattice. A closure operator γ on L satisfying γ(a)γ(b) 6

γ(a, b) for each a, b ∈ L is a nucleus on L. If Lγ is the image of a nucleus γ on L,

then the set Lγ is endowed with a residuated lattice structure in the following way:

Lγ = (Lγ ;∧,∨γ , ◦γ , \, /, γ(e)),

where

γ(a) ∨γ γ(b) = γ(a ∨ b), γ(a) ◦γ γ(b) = γ(ab).

A residuated lattice A is a direct sum of its subalgebras B and C, in symbols

A = B ⊕ C, if the map B × C → A defined by f(x, y) = xy is an isomorphism.

In such case B and C are direct summands of A. Under the above notation, put

z = xy; we denote x = z(B) and y = z(C). We say that x and y is the component

of z in B or in C, respectively.

For lattice ordered groups we use the terminology and the notation as in [8].

Let G = (G;∧,∨, ·,−1, e) be a lattice ordered group. The algebra

G∗ = (G;∧,∨, ·, \, /, e)

where x \ y = x−1y and y/x = yx−1, is a GMV -algebra.

The following theorem is one of the main results of [5]; we use a slightly modified

notation.

Theorem 2.1 (cf. [5], Theorem (A)). A residuated latticeM is a GMV -algebra

if and only if there are lattice ordered groups G and G1 and a nucleus γ on (G∗
1)

−

such that

M = G∗ ⊕ Lγ ,

where L = (G∗
1)

−.
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Theorem 2.2 (cf. [5], Theorem 3.4). If L = (L;∧,∨, ·, \, /, e) is a GMV -algebra

and γ is a nucleus on γ, then

(i) ∨γ = ∨;

(ii) γ preserves binary joins;

(iii) γ(e) = e;

(iv) Lγ = (Lγ ;∧,∨, ◦γ , \, /, e) is a GMV -algebra;

(v) Lγ is a filter of the lattice (L;∧,∨).

3. Internal direct factors of partially ordered sets

Assume that P is a partially ordered set and that (Pi)i∈I is and indexed system

of partially ordered sets. The direct product
∏

i∈I

Pi is defined in the usual way. The

elements of
∏

i∈I

Pi are written in the form t = (ti)i∈I . If

ϕ : P →
∏

i∈I

Pi

is an isomorphism, then we say that ϕ is a direct product decomposition of P . In

such case, for each i ∈ I and each a ∈ P we put

P (i, a) = {x ∈ P : ϕ(x)j = ϕ(a)j for each j ∈ I \ {i}}.

The set P (i, a) endowed with the partial order induced from P is an internal direct

factor of P with respect to the element a. Obviously, P (i, a) is isomorphic to Pi.

For each y ∈ P , we denote by ϕa
i (y) the element of P (i, a) such that

(ϕ(ϕa
i (y))i = (ϕ(y))i.

Then the mapping

(1) ϕa : P →
∏

i∈I

P (i, a)

where ϕa(y) = (ϕa
i (y))i∈I for each y ∈ P , is an isomorphism. We say that ϕa defines

an internal direct product decomposition of P with respect to the element a.

For each x ∈ P we now put

xi = (ϕa(x))i;
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xi is the i-the component of x with respect to (1). We also say that xi is the

component of x in P (i, a) and we write xi = x(P (i, a)). Then

ai = a for each i ∈ I,(2)

(xi)i = xi and (xi)j = a if j ∈ I, j 6= i.(3)

Now let I1 and I2 be nonempty subsets of I such that I1 ∩ I2 = ∅ and I1 ∪ I2 = I.

Put

P (I1, a) = {x ∈ P : xi = ai for each i ∈ I2},

P (I2, a) = {x ∈ P : xi = ai for each i ∈ I1}.

Let x ∈ P . The element y ∈ P such that

yi =

{

xi if i ∈ I1,

ai if i ∈ I2

will be denoted by xI1 . Analogously we define xI2 . Then the mapping

x→ (xI1 , xI2)

defines an internal direct product decomposition

(∗1) P → P (I1, a) × P (I2, a).

