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Abstract. We study solvability of equations of the form x
n = g in the groups of order

automorphisms of archimedean-complete totally ordered groups of rank 2. We determine
exactly which automorphisms of the unique abelian such group have square roots, and we
describe all automorphisms of the general ones.

Keywords: totally ordered groups, ordered automorphisms, divisible groups, archimedean
rank

MSC 2000 : 06F15, 20B27

1. Introduction

The algebraic properties of the automorphism group Aut(Ω) of a relational struc-

ture Ω have been a topic of interest since the 19th century. In the case when Ω is an

ordered structure, the question of divisibility of Aut(Ω) is of particular interest, that

is: for which n ∈ N and g ∈ Aut(Ω) is the equation xn = g solvable? For example,

Holland [8] showed that if Ω is a totally ordered set and Aut(Ω) is order-2-transitive

then Aut(Ω) is divisible, and from this concluded that every lattice-ordered group

can be embedded in a divisible lattice-ordered group. More than 50 years ago, the

question (recently answered in the negative by Bludov [2]) of whether every totally

ordered group can be embedded in a divisible totally ordered group, led to the in-

teresting investigation of divisibility of the automorphism group Aut(Ω) when Ω is a

totally ordered group. For example, Conrad [3] gave an example of an abelian totally

ordered group which has infinite archimedean rank and is archimedean-complete (see

definition in Section 2) whose automorphism group is not divisible. And Holland [7]

then noted that if Ω is the abelian totally ordered group R ←⊕ R (also archimedean-
complete and of rank 2), then Aut(Ω) has an element with no square root, and so it

is not divisible.
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In this paper we first (Section 3) determine exactly which elements of Aut(R←⊕R)

have square roots (Theorem 3.1) and illustrate the complexity of the general ques-

tion. We then (Section 4) generalize to the same question in arbitrary archimedean-

complete totally ordered groups of rank 2.

2. Definitions and background

The reader can find further background on ordered groups, for example, in the

book by Darnel [5]. Here we will include some standard definitions.

A totally ordered group G is a group which is a totally ordered set under a relation

6 and such that x 6 y implies xz 6 yz and zx 6 zy. Two elements e < a, b ∈ G

are archimedean equivalent, denoted a ∼ b, if for some n ∈ N, a 6 bn and b 6 an.

The equivalence classes are convex, that is, a 6 b 6 c and a ∼ c implies a ∼ b,

and so there is a naturally induced total order on the set of equivalence classes,

whereby (a ∼) < (b ∼) iff a ∼ a′ and b ∼ b′ imply a′ < b′. The archimedean rank

of a totally ordered group is just the order type of its ordered set of archimedean

equivalence classes. If H is a totally ordered group and G is a subgroup of H , then

H is an archimedean extension of G if for every e < h ∈ H , there exists g ∈ G

such that g ∼ h. A totally ordered group is archimedean-complete if it has no proper

archimedean extension. The totally ordered group R of real numbers has rank 1, and
the anti-lexicographically ordered direct sum R ←⊕ R has rank 2. The former is the
unique archimedean-complete ordered group of rank 1, and the latter is the unique

abelian archimedean-complete ordered group of rank 2.

An ordered group G of finite rank n has just n nontrivial convex subgroups, and

they form a tower under inclusion:

{e} ⊂ C1 ⊂ C2 ⊂ . . . ⊂ Cn = G.

Each Ci is normal (in G) and Ci/Ci−1 = Di is an ordered group of rank 1 called

a component of G. Since each Di has archimedean rank 1, by Hölder’s theorem

[6] each Di is an ordered subgroup of the ordered additive group of real numbersR. An o-automorphism (or just automorphism) of a totally ordered group G is

a group automorphism of G which preserves the order, and the group of all such

automorphisms is Aut(G). It is obvious that all inner automorphisms preserve order.
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3. Abelian Archimedean rank 2

In what follows, we will sometimes denote the value of a function δ at an element

x of its domain as (x)δ. Note also that the homomorphisms from R to R form a ring
containing, for all r ∈ R, the function τr : x 7→ xr. Notationally, we will identify

τr = r. Also, it is important to note that if r ∈ Q, then r(= τr) commutes with all

homomorphisms δ. That is, τrδ = δτr, or in our notation, rδ = δr.

