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Abstract. We consider the space D(X, Y ) of densely continuous forms introduced by
Hammer and McCoy [5] and investigated also by Holá [6]. We show some additional prop-
erties ofD(X, Y ) and investigate the subspaceD∗(X) of locally bounded real-valued densely
continuous forms equipped with the topology of pointwise convergence τp. The largest part
of the paper is devoted to the study of various cardinal functions for (D∗(X), τp), in par-
ticular: character, pseudocharacter, weight, density, cellularity, diagonal degree, π-weight,
π-character, netweight etc.
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1. Introduction

For Hausdorff spaces X , Y , Z we denote by F (X,Y ) the space of all functions

from X to Y ; by 2Z , K(Z) and F(Z) we mean the family of all closed, nonempty

compact and finite subsets of Z, respectively. Thus F (X, 2Y ) denotes the space of

all closed-valued multifunctions (set-valued maps) from X to Y .

We also introduce other subspaces of F (X, 2Y ) which, however, will for the sake

of simplicity be denoted by G(X,Y ) and D(X,Y ). The former, G(X,Y ), denotes

the subspace of all multifunctions with closed graphs. To define the latter consider

the set DC(X,Y ) of the so-called densely continuous functions, i.e. functions from

X to Y such that the set C(f) of points of continuity is dense in X . Now, for

This work was supported by Science and Technology Assistance Agency under the con-
tract No.APVT-51-006904. The authors would like to thank Ľubica Holá for suggestions
and comments.
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f ∈ DC(X,Y ) let ϕf denote the closure of the graph of f ↾ C(f) in X × Y . The

space D(X,Y ) of densely continuous forms then consists of the elements ϕf for all

f ∈ DC(X,Y ). The elements ϕf of D(X,Y ) can also be regarded as closed valued

multifunctions if we consider ϕf (x) = {y ∈ Y ; (x, y) ∈ ϕf} for each x ∈ X . Then

one can observe that D(X,Y ) ⊆ G(X,Y ) ⊆ F (X, 2Y ).

In the case Y = R (with the usual metric) the range space is omitted from the
notation, so D(X) means D(X,R). Most of the time we shall be interested in the

subspace D∗(X) which consists of locally bounded forms from D(X), i.e. elements

ϕf ∈ D(X) which are bounded on some neighborhood of every point x ∈ X . It is

interesting to note that for a Baire space X the set D∗(X) coincides with the set of

all minimal USCO maps from X to R. These minimal USCO maps are known to
have many interesting applications (see Holá [6] or Christensen [3]).

To define the topology τp of pointwise convergence on F (X, 2Y ) consider (Y, d)

to be a metric space and consider the Hausdorff (extended-valued) metric H on 2Y

defined for nonempty A, B in 2Y by

H(A,B) = inf {ε > 0; A ⊆ Sε[B], B ⊆ Sε[A]} ,

where Sε[A] = {y ∈ Y ; d(y,A) < ε}. We also define H(A, ∅) = H(∅, A) = ∞

for A 6= ∅ in 2Y . Then (2Y , H) is a metric space. The topology τp of pointwise

convergence on F (X, 2Y ) is induced by the uniformity Up of pointwise convergence

which has a base consisting of sets of the form

W (A, ε) = {(ϕ, ψ) ; ∀x ∈ A H(ϕ(x), ψ(x)) < ε}

for all A ∈ F(X) and ε > 0. The general τp-basic neighborhood of ϕ ∈ F (X, 2Y ) will

be denoted by W (ϕ,A, ε), i.e. W (ϕ,A, ε) = W (A, ε)[ϕ]. If A = {a}, we may write

W (ϕ, a, ε) instead of W (ϕ, {a}, ε). The space D∗(X) with the induced topology τp
will be denoted by D∗

p(X) for short.

In the paper’s second section we establish some properties of the general space

D(X,Y ) of densely continuous forms and of the particular subspace D∗(X) of locally

bounded real-valued densely continuous forms, including the metrizability and first

countability of these spaces.

In the paper’s third section we investigate the cardinal characteristics of the space

D∗(X) equipped with the topology of pointwise convergence, in particular: character

of the space, pseudocharacter, weight, density, diagonal degree, netweight, π-weight,

π-character etc.

Throughout the paper we assume all spaces to be Hausdorff and we use a somewhat

standard notation of the closure, interior, boundary and the complement of a set A,
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namely Ā, intA, bdA, Ac, respectively. The topology of a space Z is denoted by

τ(Z) and an open local base at x ∈ Z is denoted by B(x). The cardinality of a set

A is denoted by |A|.

