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Abstract. In this paper we give some criteria for the existence of compactly supported
Ck+α-solutions (k is an integer and 0 6 α < 1) of matrix refinement equations. Several
examples are presented to illustrate the general theory.
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1. Introduction

A functional equation is called a matrix refinement equation if it has the following
form:

(1.1) f(x) =
N∑

n=0

Cnf(2x− n),

where f(x) is a real vector-valued function from
�
to

� d , d is an integer and the
coefficients Cn’s are real d × d matrices. An L1[

�
,
� d ] solution of (1.1) is termed a

refinable or scaling vector. Applying Fourier transformation to (1.1) leads to

(1.2) f̂(ξ) = M(ξ/2)f̂(ξ/2),

where f̂ is defined componentwise, i.e., f̂(ξ) = (f̂1(ξ), . . . , f̂d(ξ))T with

f̂j(ξ) =
∫ +∞

−∞
fj(x) exp(−iξx) dx, j = 1, 2, . . . , d

747



and

M(ξ) =
1
2

N∑

n=0

Cn exp(−inξ).

The matrix M(0) = 1
2

N∑
n=0

Cn will be used frequently.

The matrix refinement equation (1.1) plays an important role in constructing
multi-wavelets by using multiresolution analysis. The basic question on (1.1) is how
to establish the existence of continuous and smooth solutions of (1.1) with compact
support in terms of its coefficients. There are three major approaches to this question:
the Fourier method (the frequency domain approach) ([2], [3]), the iteration method
(the time domain approach) ([6], [7]) and the subdivision method [1]. In this paper
we use the second to obtain several criteria.
Let T0 and T1 be

T0 = [C2i−j−1]16i,j6N =




C0 0 . . . 0
C2 C1 . . . 0
...

...
. . .

...
0 0 . . . CN−1




and

T1 = [C2i−j ]16i,j6N =




C1 C0 . . . 0
C3 C2 . . . 0
...

...
. . .

...
0 0 . . . CN




respectively. We will show that, if (1.1) has a compactly supported continuous
solution ϕ(x), then ϕ(x) must be Hölder continuous and ϕ̂(0) 6= 0 (Theorem 2.4 and
Lemma 2.2). The following theorem is a characterization for a continuous solution
of (1.1).

Theorem 1.1. The matrix refinement equation (1.1) has a nonzero compactly
supportede Hölder continuous solution with exponent α = |ln λ|/ ln 2 if and only if
there exists a 2-eigenvector v of the matrix (T0 + T1) such that

(1.3) max
di=0 or 1

‖Td1 . . . Tdm ṽ‖ 6 cλm, m = 1, 2, . . . ,

where ṽ = T0v − v and 0 < λ < 1.

In general, we concern ourselves mainly with the sufficient conditions of Theo-
rem 1.1, but it is not easy to check them because (1.3) contains infinitely many
inequalities. Instead of it, we have the following practical criterion, which is a corol-
lary of Theorem 2.4.
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Proposition 1.2. Let H be a common invariant subspace of T0 and T1 which
contains ṽ defined in Theorem 1.1. Suppose there exists an integer m such that

max
di=0or 1

‖Td1 . . . Tdm |H‖ < 1.

Then the equation (1.1) has a Hölder continuous solution with compact support.

In order to study smooth solutions of (1.1), we assume that all the eigenvalues
of M(0) except for 1 are inside the unit disk, that is, the absolute values of these
eigenvalues are less than 1, and 1 is a simple eigenvalue of M(0). If M(0) satisfies
these assumptions, we say thatM(0) satisfies condition E(1). There are two reasons
for using the condition E(1) like Shen [14]: (1) it guarantees that (1.1) has at least
one nonzero compactly supported solution in L1[

�
,
� d ]; (2) it is necessary if we

assume that the sequence {f(x − n)}n∈ � is a Riesz sequence. We use Ck+α[I ] (k
is an integer and 0 6 α < 1) to denote the set of f(x) which belongs to Ck [I ] and
satisfy

‖f (k)(x)− f (k)(y)‖ 6 c|x− y|α, ∀x, y ∈ I,

where I is an interval.

Theorem 1.3. Assume that the matrix M(0) satisfies the condition E(1). Then
the matrix refinement equation (1.1) has a nonzero compactly supported solution in
Ck+α, where 0 6 α = |ln λ|/ ln 2 < 1, if and only if there is a 21−k-eigenvector w of
the matrix (T0 + T1) satisfying (Ed, . . . , Ed)w = 0 and