Further, we have internal direct product decompositions

P (I1, a) →
∏

i∈I1

P (i, a),(∗2)

P (I2, a) →
∏

i∈I2

P (i, a).(∗3)

All the internal direct product decompositions (∗1), (∗2) and (∗3) are taken with

respect to the element a.
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Lemma 3.1. Assume that P is a partially ordered set and that a is the greatest

element of P . Let (1) be valid. Then

x =
∧

i∈I

xi

for each x ∈ P .

P r o o f. This is a consequence of the relations (2) and (3). �

If (1) holds and i ∈ I, then we put

P ′(i, a) = {x ∈ P : xi = a}.

Then in view of (∗2) we have an internal product decomposition

P ′(i, a) →
∏

j∈I\{i}

P (j, a).

Moreover, according to (∗1) we obtain a two-factor internal direct product decom-

position

(4) P → P (i, a) × P ′(i, a).

For x ∈ P we put x(P ′(i, a)) = x′i. �

Lemma 3.2. Let P be as in Lemma 3.1. Further, let x and y be elements of P .

Then

xi ∧ x
′
i = x, xi ∨ y

′
i = a.

P r o o f. The validity of the first relation is a consequence of Lemma 3.1 and of

(4). In view of (2) and (3), the second relation holds. �
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4. The negative cone

Let G be a lattice ordered group. The algebra

G− = {G−;∧,∨, ·, e},

where G− = {g ∈ G : g 6 e} is the negative cone of G. For x, y ∈ G− we put

x \ y = (x−1y) ∧ e and y/x = (yx−1) ∧ e. An elementary calculation shows that the

algebra

(G−)∗ = (G−;∧,∨, ·, \, /, e)

is a GMV -algebra; moreover, under the notation as in Section 2 we have (G−)∗ =

(G∗)−.

We denote by ℓ(G) and ℓ(G−) the underlying lattice of G or of G−, respectively.

A filter C of ℓ(G−) will be called regular if for each x ∈ G−, the set {c ∈ C : x 6 c}

has a minimal element; in such case, this minimal element will be denoted by γC(x).

Clearly,

γC(G−) = C.

Lemma 4.1. Let C be a regular filter of the lattice ℓ(G−). Then γC is a nucleus

on G− (with respect to the GMV -algebra (G−)∗).

P r o o f. It is obvious that γC is a closure operator on the lattice ℓ(G
−). Let

a, b ∈ G−. In view of the definition of the operation /L− we have

γ(a)/L−b = (γ(a)b−1) ∧ e.

From b ∈ G− we obtain b−1 > e, thus γ(a)b−1 > γ(a), whence

γ(a) 6 (γ(a)b−1) ∧ e 6 e

and thus γ(a)/L−b ∈ γC(G−). Analogously, b \L− γ(a) ∈ γC(G−). Hence in view of

[5], Lemma 1.3, γC is a nucleus. �

Let C be as in Lemma 4.1. Denote

(5) γC = γ, L = (G−)∗, P = ℓ(Lγ), a = e.
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Lemma 4.2. Assume that (1) is valid. Let x, y ∈ P and i ∈ I. Then

x ◦γ y = (xi ◦γ yi) ◦γ (x′i ◦γ y
′
i).

P r o o f. We use the relation (4). In view of Lemma 3.2,

x = xi ∧ x
′
i, y = yi ∧ y

′
i.

Also, xi ∨ x′i = e. From this and from Lemma 2.10 in [5] we obtain x = xi ◦γ x
′
i.

Similarly, y = yi ◦γ y
′
i. Thus

x ◦γ y = (xi ◦γ x
′
i) ◦γ (yi ◦γ y

′
i) = xi ◦γ (x′i ◦γ yi) ◦γ y

′
i.

Using Lemma 3.2 again we get

x′i ◦γ yi = x′i ∧ yi = yi ∧ x
′
i = yi ◦γ x

′
i,

whence

x ◦γ y = (xi ◦γ yi) ◦γ (x′i ◦γ y
′
i).

�

Lemma 4.3. Assume that (1) is valid. Let i ∈ I and x, y ∈ Pi. Then x ◦γ y ∈ Pi.

P r o o f. Put x ◦γ y = z. In view of (1),

z = zi ∧ z
′
i = zi ◦γ z

′
i.