2. Properties of densely continuous forms

The following statement is similar to Proposition 2.2 from the paper of Holá [6]

with the local compactness of Y being replaced by Čech-completeness. A multifunc-

tion ϕ : X → Y is called upper semicontinuous at a point x ∈ X (according to Beer

[1]), if for each open V containing ϕ(x), there is O ∈ B(x) with ϕ[O] ⊆ V . An

everywhere upper semicontinuous multifunction with nonempty compact values is

called an USCO map (see Christensen [3]).

Proposition 2.1. If X is a topological space, Y is a Čech-complete space and

ϕ ∈ D(X,Y ), then there is a denseGδ set U ⊆ X such that ϕ is upper semicontinuous

and has nonempty compact values at each x ∈ U .

P r o o f. Let f ∈ DC(X,Y ) be such that ϕ = f ↾ C(f). By the characterization

of Čech-complete spaces from Engelking (see [4], Theorem 3.9.2), there is a countable

family {An}∞n=1 of open covers of Y with the property that given a family C of closed

sets which has the finite-intersection property and for every n ∈ N contains sets of
diameter less than the cover An, then C has nonempty intersection. Define a set

U ⊆ X by

U =
⋂

n∈N{

x ∈ X ; ∃On ∈ B(x) ∃An ∈ An : f [On ∩ C(f)] ⊆ An

}

.

Clearly U is Gδ, because the intersecting sets are open. If x ∈ C(f) and n ∈ N,
then An covers the point f(x), i.e. there is an open set An ∈ An such that f(x) ∈

An. Since f is continuous at x and Y is Tychonoff, there is On ∈ B(x) such that

f [On ∩ C(f)] ⊆ f [On] ⊆ An. Therefore x ∈ U , that is, U contains C(f) and hence

is dense.

Next we show that ϕ(x) 6= ∅ for each x ∈ U (every ϕ ∈ D(X,Y ) is closed-

valued). So let x ∈ U and consider the family C(x) of closed sets of the form

C(x) = {f [O ∩ C(f)] ; O ∈ B(x)}. Then C(x) has the finite-intersection property

(FIP). Moreover, since x ∈ U , for each n ∈ N there are On ∈ B(x) and An ∈ An

with f [On ∩ C(f)] ⊆ An and f [On ∩ C(f)] ∈ C(x). Therefore C(x) contains a set

of diameter less than the cover An for each n ∈ N, so by the characterization of
Čech-completeness the intersection of C(x) is nonvoid, i.e. ∅ 6=

⋂

C(x) = ϕ(x).
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To show that ϕ has compact values we use a variation of this approach and an

equivalent definition of compactness. Choose x ∈ U arbitrarily. Since ϕ(x) is closed

in Y , any subset closed in ϕ(x) is also closed in Y . So let H = {Cα ; α ∈ I} be a

family of closed subsets of ϕ(x) with FIP. Since x ∈ U , for each n ∈ N there are
On ∈ B(x) and An ∈ An such that An ⊇ f [On ∩ C(f)] ⊇ ϕ(x) ⊇ Cα for each α ∈ I.

Therefore H contains sets of diameter less than the cover An for each n ∈ N and
hence by the characterization of Čech-completeness H has nonempty intersection in

Y which must belong to ϕ(x). So ϕ(x) is compact.

Finally, we show that ϕ is upper semicontinuous at every x ∈ U . Let x ∈ U

and let V ⊆ Y be open and such that ϕ(x) ⊆ V . Considering the family C(x)

with all its properties from the previous paragraphs we see that the extended family

C(x)∪{V c} cannot have FIP, because otherwise its intersection would be nonempty,

i.e. ∅ 6=
⋂

C(x) ∩ V c = ϕ(x) ∩ V c, which is a contradiction. On the other hand, we

know that C(x) has FIP, hence there is a finite subfamily {O1, O2, . . . Ok} ⊆ B(x)

such that

∅ =

k
⋂

i=1

f [Oi ∩ C(f)] ∩ V c ⊇ f
[(

⋂

i

Oi

)

∩ C(f)
]

∩ V c.