We will now investigate the divisibility properties of the automorphism groups of

archimedean-complete totally ordered groups of small archimedean rank. Beginning

with rank 1, the only such group is the totally ordered group R of all real num-
bers, and the only automorphisms are just multiplication by positive real numbers.

Thus, Aut(R) is divisible. Next, we consider groups of rank 2. The only abelian

archimedean-complete totally ordered group of rank 2 is R ←⊕ R. And according to
Conrad [4], Aut(R ←⊕ R) consists of the group of all matrices of the form

α =

(

r1 0

γ r2

)

with 0 < r1, r2 ∈ R and γ : R → R an additive group homomorphism (i.e., a rational
linear map), where for each (x, y) ∈ R ←⊕ R,

(x, y)α = (x, y)

(

r1 0

γ r2

)

= (xr1 + (y)γ, yr2).

Composition of two automorphisms in this representation is just matrix multipli-

cation, where we must remember that multiplication of rational linear maps is not

commutative. We wish to determine exactly which automorphisms of R ←⊕ R have
square roots.

With this notation, we consider

β2 =

(

t 0

π s

) (

t 0

π s

)

=

(

t2 0

πt + sπ s2

)

.

Now let

α =

(

r1 0

γ r2

)

be an automorphism with a square root β as above. Then t2 = r1, s2 = r2, and

πt + sπ = γ. Thus, when trying to construct a square root of α, we must choose

positive numbers t =
√

r1, s =
√

r2 and a homomorphism π such that

(1) πt + sπ = γ.
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This functional equation means that for all x ∈ R,
(2) (x)πt + (xs)π = (x)γ.

Let

p(z) =

n
∑

i=0

aiz
i ∈ Q[z]

be a polynomial with rational coefficients. For each j = 1, . . . , n, let

pj(z) =

n
∑

k=j

akzk−j .

Theorem 3.1. The element

α =

(

t2 0

γ s2

)

∈ Aut(R ←⊕ R)

fails to have a square root in Aut(R ←⊕ R) if and only if s and −t are both roots of

the same irreducible polynomial

p(z) ∈ Q[z]

and for all c ∈ R,
n

∑

j=1

(csj−1)γpj(−t) 6= 0.

P r o o f. Suppose first that there exists

β =

(

t 0

π s

)

∈ A

such that β2 = α. From equation (2), for any c ∈ R we must have
(c)π = (c)π,

(cs)π = (c)γ − (c)πt,

(cs2)π = (cs)γ − (cs)πt = (cs)γ − ((c)γ − (c)πt)t

= (cs)γ − (c)γt + (c)πt2

and in general, for i > 1,

(3) (csi)π =
i−1
∑

k=0

(csi−1−k)γ · (−t)k + (c)π · (−t)i.
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Using the fact that π is a homomorphism, if p(z) =
n
∑

i=0

aiz
i is a polynomial in Q[z],

then

(cp(s))π =

n
∑

i=0

ai(cs
i)π(4)

= a0(c)π + a1(cs)π + a2(cs
2)π + . . . + an(csn)π

= a0(c)π + a1((c)γ − (c)πt) + a2((cs)γ − (cs)πt) + a3((cs
2)γ − (cs2)πt) + . . .

= a0(c)π + a1((c)γ − (c)πt) + a2((cs)γ − ((c)γ − (c)πt)t) + . . .

= ((cπ)(a0 − a1t + a2t
2 − a3t

3 − . . . + an(−t)n)

+ ((c)γ)(a1 − a2t + a3t
2 − . . . + an(−t)n−1)

+ ((cs)γ)(a2 − a3t + a4t
2 . . . + an(−t)n−2) + . . . + ((csn−1)γ)an

= ((c)π)p(−t) +

n
∑

j=1

(csj−1)γpj(−t).