From the relations x ∈ Pi, z
′
i ∈ P ′

i we get

x ∨ z′i = e.

Hence

(x ∨ zi) ◦γ y = (x ◦γ y) ∨ (z′i ◦γ y) = e ◦γ y = y.

Further, z′i ◦γ y = z′i ∧ y, thus

z ∨ (z′i ∧ y) = y.

By the distributivity of ℓ-groups, we have

z ∨ (z′i ∧ y) = (z ∨ z′i) ∧ (z ∨ y) = z′i ∧ y.

Therefore z′i > y. Since z′i ∨ y = e we get z′i = e. This yields z = zi, whence

z ∈ Pi. �
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Lemma 4.4. Let (1) be valid. We use the notation as in (5). Let a ∈ P , i ∈ I,

a1 ∈ Pi, a2 ∈ P ′
i and a = a1 ∧ a2. Then a1 = ai and a2 = a′i.

P r o o f. We have

a1 = a1 ∨ a = a1 ∨ (ai ∧ a
′
i) = (a1 ∨ ai) ∧ (a1 ∨ a

′
i).

Since a1 ∨ a′i = e we get a1 = a1 ∨ ai, whence a1 > ai. By an analogous argument

we obtain ai > a1, thus ai = a1. Similarly, a2 = a′1. �

Lemma 4.5. Let (1) and (5) be valid. Let i ∈ I and x, y ∈ P . Then

(x ◦γ y)i = xi ◦γ yi, (x ◦γ y)
′
i = x′i ◦γ y

′
i.

P r o o f. In view of Lemma 4.3 we have xi ◦γ yi ∈ Pi. Analogously, x
′
i ◦γ y

′
i ∈ P ′

i .

Now it suffices to apply Lemma 4.2 and Lemma 4.4. �

Again, let us suppose that (1) and (5) are valid.

Let y, z ∈ P . Put z/y = t. In view of the definition of residuated lattice we have

x ◦γ y 6 z ⇔ x 6 t.

This yields

t = maxP (y, z),

where

P (y, z) = {x ∈ P : x ◦γ y 6 z}.

According to Lemma 4.5 the relation x ◦γ y 6 z is equivalent with the validity of the

two following conditions:

xi ◦γ yi 6 zi(6a)

x′i ◦γ y
′
i 6 z′i.(6b)

Lemma 4.6. Let (1) and (5) be valid. Let i ∈ I and y, z ∈ Pi. Then z/y ∈ Pi.

P r o o f. Let us apply the notation as above. From y, z ∈ Pi we obtain yi = y

and zi = z; thus in view of (6a)

xi ◦γ y 6 z

for each x ∈ P (y, z). Since t ∈ P (y, z), we have ti ◦γ y 6 z, hence ti ∈ P (y, z).

Clearly ti > t. Therefore we must have ti = t. This yields t ∈ Pi. �

Analogously, we have (by applying (6b))
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Lemma 4.6.1. Let (1) and (5) be valid. Let i ∈ I and y, z ∈ P ′
i . Then z/y = P ′

i .

Lemma 4.7. Let (1) and (5) be valid. Let i ∈ I and y, z ∈ P . Then (z/y)i =

zi/yi.

P r o o f. As above, let z/y = t. Further, put zi/yi = q. In view of Lemma 4.6,

q ∈ Pi.

Since t ∈ P (y, z), (6b) yields

ti ◦γ yi 6 zi,

hence ti ∈ P (yi, zi). Since q = maxP (yi, zi), we obtain q > ti.

Denote q ∧ t′i = q1. According to Lemma 4.4,

(q1)i = q, (q1)
′
i = t′i.

From this and from (6a), (6b) we conclude that q1 belongs to P (y, z). Therefore

q1 6 t. Hence (q1)i 6 ti. Thus q = ti. This completes the proof. �

Similarly, we have

Lemma 4.7.1. Under the assumptions as in Lemma 4.7, (z/y)′i = z′i/y
′
i.

The results analogous to Lemma 4.7 and Lemma 4.7.1 are valid for the operation

y \ z.

Summarizing, from the previous lemmas of the present section we obtain

Proposition 4.8. Let G be a lattice ordered group and let us use the notation

as in (5). Suppose that

ϕ : P → Pi × P ′
i

is an internal direct product decomposition of the lattice P with respect to the

element e.