By putting O =
k
⋂

i=1

Oi we see that O ∈ B(x) and for each y ∈ O we have

ϕ(y) ⊆ f [O ∩ C(f)] ⊆ V . Consequently, ϕ is upper semicontinuous at x ∈ U , which

proves the proposition. �

Note 2.2. It is easy to show that if Y is locally compact and ϕ ∈ G(X,Y ), then

ϕ is USCO if and only if ϕ is locally bounded (i.e. for each x ∈ X there is O ∈ B(x)

with ϕ[O] compact). We shall use this statement frequently in the later course of

our paper mainly as a characterization of elements of D∗(X). A similar condition of

Berge (see [2] p. 112 or, additionaly, Holá [6], the remark after Theorem 3.8) saying

that any multifunction ϕ : X → Y with closed graph and a compact range ϕ[X ] is

upper semicontinuous, may also be used later on.

Now we present the main theorem of this section. The theorem investigates the

metrizability of the space (D(X,Y ), τp) analogously to similar results for the topology

of uniform convergence on compacta from the paper of Holá [6].

Theorem 2.3. For a topological space X and a metric space (Y, d) the following

statements are equivalent:

(a) (F (X, 2Y ),Up) is metrizable,

(b) (F (X, 2Y ), τp) is first countable,

(c) (G(X,Y ),Up) is metrizable,
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(d) (G(X,Y ), τp) is first countable,

(e) (D(X,Y ),Up) is metrizable,

(f) (D(X,Y ), τp) is first countable,

(g) X is countable.

P r o o f. Since we have D(X,Y ) ⊆ G(X,Y ) ⊆ F (X, 2Y ), it is clear that (a) ⇒

(c) ⇒ (e) ⇒ (f) and (a) ⇒ (b) ⇒ (d) ⇒ (f). We first show that (f) ⇒ (g). Let

y0 ∈ Y be arbitrary but fixed and let ϕf ∈ D(X,Y ) be the densely continuous

form generated by the constant function f ≡ y0. Without loss of generality we may

suppose that the local base at ϕf is of the form {W (ϕf , An, 1/m) ; n,m ∈ N} for
some finite sets {An ; n ∈ N} ⊆ F(X). Suppose that X is not countable; hence

X \
⋃

An 6= ∅ and there is x /∈
⋃

An. For each n ∈ N the set An is compact so there

is an open Un ⊆ X such that x ∈ Un ⊆ Un ⊆ Ac
n. Choose a point y1 6= y0 in Y and

define a function gn : X → Y by

gn(z) =

{

y1, if z ∈ Un,

y0, otherwise.

Then gn is continuous at the points of the set (bdUn)c, so gn ∈ DC(X,Y ).

The induced form ϕn ∈ D(X,Y ) satisfies ϕn(x) = {y1} and ϕn(z) = {y0} for each

z ∈ An ⊆ Un
c
. Therefore for each n ∈ N andm ∈ N we have ϕn /∈ W (ϕf , x, d(yo, y1))

and ϕn ∈W (ϕf , An, 1/m). This contradicts the claim of the local base at ϕf , because

then W (ϕf , x, d(yo, y1)) cannot contain any basic set W (ϕf , An, 1/m).

Now it suffices to prove (g) ⇒ (a), i.e. to show that the uniformity Up of pointwise

convergence has a countable base on F (X, 2Y ). If X is countable, then it has count-

ably many finite subsets, so {W (A, 1/n) ; A ∈ F(X), n ∈ N} is a countable base for
Up. This proves the theorem. �

Corollary 2.4. For a topological space X the following statements are equiva-

lent:

(a) (D∗(X),Up) is metrizable,

(b) (D∗(X), τp) is first countable,

(c) X is countable.

P r o o f. The implication (c) ⇒ (a) follows from the definition of D∗(X) and

the preceding theorem; (a) ⇒ (b) is obvious. For the proof of (b) ⇒ (c) observe

that in the proof of Theorem 2.3 the induced multifunctions ϕn as well as ϕf in fact

belong to D∗(X) (in view of Note 2.2) and hence this proof also works in the space

D∗(X). �
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Note 2.5. Since the space C(X,Y ) of continuous functions from X to Y is

contained in D(X,Y ), if X is a Tychonoff space, the implication (f) ⇒ (g) of

Theorem 2.3 follows from a statement of McCoy and Ntantu (see [8], Exercise 1,

p. 68): the space (C(X,Y ), τp) is metrizable (or first countable) iff X is countable.