(1.4) max
di=0or 1

‖Td1 . . . Tdmw̃‖ 6 c
( λ

2k

)m

for all m > 1, where w̃ = 2kT0w − w , 0 < λ < 1 and Ed is the d×d unit matrix.
We remark that the corresponding result to Proposition 1.2 holds in the smooth

case. The conditions (1.3) and (1.4) in Theorem 1.1 and 1.3 are analogs of Daubechies
and Lagarias [6] and [7], Micchelli and Prautzsch [12]. However, our conditions
are simpler and they apply to the vector-valued case. Moreover, to obtain results
similar to Theorems 1.1 and 1.3 in the real-valued case, [6], [7], [11] demand that
the coefficients of a refinement equation satisfy the ‘sum rules’, which is equivalent
to insisting that M(ξ) has a factor ( 1

2 (1 + ξ))k for some k > 1. It is known that
no good analogs of ‘sum rules’ or factors ( 1

2 (1 + ξ))k exist in the vector-valued case
[2], which causes more difficulty in treating the same problems. In order to get over
them, Cohen, Daubechies and Plonk [2] assume some more complicated conditions
on the coefficients, whereas we use the same method to deal with both the real and
vector cases simultaneously. The initial idea of this paper comes from [10].
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2. Continuous solutions of the matrix refinement equation (1.1)

In this section we study compactly supported continuous solutions of (1.1). If
such a solution f(x) exists, it is easy to verify that its support is contained in the
interval [0, N ]. We can decompose f into N pieces and form a multi-vector function
as follows. Let

fi(x) = f(x + i)χ[0,1), i = 0, 1, . . . , N − 1,

where χ[0,1) is the characteristic function of [0, 1), and define a multi-vector function
F (x) by

F (x) = (fT
0 (x), fT

1 (x), . . . , fT
N−1(x))T ,

where vT is the transpose of a vector v. Let ‖· ‖ be the Euclidean norm on � d and
‖· ‖∞ = sup

06x<1
‖· ‖. The multi-vector function F (x) is called the unfold of the vector

function f(x) and f(x) is the fold of F (x).
For a refinable vector f(x), it’s easy to check that its unfold F (x) satisfies

(2.1) F (x) =





T0F (2x) if 0 6 x < 1/2,

T1F (2x− 1) if 1/2 6 x < 1,

0 otherwise.

Now we define an operator T on the multi-vector function F (x) by

(2.2) TF (x) = T0F (2x) + T1F (2x− 1) =





T0F (2x) if 0 6 x < 1/2,

T1F (2x− 1) if 1/2 6 x < 1,

0 otherwise.

Comparing (2.1) with (2.2), it’s easy to show that the fold of the fixed point of
the operator T is a compactly supported solution of (1.1), and the converse is true,
too.
For any x ∈ [0, 1), x can be written uniquely as

x =
∞∑

j=1

dj(x)2−j , where dj = 0 or 1 for all j,

if we assume that the above expression is a finite sum for all rational numbers which
have two expressions. Let τ be the shift operator on [0,1) defined by

τx =
∞∑

j=2

dj(x)2−j+1
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or equivalently by

τx =

{
2x if 0 6 x < 1/2,

2x− 1 if 1/2 6 x < 1.

Then the operator T defined by (2.2) can be written as

TF (x) = Td1(x)F (τx)

for all x ∈ [0, 1). Then

(2.3) T mF (x) = Td1(x) . . . Tdm(x)F (τm(x)), x ∈ [0, 1).

Proposition 2.1. If the matrixM(0) has eigenvalue 1, then the matrix (T0 +T1)
has eigenvalue 2. Conversely, if (T0+T1) has a 2-eigenvector v and (Ed, . . . , Ed)v 6= 0,
then M(0) has eigenvalue 1.
�������	�

. Since




Ed Ed . . . Ed

0 Ed . . . 0
...

...
. . .

...
0 0 . . . Ed


 (T0+T1)




Ed −Ed . . . −Ed

0 Ed . . . 0
...

...
. . .

...
0 0 . . . Ed


 =




2M(0) 0 . . . 0

∗


,

it follows that (T0 + T1) has eigenvalue 2. Conversely, by the hypothesis, we have

2(Ed, . . . , Ed)v = (Ed, . . . , Ed)(T0 + T1)v

= 2(M(0), . . . , M(0))v = 2M(0)(Ed, . . . , Ed)v.

Then M(0) has eigenvalue 1 and (Ed, . . . , Ed)v is a corresponding eigenvector. �

Proof of the sufficiency part of Theorem 1.1.
(1) Let F0(x) = v for x ∈ [0, 1) and Fk(x) = TFk−1(x) for all k > 1. Then

‖Fm+1(x) − Fm(x)‖∞ = ‖Td1(x) . . . Tdm+1(x)v − Td1(x) . . . Tdm(x)v‖∞(2.4)

= ‖Td1(x) . . . Tdm(x)ṽ‖∞
= max

di=0or 1
‖Td1 . . . Tdm ṽ‖ 6 cλm

for x ∈ [0, 1) and any positive integer m. Hence

(2.5) ‖Fm(x)‖∞ 6 ‖F0(x)‖∞ +
c

1− λ
= ‖v‖+

c

1− λ
.
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The inequalities (2.4) and (2.5) imply that the vector function sequence {Fm(x)}
converges uniformly to a vector function F (x) in [0, 1).
(2) We claim that

∫ 1

0
Fm(x) dx = v for each m. This follows from (2.2) and the

following induction argument:

∫ 1

0

Fm+1(x) dx =
∫ 1

2

0

T0Fm(2x) dx +
∫ 1

1
2

T1Fm(2x− 1) dx

=
1
2
(T0 + T1)

∫ 1

0

Fm(x) dx = v 6= 0.