(i) Both Pi and P
′
i are closed with respect to the operations ∧,∨γ , ◦γ , \ and /;

also, e ∈ Pi ∩ P ′
i . Thus the algebras Pi = (Pi,∨,∧γ , ◦γ , \, /, e) and P′

i =

(P ′
i ,∧,∨γ , ◦γ , \, /, e) are subalgebras of the GMV -algebra Lγ .

(ii) The mapping ϕ determines a direct sum decomposition

ϕ : Lγ = Pi ⊕ P′
i.

It is obvious that if Lγ is represented as a direct sum

Lγ = X ⊕ Y
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and if for z ∈ Lγ we have z = x · y with x ∈ X and y ∈ Y , then the mapping

ϕ(z) = (x, y) determines an internal direct product of the corresponding lattices

ϕ : ℓ(Lγ) → ℓ(X) × ℓ(Y).

From this and from Proposition 2.10 we obtain the following.

Corollary 4.9. Let us use the notation as in Proposition 4.8. Let F (P ) be the

set of all internal direct factors of P taken with respect to the element e. Further, let

S(Lγ) be the set of all direct summands of Lγ . For eachA ∈ S(Lγ) put ψ(A) = ℓ(A).

Then ψ is a one-to-one mapping of the set S(Lγ) onto the set F (P ).

From the mentioned relations between elements of F (P ) and S(Lγ) and from the

well-known properties of internal direct factors of partially ordered sets we immedi-

ately obtain the following facts:

4.10.1. Let Pi ∈ S(Lγ) and x ∈ Lγ . Then the component xL of x in Pi is

uniquely determined; namely

xi = min{t ∈ Pi : t > x}.

4.10.2. Let Pi ∈ S(Lγ). Then the corresponding P′
i (under the notation as

above) is uniquely determined; namely,

P ′
i = {t ∈ Lγ : t ∨ p = e for each p ∈ Pi}.

4.10.3. The system S(Lγ) partially ordered by the set-theoretical inclusion is a

Boolean algebra. If X,Y ∈ S(Lγ), then the underlying set of X∧Y is X∩Y . Under

the notation as above, P′
i is the complement of Pi in the Boolean algebra S(Lγ).

5. On the GMV -algebra G∗

Assume that M is a GMV -algebra and that

M = G∗ ⊕ Lγ ,

where G∗ and Lγ are as in Theorem 2.1.

In this section we investigate the GMV -algebra G∗. Put ℓ(G∗) = Q. We have

ℓ(G∗) = ℓ(G).
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Suppose that

ψ : Q→
∏

j∈J

Qj

is an internal direct product decomposition of the lattice Q with respect to the

element e.

Let j ∈ J, x ∈ Q. We denote by xj or x(Qj) the component of x in Qj. Further,

let Q′
j be defined analogously as P

′
i in Section 3. Then we have an internal direct

product decomposition

ψj : Q→ Qj ×Q′
j

where ψj(x) = (xj , x
′
j) for each x ∈ Q. Then in view of Proposition 4.8 (applied for

ψj) we conclude that Qj is the underlying sublattice of an ℓ-subgroup Qj of G (the

meaning of Q′
j is analogous) and that ψ

j yields also a direct product decomposition

of the lattice ordered group G, i.e.,

(7) ψj : G → Qj × Q′
j

is a direct product decomposition of the lattice ordered group G.

Let us consider the GMV -algebras G∗, Q∗
j and (Q′

j)
∗. For x, y ∈ G we have

x/y = xy−1, y \ x = y−1x.

Thus in view of (7) we obtain thatQj andQ
′
j are closed with respect to the operations

/ and \; therefore

(x/y)j = xjy
−1

j = xj/y
−1

j ,

(x/y)′j = x′j(y
−1)′j = x′j/(y

−1)′j

and analogously for the operation \. Hence

G∗ = Q∗
j ⊕ Q′

j .

We verified that if Qj is an internal direct factor of the lattice Q with respect

to the element e, then Q∗
j is a direct summand of the GMV -algebra G∗. Clearly,

ℓ(Q∗
j ) = Qj.