3. Cardinal Functions on D∗
p(X)

Definition. For a topological space Z we define

the weight of Z: w(Z) = ℵ0 + min{|B| ; B is a base in Z},

the density of Z: d(Z) = ℵ0 + min{|D| ; D is dense in Z},

the cellularity of Z:

c(Z) = ℵ0 + sup{|U| ; U ⊆ τ(Z) is a pairwise disjoint family};

a network in Z is a family N = {Ns ; s ∈ S} of subsets of Z such that if z ∈ Z

and U ∈ B(z), then there is s ∈ S with z ∈ Ns ⊆ U . The network weight of Z is

nw(Z) = ℵ0 + min{|N| ; N is a network in Z}.

Then obviously c(Z) 6 d(Z) 6 nw(Z) 6 w(Z). Throughout this section we

assume that the space X is not finite, i.e. |X | > ℵ0.

Corollary 3.1. If X is countable, then c(D∗
p(X)) = d(D∗

p(X)) = nw(D∗
p(X)) =

w(D∗
p(X)).

P r o o f. Since the desired equality is true for metrizable spaces, the statement

is clear in view of Corollary 2.4. �

Definition. For a topological space Z we define:

the pseudocharacter of Z is Ψ(Z) = sup{Ψ(Z, z) ; z ∈ Z}, where

Ψ(Z, z) = ℵ0 + min{|G| ; G ⊆ τ(Z) :
⋂

G = {z}},

the diagonal degree of Z is

∆(Z) = ℵ0 + min{|G| ; G ⊆ τ(Z × Z) :
⋂

G = ∆Z}.

Obviously for any space Z we have Ψ(Z) 6 ∆(Z).
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Theorem 3.2. If X is regular, then Ψ(D∗
p(X)) = ∆(D∗

p(X)) = d(X).

P r o o f. First we want to show that d(X) 6 Ψ(D∗
p(X)). So let ϕf be the zero

form induced by the zero function f ≡ 0 on X and let G = {Gm ; m ∈ M} be a

family of open sets in D∗
p(X) such that

⋂

G = {ϕf} and |G| = |M | = Ψ(D∗
p(X), ϕf ).

Since the pointwise topology τp has a particular local base at ϕf , we may, without

loss of generality, suppose that each open Gm is of the formW (ϕf , Am, εm) for some

Am ∈ F(X) and εm > 0. Consider the set A =
⋃

{Am ; m ∈ M} and suppose that

A is not dense in X . Thus there is x /∈ Ā and since X is regular, there is V ∈ B(x)

such that V is disjoint from Ā. If we define g : X → R by
g(y) =

{

1, y ∈ V ,

0, otherwise

then C(g) = (bd V )c. Since the boundary of V is nowhere dense, C(g) is dense in

X , so g ∈ DC(X). In view of Note 2.2 the induced form ϕg belongs to D∗(X)

and satisfies the following condition: if y ∈
⋃

Am ⊆ V
c
, then ϕg(y) = 0 = ϕf (y)

and hence ϕg ∈
⋂

m
W (ϕf , Am, εm) = {ϕf}, but ϕg 6= ϕf because ϕg(x) = 1 and

ϕf (x) = 0; a contradiction. Consequently, the set A is dense in X and has cardinality

|A| = |M |, since each Am is finite. Therefore d(X) 6 |M | 6 Ψ(D∗
p(X)).

Now it suffices to show ∆(D∗
p(X)) 6 d(X). To prove that consider D ⊆ X

which is dense in X and such that |D| = d(X). For each a ∈ D and n ∈ N
consider the set G(a, n) =

⋃

{W (ϕ, a, 1/n) ×W (ϕ, a, 1/n) ; ϕ ∈ D∗(X)} which is

open in the product topology of D∗
p(X)×D∗

p(X) and contains the diagonal ∆D∗(X).

Moreover, the family G = {G(a, n) ; a ∈ D, n ∈ N} has cardinality |G| = |D|,

so if we show that
⋂

G = ∆D∗(X), then by the definition of the diagonal degree

∆(D∗
p(X)) 6 |G| = |D| = d(X). So suppose the converse, i.e. let (ϕf , ϕg) ∈

⋂

G and

ϕf 6= ϕg. Without loss of generality we may suppose that there is y ∈ ϕg(z) \ ϕf (z)

for some z ∈ X , which means that there is ε > 0 such that the distance of y and

ϕf (z) exceeds 2ε or, in other words, Sε(y) ∩ Sε[ϕf (z)] = ∅. Moreover, since the

elements of D∗(X) are upper semicontinuous (Note 2.2), there is O ∈ B(z) such

that ϕf [O] ⊆ Sε/2[ϕf (z)].