If s and −t are both roots of p(z), then we must have

n
∑

j=1

(csj−1)γpj(−t) = 0.

We note for later use the following fact.

Lemma 3.2. For j = 0, . . . , n − 1, pj(z) = pj+1(z) · (−z) + aj .

Now we deal with the converse assertion of the theorem.

Suppose first that t is algebraic, say −t is a root of p(z) for some irreducible

polynomial, but s is not a root of p(z). In order to show that α has a square root in

this case, we see from equation (4) that there must exist some π such that

(cp(s))π =

n
∑

j=1

(csj−1)γpj(−t)

for every c. In fact, we can define π by this equation as

(x)π =

n
∑

j=1

( x

p(s)
sj−1

)

γpj(−t).
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Then π is obviously a homomorphism. Moreover, to see that equation (2) is satisfied,

we proceed as follows:

(xs)π =

n
∑

j=1

( xs

p(s)
sj−1

)

γpj(−t)

=

n
∑

j=1

( x

p(s)
sj

)

γpj(−t)

=
n

∑

j=1

( x

p(s)
sj

)

γ((−t) · pj+1(−t) + aj) (from Lemma 3.2)

=

n+1
∑

j=2

( x

p(s)
sj−1

)

γ((−t) · pj(−t) + aj−1)

=

( n
∑

j=1

( x

p(s)
sj−1

)

γpj(−t)

)

(−t) −
( x

p(s)

)

γp1(−t) · (−t)

+

n+1
∑

j=2

( x

p(s)
sj−1

)

γaj−1

= (x)π(−t) −
( x

p(s)

)

γ(p(−t) − a0) +

n+1
∑

j=2

( x

p(s)
aj−1s

j−1

)

γ

= (x)π(−t) +
( x

p(s)
a0

)

γ +

n
∑

j=1

( x

p(s)
ajs

j
)

γ

= (x)π(−t) +
( x

p(s)
p(s)

)

γ

= −(x)πt + (x)γ

as required.

Next, suppose s is a root of an irreducible p(z) but −t is not. Then we must have

0 = ((c)π)p(−t) +

n
∑

j=1

(csj−1)γpj(−t).

With this in mind, we can define

(c)π = −
( n

∑

j=1

(csj−1)γ

)

pj(−t)

p(−t)
.

Then π is clearly a homomorphism. A straightforward calculation as before shows

that sπ + πt = γ as required.
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There remain two cases: when either both s and −t are transcendental, or both

are roots of the same irreducible polynomial p(z) ∈ Q[z] but
n
∑

j=1

(csj−1)γpj(−t) = 0

for all c. For each of these cases, we proceed as follows. We choose a basis D for R
as a vector space over the subfield Q(s). Then for each d ∈ D we define π on the

one-dimensional subspace dQ(s) in such a way that equation (2) is satisfied on that

subspace. Then the following lemma shows that the extension of π to all of R still
satisfies equation (2). Thus, we have a square root.

Lemma 3.3. If (us)π = (u)γ − (u)πt and (vs)π = (v)γ − (v)πt for some

numbers u, v, then for all linear combinations with rational coefficients a, b, also

((au + bv)s)π = (au + bv)γ − (au + bv)πt.

The proof, which uses the fact that π and γ are homomorphisms, is trivial.

Let us suppose now that both s and −t are transcendental. Choose any basis D

for R over Q(s), and let d ∈ D . Observing from equation (4) that to be successful

we must have

(dq(s))π = ((d)π)q(−t) +

n
∑

j=1

(dsj−1)γqj(−t),

we see that

(dp(s))π =
(dp(s)

q(s)
q(s)

)

π =
((dp(s)

q(s)

)

π
)

q(−t) +

n
∑

j=1

(dp(s)

q(s)
sj−1

)

γqj(−t)

and this implies that

(dp(s)

q(s)

)

π = ((dp(s))π −
n

∑

j=1

(dp(s)

q(s)
sj−1

)

γqj(−t))
1

q(−t)

=

(

((d)π)p(−t) +
n

∑

j=1

(dsj−1)γpj(−t) −
n

∑

j=1

(dp(s)

q(s)
sj−1

)

γqj(−t)

)

1

q(−t)
.