Conversely, it is obvious that if X is a direct summand of the GMV -algebra G∗,

then the lattice ℓ(X) is a direct summand of the lattice ℓ(G∗) with respect to the

element e.

We denote by F (Q) the system of all internal direct factors of the lattice Q taken

with respect to the element e. Further, let S(G∗) be the system of all direct sum-

mands of the GMV -algebra G∗. In view of the above argument we have proved
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Lemma 5.1. For each X ∈ S(G∗) let χ(X) = ℓ(X). Then χ is a one-to-one

mapping of the set S(G∗) onto the set F (ℓ(G∗)).

Now, let us assume that M is any GMV -algebra. Further, suppose that I is a

nonempty set and that for each i ∈ I, Mi is a direct summand of M . If x ∈ M ,

then, as above, x(Mi) will denote the component of x inMi. Consider the mapping

α : M →
∏

i∈I

Mi

defined by α(x) = (x(Mi))i∈I for each x ∈ M . If α is bijective then we say that M

is a complete direct sum of the system (Mi)i∈I and we express this fact by writing

M =

∗
∑

i∈I

Mi.

Proposition 5.2. Let G be a lattice ordered group. Assume that

ϕ : ℓ(G) →
∏

i∈I

Pi

is an internal direct product decomposition of the lattice ℓ(G). Let χ be as in

Lemma 5.1; for each i ∈ I put Ti = χ−1(Pi). Then

G∗ =

∗
∑

i∈I

Ti.

P r o o f. Since ℓ(G) = ℓ(G∗), the assertion follows from Lemma 5.1. �

Analogously, from Corollary 4.9 we obtain

Proposition 5.3. Let Lγ be as in Corollary 4.9. Assume that

ϕ : ℓ(Lγ) →
∏

i∈I

Pi

is an internal direct product decomposition of the lattice ℓ(Lγ) with respect to the

element e. Put ψ−1(Pi) = Qi for each i ∈ I. Then

Lγ =
∗

∑

i∈I

Qi.
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6. Direct summands of M

Again, let M be a GMV -algebra and let S(M) be the system of all direct sum-

mands ofM. Further, we denote by F (ℓ(M)) the system of all internal direct factors

of the lattice ℓ(M) with respect to the element e.

If X ∈ S(M), then, obviously, the lattice ℓ(X) belongs to F (ℓ(M)).

Conversely, assume that X is an element of F (ℓ(M)). Then there exists Y ∈

F (ℓ(M)) and an internal direct product decomposition

ϕ0 : ℓ(M) → X × Y.

At the same time, in view of Theorem 2.1, we have an internal direct product de-

composition with respect to the element e

ϕ1 : ℓ(M) → ℓ(G∗) × ℓ(Lγ).

It is well-known that any two internal direct product decompositions of a lattice

(taken with respect to the same element) have a common refinement; hence from ϕ0

and ϕ1 we can construct a new internal direct product decomposition

ϕ2 : ℓ(M) → (X ∩ ℓ(G∗)) × (X ∩ ℓ(Lγ)) × (Y ∩ ℓ(G∗) × (Y ∩ ℓ(Lγ)).

At the same time, we have internal direct product decompositions with respect to

the element e

ϕ21 : ℓ(G∗) → (X ∩ ℓ(G∗) × (Y ∩ ℓ(G∗)),

ϕ22 : ℓ(Lγ) → (X ∩ ℓ(Lγ) × (Y ∩ ℓ(Lγ)),

ϕ23 : X → (X ∩ ℓ(G∗) × (X ∩ ℓ(Lγ)),

ϕ24 : Y → (X ∩ ℓ(G∗) × (Y ∩ ℓ(Lγ)).

In view of ϕ21 and of Proposition 5.2 we conclude that there are GMV -algebras

M1 andM2 such that

ℓ(M1) = X ∩ ℓ(G∗), ℓ(M2) = Y ∩ ℓ(G∗)

and

G∗ = M1 ⊕ M2.

Analogously, according to the relation ϕ22 and Proposition 5.3, there are GMV -

algebrasM3 and M4 such that

ℓ(M3) = X ∩ ℓ(Lγ), (M4) = Y ∩ ℓ(Lγ)

196



and

Lγ = M3 ⊕ M4.