On the other hand, since (z, y) ∈ ϕg = g ↾ C(g), there is t ∈ C(g) ∩ O with

g(t) ∈ Sε/2(y). By the continuity of g at t there is U ∈ B(t), U ⊆ O, such that

g[U ] ⊆ Sε/2(y). This (in view of Observation 2.1 from Holá [6]) implies ϕg[U ] ⊆

Sε/2(y). Finally, since D is dense, there is a ∈ D with a ∈ U ⊆ O. Choose

n ∈ N such that 1/n < ε/2. Since (ϕf , ϕg) ∈ G(a, n), there is ϕ ∈ D∗(X) with

(ϕf , ϕg) ∈ W (ϕ, a, 1/n) × W (ϕ, a, 1/n), which by the definition of the Hausdorff

metric H implies ϕ(a) ⊆ Sε/2[ϕg(a)] ⊂ Sε(y) and ϕ(a) ⊂ Sε/2[ϕf (a)] ⊂ Sε[ϕf (z)], a
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contradiction with our assumption of 2ε-disjointness. Therefore ∆(D∗
p(X)) 6 d(X)

and the proof of the theorem is complete. �

Corollary 3.3. Let X be regular. The following statements are equivalent:

(a) Each element of D∗
p(X) is a Gδ-set,

(b) Each compact subset of D∗
p(X) is a Gδ-set,

(c) D∗
p(X) has a Gδ-diagonal,

(d) X is separable.

Note 3.4. If X is a Tychonoff space, then by a result of McCoy and Ntantu

(see [8], Theorem 4.3.1) we have Ψ(Cp(X)) = ∆(Cp(X)) = d(X), which extends our

Theorem 3.2.

Definition. In a topological space Z a family P(z) of nonempty open sets is

called a local π-base at z ∈ Z, if for each U ∈ B(z) there is P ∈ P(z) with P ⊆ U .

We define the π-character of Z by πχ(Z) = ℵ0 + sup{πχ(Z, z) ; z ∈ Z}, where

πχ(Z, z) = min{|P(z)| ; P(z) is a local π-base at z}.

Define the character of Z by χ(Z) = ℵ0 + sup{χ(Z, z) ; z ∈ Z}, where

χ(Z, z) = min{|B(z)| ; B(z) is a local base at z}.

For every space Z we have πχ(Z) 6 χ(Z).

Theorem 3.5. For every X we have πχ(D∗
p(X)) = χ(D∗

p(X)) = |X |.

P r o o f. We shall proceed similarly as in the proof of Theorem 3.2. First we

would like to prove |X | 6 πχ(D∗
p(X)). Once again, let ϕf be the zero form induced

by the zero function f ≡ 0 and let P = {Pm ; m ∈ M} be a local π-base at ϕf

such that |P| = |M | = πχ(D∗
p(X), ϕf ). Since each Pm is nonempty and open in

D∗
p(X), for each m ∈M there are ϕfm

∈ D∗(X), Am ∈ F(X) and εm > 0 such that

W (ϕfm
, Am, εm) ⊆ Pm, that is, {W (ϕfm

, Am, εm) ; m ∈ M} is also a local π-base

at ϕf . We would like to show that X =
⋃

{Am ; m ∈M}.

So let x ∈ X and choose ε > 0 arbitrarily. Thus there is m ∈M with the property

W (ϕfm
, Am, εm) ⊆ W (ϕf , x, ε). Suppose now that x /∈ Am. Since Am is finite

(compact) and X is Hausdorff, there is U ∈ B(x) with U ⊆ Ac
m. Define a function

g : X → R by
g(y) =

{

ε, y ∈ U,

fm(y), otherwise.
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Again, C(g) is dense and it induces a form ϕg ∈ D∗(X). Since Am ⊆ U c we

see that ϕg = ϕfm
on Am and hence ϕg ∈ W (ϕfm

, Am, εm). On the other hand,

ϕg(x) = ε and ϕf (x) = 0 shows that ϕg /∈ W (ϕf , x, ε), which contradicts the

inclusion between the basic sets. Therefore x ∈ Am, i.e. X =
⋃

{Am ; m ∈ M},

which implies |X | 6 |M | 6 πχ(D∗
p(X)).

Now, since we know that the family of all finite subsets of X has again cardinality

|X |, it is easy to see that for any ϕf ∈ D∗
p(X) the family {W (ϕf , A, 1/n) ; A ∈

F(X), n ∈ N} is a local base at ϕf of cardinality at most |X | and hence χ(D∗
p(X)) 6

|X |. This concludes the proof of the theorem. �

Corollary 3.6. The following statements are equivalent:

(a) D∗
p(X) is first countable,

(b) πχ(D∗
p(X)) is countable,

(c) X is countable.