We can use this last equation to define π on the one-dimensional subspace dQ(s) for

each d ∈ D , with (d)π arbitrary, and then extend it in the natural way to all of R;
in fact, we may as well take (d)π = 0 for each d ∈ D . That is, we define

(dp(s)

q(s)

)

π =

( n
∑

j=1

(dsj−1)γpj(−t) −
n

∑

j=1

(dp(s)

q(s)
sj−1

)

γqj(−t)

)

1

q(−t)
.

It is routine to show that π is well defined, it is a homomorphism, and that equation

(2) is satisfied.
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Finally, we suppose that both s and −t are roots of the irreducible p(z) ∈ Q[z] of

degree n and that
n
∑

j=1

(csj−1)γpj(−t) = 0 for all c. Let D be any basis for R overQ(s). For each d ∈ D we arbitrarily define (d)π and then we use equation (3) to

define (dsi)π for i = 1, . . . , n − 1. From our assumption, it follows that equation

(2) is satisfied on the rational span of {d, ds, . . . , dsn−1} which is dQ(s). Then as

before, the extension of π to R satisfies equation (2) as well and we have a square
root. This completes the proof of Theorem 3.1.

Corollary 3.4. Aut(R ←⊕ R) is not divisible.

P r o o f. We may take, for example, the automorphism

α =

(

2 0

γ 2

)

,

where γ is any homomorphism such that (1)γ = 1 and (
√

2)γ = 0.

An earlier (but different) example illustrating Corollary 3.4 is found in Holland [7].

The complexity of these conditions indicates that the answer to the following still

open question may be complicated:

Question. Exactly what conditions on the parameters r1, r2, γ of α determine

whether α has a cube root, or an nth root?

4. General Archimedean rank 2

In this section we describe the automorphism group of an archimedean-complete

totally ordered group of archimedean rank 2, and make some observations about

divisibility of the automorphism group.

Let G be an archimedean-complete totally ordered group of archimedean rank 2.

Then by Conrad [3] G has a normal convex subgroup N isomorphic to R, and the
ordered groupH = G/N is also isomorphic to R. Let (R+ , ·) denote the multiplicative
group of positive real numbers. By [3] again, G is isomorphic to a totally ordered

group (R,R, ϕ, f) constructed in the following way. On the antilexicographically

ordered set R × R, we define multiplication by
(a, b) · (x, y) = (a + x · ϕ(−b) + f(b, y), b + y)

where ϕ : (R, +) → (R+ , ·) is a group homomorphism and f : R×R → R is a function
such that

1. f(x, 0) = f(0, y) = 0 for all x, y ∈ R; and
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2. f(x + y, z) + f(x, y) = f(x, y + z) + f(y, z) · ϕ(−x).

Henceforth, we identify G with (R,R, ϕ, f).

Theorem 4.1. The automorphisms of (R,R, ϕ, f) are just the functions σ of the

form (x, y)σ = (xs + (y)γ, yt) where 0 < s, t ∈ R, either t = 1 or R = Ker(ϕ), and

(5) (x + y)γ = (x)γ + (y)γ · (ϕ(−xt)) + f(xt, yt) − f(x, y) · s.

P r o o f. Suppose that σ is an automorphism of G. Then it is straight-forward

to check that σ must have the form (x, y)σ = (xs + (y)γ, yt) where 0 < s, t ∈ R, and
γ : R → R is a function. We now determine the properties of γ:

[(0, x)(0, y)]σ = (f(x, y), x + y)σ = (f(x, y) · s + (x + y)γ, (x + y)t),

and

[(0, x)σ][(0, y)σ] = ((x)γ, xt)((y)γ, yt) = ((x)γ + (y)γ · ϕ(−xt) + f(xt, yt), xt + yt).