Therefore, in view of Theorem 2.1, we have

M = (M1 ⊕ M2) ⊕ (M3 ⊕ M4).

It is obvious that the operation ⊕ is associative and commutative; hence

M = (M1 ⊕ M3) ⊕ (M2 ⊕ M4).

ThusM1 ⊕M3 is a direct summand ofM. Further, in view of ϕ23 we conclude that

ℓ(M1 ⊕M3) = X.

Summarizing, we have

Theorem 6.1. Let M be a GMV -algebra. For each M1 ∈ S(M) put ϕ(M1) =

ℓ(M1). Then ϕ is a bijection of S(M) onto F(ℓ(M)).

Theorem 6.2. Let M be a GMV -algebra. Assume that

ϕ1 : ℓ(M) →
∏

i∈I

Pi

is an internal direct product decomposition of the lattice ℓ(M) with respect to the

element e. Put ϕ−1(Pi) = Qi for each i ∈ I, where ϕ is as in Theorem 6.1. Then

(8) M =

∗
∑

i∈I

Qi.

P r o o f. In view of Theorem 6.1, each Qi is a direct summand ofM. Moreover,

for x ∈M , the component of x in Qi coincides with the component of x in Pi. Hence

the mapping x 7→ x(Pi) is a homomorphism of M into Qi. From this and from the

direct product decomposition ϕ1 we infer that (8) holds. �

Since any two internal direct product decompositions of a lattice have a common

refinement, we obtain
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Corollary 6.3. Any two complete direct sum decompositions of a GMV -algebra

have a common refinement. Namely, if (8) is valid, and, at the same time,

(9) M =

∗
∑

j∈J

Tγ ,

then

M =

∗
∑

i∈I,j∈J

Vi,j ,

where Vi,j = Qi ∩ Tj for each i ∈ I and j ∈ J , and Vij is a subalgebra of Qi and

of Tj .

A GMV -algebra is directly irreducible if, whenever M = M1 ⊕ M2, then either

M1 or M2 is a one-element set. In the opposite case,M is directly irreducible.

For monoids, we define the notation of direct sum, direct summand, direct irre-

ducibility and direct reducibility in the same way as for GMV -algebras.

Let M = (M ;∧,∨, ·, \, /, e) be an GMV -algebra; we consider the monoid

monM = (M ; ·, e).

If M = M1 ⊕ M2, then we obviously have

monM = monM1 ⊕ monM2.

The natural question arises whether the situation here is analogous to the situation

when we cosider direct summands ofM and internal direct factors of ℓ(M); i.e., we

ask whether there exists a one-to-one correspondence between direct summands of

M and direct summands of monM.

The answer is ‘No’. Moreover, it can happen that M is directly irreducible and

monM is directly reducible.

Example. Let R be the additive group of all reals with the natural linear order

andG = R◦R, where ◦ denotes the operation of lexicographic product. PutM = G∗.

Since ℓ(G∗) is a chain, it is directly irreducible and hence M is directly irreducible

as well. On the other hand, the monoid monM is directly reducible.
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7. Retract mappings of GMV -algebras

A retract mapping of an algebra A is an endomorhpism of A such that f2 = f .

Let M be a GMV -algebra; we apply the notation as in Theorem 2.1. Thus

M = G∗ ⊕ Lγ .

Let z ∈ M . As above, we denote by z(G∗) the component of z in the direct

summand G∗. The meaning of z(Lγ) is analogous. If x = z(G∗) and y = z(Lγ),

then z = xy. Conversely, if z = x1y1 and x1 ∈ G, y1 ∈ Lγ , then x1 = z(G∗) and

y1 = z(Lγ).

In the present section we prove that each retract mapping f of M is determined

by a pair (f1, f2, ) of mappings such that

(i0) f1 is a retract mapping of G
∗;

(ii0) f2 is a retract mapping of Lγ .

We denote by R(M) the set of all retract mappings of M. Further, let T (M) be

the system of all pairs of mappings (f1, f2, ) such that the conditions (i0) and (ii0)

are valid.

Our aim is to construct a bijection

ψ : R(M) → T (M).