Note 3.7. Analogously as before we get an extension of our Theorem 3.5, since

by Theorem 4.4.1 of McCoy and Ntantu [8], if X is Tychonoff, then πχ(Cp(X)) =

χ(Cp(X)) = |X |.

Consider the set K(R) of nonempty compact subsets of the reals and equip the

set with the already defined Hausdorff metric H . Since R is a complete metric
space, so is (K(R), H) (see Beer [1], Theorem 3.2.4 and Exercise 3.2.4(b)). We also

know that the second countability of R is inherited by (K(R), H) (see Engelking [4],

exercises 4.5.22(a) and 3.12.26(b)). So (K(R), H) is a second countable complete

metric space.

Theorem 3.8. For each space X we have w(D∗
p(X)) = |X |.

P r o o f. We first show w(D∗
p(X)) 6 |X |. Let B be a countable base for the

topology for (K(R), H). For x ∈ X and V ∈ B define W [x, V ] = {ϕ ∈ D∗(X) ;

ϕ(x) ∈ V }. In view of Note 2.2 each form in D∗(X) has only nonempty compact

values. It is easy to see (since K(R) has the metric topology induced by H) that

the family A = {W [x, V ] ; x ∈ X, V ∈ B} is just another subbase for the topology

of pointwise convergence on D∗(X), i.e. it generates the same topology as our usual

subbase {W (ϕ, x, ε) ; ϕ ∈ D∗(X), x ∈ X, ε > 0}. Since B is countable, the subbase

A has cardinality |A| = |X |·|B| = |X |. We know that the family of finite intersections

of sets in A, which is then a base for D∗
p(X), has again cardinality |X |, which implies

w(D∗
p(X)) 6 |X |.

On the other hand, since the character of a space is less than or equal to the

weight, the desired statement follows from Theorem 3.5. �
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Definition. A familyP of nonempty open subsets of a space Z is called a π-base

for Z, if every nonempty open subset of Z contains an element of the family P. The

π-weight of Z is then defined to be πw(Z) = ℵ0 + min{|P| ; P is a π-base for Z}.

Obviously d(Z) 6 πw(Z) 6 w(Z).

Theorem 3.9. For any topological space X we have

|X | = w(D∗
p(X)) = πw(D∗

p(X))

= |X | · c(D∗
p(X)) = |X | · d(D∗

p(X)) = |X | · nw(D∗
p(X)).

P r o o f. From Theorems 3.5, 3.8 and from our previous remarks we deduce the

inequalities

|X | = πχ(D∗
p(X)) 6 πw(D∗

p(X)),

w(D∗
p(X)) = |X | = |X | · ℵ0,

ℵ0 6 c(D∗
p(X)) 6 d(D∗

p(X)) 6 nw(D∗
p(X)) 6 w(D∗

p(X)),

d(D∗
p(X)) 6 πw(D∗

p(X)) 6 w(D∗
p(X)),

which imply the desired result. �

The next corollary follows immediately from the previous results and extends

Corollaries 2.4 and 3.6.

Corollary 3.10. D∗
p(X) is second countable if and only if X is countable.

The next statement is (together with its proof) analogous to Theorem 3.6 from the

paper of Holá and McCoy [7] where a similar topic is investigated for the topology

of uniform convergence on compacta.

Theorem 3.11. If X is regular, then nw(X) 6 nw(D∗
p(X)).

P r o o f. Let N = {Nm ; m ∈M} be a network in D∗
p(X) such that |N| = |M | =

nw(D∗
p(X)). For each m ∈M define a set

N∗
m = {x ∈ X ; ∀ϕ ∈ Nm ϕ(x) ∩ (0,∞) 6= ∅}.

We would like to show that the family N∗ = {N∗
m ; m ∈ M} is a network in X .