Equating the left members gives rise to equation (5). To get the remaining condition,

we first take x = 0 in equation (5), and conclude that (0)γ = 0. Then using this

fact and applying σ to the product (0, x)(a, 0) for any x ∈ R and an arbitrary
0 6= a ∈ R, we deduce that ϕ(−x) = ϕ(−xt), and so x(t − 1) ∈ Ker(ϕ). Thus, t = 1

or R = Ker(ϕ).

Conversely, it is straighforward to verify that any s, t, γ satisfying the conditions

of the theorem give rise to an automorphism σ.

Because R = Ker(ϕ) precisely when the extension is central, it is natural to

consider separately the central and the non-central cases. Here we will consider

mainly the non-central case and make some remarks on the central case which,

perhaps surprisingly, is much more difficult.

Let (R,R, ϕ, f) be a non-central extension, and consider an automorphism deter-

mined by s, t, γ as in Theorem 4.1. Then t = 1 and from equation (5) we also

have

(x + y)γ = (y + x)γ = (y)γ + (x)γϕ(−y) + f(y, x) − f(y, x) · s.
Therefore,

(x)γ + (y)γ(ϕ(−x)) + f(x, y) − f(x, y)s = (y)γ + (x)γϕ(−y) + f(y, x) − f(y, x) · s

and so

(x)γ[1 − ϕ(−y)](6)

= (y)γ[1 − ϕ(−x)] + f(y, x) − f(x, y) + s[f(x, y) − f(y, x)]

= (y)γ[1 − ϕ(−x)] + (s − 1)[f(x, y) − f(y, x)].
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Since the extension is not central, there exists c ∈ H such that ϕ(c) 6= 1. We see

that γ is completely determined by the value (−c)γ, because setting y = −c in the

last equation, we have

(7) (x)γ =
(−c)γ[1 − ϕ(−x)] + (s − 1)[f(x,−c) − f(−c, x)]

1 − ϕ(c)
.

Since it is straightforward to verify that any γ of this form satisfies equation (5),

we have the non-central version of Theorem 4.1:

Theorem 4.2. Let the extension (R,R, ϕ, f) be non-central, and let ϕ(c) 6= 1

for some c ∈ R. Then the automorphisms of (R,R, ϕ, f) are just the functions σ

of the form (x, y)σ = (xs + (y)γ, y) where 0 < s ∈ R, and γ has the form given in

equation (7).

Theorem 4.3. If the extension (R,R, ϕ, f) is non-central, then its group of au-

tomorphisms is divisible.

P r o o f. Let n be a positive integer and σ an automorphism. Then by The-

orem 4.2, (x, y)σ = (xs + (y)γ, y). Let 0 < r and rn = s. Define β : R → R
by

β = γ · 1

rn−1 + . . . + r + 1
.

Then equation (7) is satisfied with β in place of γ and r in place of s. Now let τ be

the mapping defined by (x, y)τ = (xr + (y)β, y). Then by direct calculation,

(x, y)τn = (xrn + (y)β · (rn−1 + . . . + r + 1), y) = (xs + (y)γ, y) = (x, y)σ.

Therefore, τn = σ.

The case when the extension (R,R, ϕ, f) is central, that is, when Ker(ϕ) = R, is
more difficult. We have already seen that the automorphism group is not divisible

in case the group is abelian (Corollary 3.4). But the situation with the remaining

cases of non-abelian central extensions is still not known. Thus, we have an open

question:

Question. Among archimedean-complete ordered groups of rank 2, is R ←⊕ R the
only one whose automorphism group is not divisible?

The other extreme is also possible:

Question. Among archimedean-complete ordered groups of rank 2, are the non-

central extensions the only ones whose automorphism groups are divisible?
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