Lemma 7.1. Let z ∈M . The following conditions are equivalent:

(i) z ∈ G;

(ii) there exists z1 ∈M such that zz1 = e;

(iii) there exists z2 ∈M such that z2z = e.

P r o o f. In view of Theorem 2.1, (G; ·, e) is a group with neutral element e.

Thus (i)⇒(ii) and (i)⇒(iii).

Assume that (ii) holds. We express z in the form z = xy, where x = z(G∗) and

y = z(Lγ). Under analogous notation, let z1 = x1y1. By way of contradiction,

suppose that z does not belong to G. Hence y 6= e. Thus e > y and y > yy1. We

obtain yy1 6= e, whence zz1 does not belong to G, which is a contradiction. Therefore

(ii)⇒(i). Analogously, (iii)⇒(i). �

Corollary 7.2. Let z, z1 ∈M , zz1 = e. Then both z and z1 belong to G.

Lemma 7.3. Let f be a retract mapping of M. Let z ∈ G. Then f(z) ∈ G.

P r o o f. In view of Lemma 7.1, there exists z1 ∈ M with zz1 = e. We have

f(e) = e and f(z1) = f(z)f(z1), hence f(z)f(z1) = e. Then Corollary 7.2 yields

that f(z) belongs to G. �
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Under the notation as in Lemma 7.3, we put f |G = f1. In view of Lemma 7.3, we

get

Lemma 7.4. f1 is a retract mapping of G
∗.

Let y ∈ Lγ . We denote

x = f(y)(G∗), y1 = f(y)(Lγ).

Further, we put

f2(y) = y1, f3(y) = x.

We obtain mappings

f2 : Lγ → Lγ , f3 : Lγ → G.

Lemma 7.5. f2 is a retract mapping of Lγ .

P r o o f. It is obvious that f2 is an endomorphism of Lγ . It remains to verify

that f2(f2(y)) = f2(y) for each y ∈ Lγ .

Under the notation as above, we have f2(y) = y1 and f(y) = xy1. Denote

x1 = f(y1)(G
∗), y2 = f(y1)(Lγ).

Thus, in view of the definition of f2, we get f2(y1) = y2. Further, we obtain

f(f(y)) = f(y) = xy1,

f(f(y)) = f(xy1) = f(x)f(y1) = f(x)x1y2.

Since x ∈ G, in view of 7.3 we have f(x)x1 ∈ G. Thus from

xy1 = f(x)x1y2

we obtain x = f(x)x1 and y1 = y2. We have verified that f2(y1) = y1. �

Under the above notation we put

ψ(f) = (f1, f2).

From 7.4 and 7.5 we obtain

Theorem (A). ψ is a mapping of the set R(M) into the set T (M).
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Lemma 7.6. f3 = e for each y ∈ Lγ .

P r o o f. Let y ∈ Lγ . If we view M as a direct product, we have

e = eM = f(eM) = f(eM/y) = f(eM)/f(y)

= (eG, eLγ
/(x, y1) = (eG/x, eLγ

) = (x−1, eLγ
),

so x−1 = eG and x = eG. Therefore f3(y) = eG. �

Corollary 7.7. f(y) = f2(y) for each y ∈ Lγ .

In view of Corollary 7.7 we conclude that the mapping ψ is a monomorphism.

Now let us suppose that f1 and f2 are as in conditions (i0) and (ii0). Further, let

z ∈M , z = xy, where x ∈ G and y ∈ Lγ . We put

f0(z) = f1(x)f2(y).

Then in view of Theorem 2.1 we obtain

Lemma 7.8. f0 is a retract mapping ofM.

For a pair (f1, f2) belonging to the system T (M) we put

χ((f1, f2)) = f0,

where f0 is as above.

According to Lemma 7.8 we get

Theorem (B). χ is a mapping of the system T (M) into the set R(M).

We have already noticed above that the mapping ψ is a monomorphism. Now

from the definitions of ψ and χ we immediately obtain that χ = ψ−1. Hence we have

Theorem (C). Let M be a GMV -algebra. The mapping ψ is a bijection of the

set R(M) onto the system T (M).

The author is indebted to the referee for valuable suggetions. The proof of

Lemma 7.6 is due to the referee.
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