So let x ∈ X and let U ⊆ X be an open neighborhood of x. Since X is regular, there

is an open V with x ∈ V ⊆ V ⊆ U . Define a function f : X → R by
f(y) =

{

1, y ∈ V,

0, y ∈ V c.
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Then f ∈ DC(X) and ϕf ∈ D∗(X). Since N is a network in D∗
p(X), there is

m ∈ M with ϕf ∈ Nm ⊆ W (ϕf , x, 1). Is it true that x ∈ N∗
m ⊆ U? Well, if

y ∈ U c, then ϕf (y) = {0}, which together with ϕf ∈ Nm implies y /∈ N∗
m. Therefore

N∗
m ⊆ U . Furthermore, we have ϕf (x) = {1} and since Nm ⊆ W (ϕf , x, 1), for

each ϕ ∈ Nm we get ϕ(x) ⊆ (0, 2), which implies x ∈ N∗
m. This shows that N∗ is

a network in X of cardinality at most |M | and hence nw(X) 6 nw(D∗
p(X)). This

completes the proof of the theorem. �

To determine the cellularity of D∗
p(X) first recall that if Y is a dense subspace

of a topological space Z, then c(Y ) = c(Z). Now, since every form ϕ ∈ D∗(X) as-

sumes only values from (K(R), H), the set D∗(X) is contained in the product space

Fp(X,K(R)) of all nonempty-compact-valued multifunctions on X . Using the rea-

soning from Theorem 3.8 we see that the topology on D∗
p(X) is the relative topology

from Fp(X,K(R)), i.e. D∗
p(X) is a subspace of Fp(X,K(R)). In view of the results

2.3.17 and 2.3.18 from Engelking [4] we are able to determine the cellularity of cer-

tain product spaces. Hence we would be interested in knowing under what condition

D∗(X) is dense in Fp(X,K(R)). This analysis, however, depends on whether X has

isolated points or not.

Lemma 3.12. IfX is first countable regular without isolated points, thenD∗(X)

is dense in Fp(X,K(R)).

P r o o f. Since this proof is rather long and technical, we shall state only the

main idea here. The full details will be available in the second author’s subsequent

dissertation which is due to appear in 2006. So if W (ψ,A, ε) is an arbitrary basic

open set in Fp(X,K(R)) and A = {x1, . . . xk}, then for each i = 1, . . . k there is a finite

subset Ai = {y1, . . . yli} of ψ(xi) such that ψ(xi) ⊆ Sε/2[A
i]. We want to construct a

form ϕ ∈ D∗(X) such that ϕ(xi) = Ai for every i = 1, . . . k, because this would imply

ψ(xi) ⊆ Sε/2[ϕ(xi)] and ϕ(xi) = Ai ⊆ ψ(xi), which gives H(ψ(xi), ϕ(xi)) 6 ε/2 < ε

for every such i, or equivalently, ϕ ∈ D∗(X) ∩W (ϕ,A, ε), which proves the lemma.

In order to do that we need to define a generating function f : X → R of the form
ϕ which is continuous at the points of a dense subset C(f) of X . We proceed as

follows: for each i = 1, . . . k there is an open neighborhood Oi of the point xi ∈ A

such that Oi ∩ Oj = ∅ if i 6= j. Moreover, for each fixed index i ∈ {1, . . . k} there

is a sequence of open neighborhoods {Bn ; n ∈ N} of xi which are contained in Oi

and satisfy Bn+1 ⊆ Bn and Bn \Bn+1 6= ∅. On each of the open sets Bn \Bn+1 let

f assume the value from Ai = {y1, . . . yli} with the index l = (n mod li) + 1, i.e. f

assumes y2 on B1 \ B2, y3 on B2 \ B3 and so on with the values from Ai repeated

infinitely many times on the sequence of sets {Bn \Bn+1 ; n ∈ N}. Elsewhere in Oi

89



the function f may assume any constant from the set Ai. Outside
⋃

Oi the function

f can be put arbitrarily constant.

Now, it is true that for each i = 1, . . . k the closed set Ci = {xi} ∪
∞
⋃

n=1
bdBn is

nowhere dense in X . Hence the set C =
k
⋃

i=1

Ci is also closed and nowhere dense. The

definition of f implies that it is continuous at the points of the complement of C which

is dense in X . So f induces a form ϕ = f ↾ C(f) (taking the closure of the graph).

Moreover, since f assumes only finitely many values, in view of our Note 2.2, ϕ

belongs to D∗(X). From the construction of f we see that ϕ(xi) = {y1, . . . yli} = Ai

as requested. In view of the initial remarks, this completes the proof of the lemma.

�

In the case when X contains isolated points we are not able to directly use the

preceding approach, because at an isolated point every generated densely continuous

form is just an ordinary (singleton-valued) function. Thus, in order to prove the

following general statement, we have to modify slightly the product space considered.

Theorem 3.13. If X is a first countable regular space, then c(D∗
p(X)) = ℵ0.

P r o o f. Let I(X) denote the set of all isolated points in X . Consider the

product space Z =
∏

x∈X

Yx where Yx = R with the usual topology for x ∈ I(X) and

Yx = (K(R), H) if x /∈ I(X). According to Corollary 2.3.18 from Engelking [4] we

know that c(Z) = ℵ0. Since I(X) has “the discrete topology”, every locally bounded

densely continuous form ϕ ∈ D∗(X) is a single-valued function on I(X), so again

D∗
p(X) is a subspace of the product space Z. To show that D∗(X) is dense in Z we

would have to find a form ϕ ∈ D∗(X) which is ε-close to some ψ ∈ Z at the points

of a finite set A ⊆ X for any given ψ, A, ε > 0. This means defining a generating

function f for such a form ϕ ∈ D∗(X). To define f at the points of X \ I(X) we

can make use of the approach from Lemma 3.12. Since ψ ↾ I(X) is single-valued, we

may put f(x) = ψ(x) for x ∈ I(X). Such function f clearly generates the desired

form ϕ ∈ D∗(X) and hence D∗(X) is dense in Z. In view of the initial remarks we

obtain c(D∗
p(X)) = ℵ0. �
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4. Examples

Example 4.1. We have d(D∗
p(R)) > ℵ0.

P r o o f. Suppose by the contrary that the subset D = {ψn ; n ∈ N} is dense in
D∗

p(R). For every t ∈ R define a function ft : R → R by
ft(x) =







cos

(

1

x− t

)

, x 6= t,

0, x = t.

Since C(ft) = R \ {t}, every ft generates a form ϕt ∈ D∗(R) for which ϕt(t) =

[−1, 1]. Now, for each n ∈ N define a set Hn = {t ∈ R ; ψn ∈ W (ϕt, t, 1/2)}. Since

D is dense, for each t ∈ R there is n ∈ N such that t ∈ Hn or, in other words,R =
⋃

{Hn ; n ∈ N}.
On the other hand, if ψn ∈ W (ϕt, t, 1/2), then the Hausdorff metric satisfies

H(ψn(t), ϕt(t)) < 1/2, which implies [−1, 1] ⊆ S1/2(ψn(t)) and hence ψn(t) cannot

be a singleton (if it were, the diameter of S1/2(ψn(t)) would equal 1, a contradiction).

Consequently, if t ∈ Hn, then ψn(t) is not a singleton. Now, if gn : R → R is the
generating function of ψn, then we know that ψn ↾ C(gn) = gn is a singleton-valued

function (see Observation 2.1 in Holá [6]). By a classic result of real analysis the

set C(gn) of points of continuity of gn is a Gδ set in R (and must be dense by our
assumption), i.e. its complement is of first Baire category. Therefore every Hn is of

first category, which implies that also R is of first category, a contradiction. �

Example 4.2. Considering D(m) as the discrete space of cardinality m > ℵ0

and βD(m) as the Stone-Čech compactification of D(m) we claim that

d(D∗
p(βD(m))) 6 nw(D∗

p(βD(m))) < w(D∗
p(βD(m))).

P r o o f. First, by our Theorem 3.8 and Theorem 3.6.11 from Engelking [4]

we have w(D∗
p(βD(m))) = |βD(m)| = 22m

. On the other hand, it is (generally)

d(D∗
p(βD(m))) 6 nw(D∗

p(βD(m))) 6 |D∗(βD(m))|. Now, consider the mapping Ψ

which assigns to a densely continuous form ϕ ∈ D∗(βD(m)) its restriction ϕ ↾ D(m).

Since every dense subset of βD(m) contains D(m) and D(m) is discrete, each such

restriction ϕ ↾ D(m) is an ordinary continuous function onD(m). In view of Example

4.3 of the paper of Holá and McCoy [7], our mapping Ψ: D∗(βD(m)) → C(D(m),R)

is injective.

More precisely, since D(m) is open and dense in βD(m), each continuous func-

tion g ∈ C(D(m),R) generates a densely continuous form ϕg = g ↾ D(m) for which

Ψ(ϕg) = g, i.e. the mapping Ψ is a bijection from D(βD(m)) onto C(D(m),R). This

91



implies |D(βD(m))| = |C(D(m),R)| = |F (D(m),R)| = cm = 2ℵ0·m = 2m. Combining

all our inequalities we obtain

d(D∗
p(βD(m))) 6 nw(D∗

p(βD(m))) 6 |D(βD(m))| = 2m < 22m

= w(D∗(βD(m))).

This completes the proof. �
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