Hence the vector function F (x) is nonzero.
(3) For any integer j > 0 and x ∈ [0, 1), we have

‖Fm+j(x)− Fm(x)‖∞(2.6)

6 ‖Fm+j(x) − Fm+j−1(x)‖∞ + . . . + ‖Fm+1(x) − Fm(x)‖∞
6 cλm + . . . + cλm+j−1

6 c

1− λ
λm := C1λ

m.

As j tends to infinity, then (2.6) implies that

(2.7) sup
06x<N

‖f(x)− fm(x)‖ 6 sup
06x∗<1

‖F (x∗)− Fm(x∗)‖ 6 C1λ
m,

where f(x) and fm(x) are the folds of F (x) and Fm(x), respectively.
(4) For any m > 1 and x, y ∈ [0, N) with 2−(m+1) 6 y − x < 2−m there exists an

odd integer n ∈ 
 such that one of the following two inequalities holds:

(n− 1)2−m 6 x 6 y 6 n2−m,

or
(n− 1)2−m < x 6 n2−m < y < (n + 1)2−m.

We only discuss the second case, the first is similar. Note that there exists a k ∈ 

such that n2−m − k ∈ (0, 1). This implies that

n2−m − k = n′2−m =
d1

2
+

d2

22
+ . . . +

dm−1

2m−1
+

1
2m

.

Since y < (n + 1)2−m, we have

y − k = y′ =
d1

2
+

d2

22
+ . . . +

dm−1

2m−1
+

1
2m

+ . . . .
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Similarly we have, if x 6= n2−m,

x− k = x′ =
d1

2
+

d2

22
+ . . . +

dm−1

2m−1
+

0
2m

+ . . . +
1

2m+q
+ . . .

for some q > 1. It is clear that

‖fm(y)− fm(n2−m)‖ 6 ‖Fm(y′)− Fm(n′2−m)‖
= ‖Td1 . . . Tdm−1T1v − Td1 . . . Tdm−1T1v‖
= 0.

Similarly,

‖fm(x)− fm(n2−m)‖ 6 ‖Fm(x′)− Fm(n′2−m)‖
= ‖Td1 . . . Tdm−1T0v − Td1 . . . Tdm−1T1v‖
= ‖2Td1 . . . Tdm−1T0ṽ‖
6 2cλm−1.

Hence,

‖f(x)− f(y)‖ 6 ‖f(x)− fm(x)‖+ ‖fm(x)− fm(n2−m)‖(2.8)

+ ‖fm(n2−m)− fm(y)‖+ ‖fm(y)− f(y)‖
6 2(cλ−1 + C1)λm 6 C2|y − x|α,

where C2 = 2(cλ−1 + C1)2α.
(5) For any x 6= y ∈ [0, N), if |x − y| 6 1/2, then there exists m such that

2−(m+1) 6 |x−y| < 2−m, and so (2.8) holds. If |x−y| > 1/2, we assume that x < y.
Let xi = i/4, i = 0, 1, . . . , 4N . Then there exist i and l such that xi−1 < x 6 xi and
xi+l 6 y < xi+l+1. Consequently,

‖f(x)− f(y)‖ 6 ‖f(x)− f(xi)‖+ ‖f(xi)− f(xi+1)‖+ . . . + ‖f(xi+l)− f(y)‖
6 C2|x− xi|α + C2l4−α + C2|xi+l − y|α

6 12NC2|y − x|α,

where we have used the simple inequality aα + 4−α + bα 6 3(a + 4−1 + b)α for
nonnegative real numbers a and b. �

To prove the necessary condition of Theorem 1.1, we need the following lemma.
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Lemma 2.2. Assume that the vector function f(x) is a nonzero compactly sup-
ported continuous solution of (1.1). Then

v0 =
( ∫ 1

0

fT (x) dx, . . . ,

∫ N

N−1

fT (x) dx

)T

6= 0

and v0 is a 2-eigenvector of (T0 + T1). Moreover, let F0(x) = v0 for x ∈ [0, 1) and
Fk(x) = TFk−1(x) for k > 1. Then

(2.9) Fk(x) = T kF0(x) = 2k

∫ Dk(x)+1/2k

Dk(x)

F (t) dt

where Dk(x) = 1
2d1(x) + . . . + 1

2k dk(x) if x =
∞∑

j=1

1
2j dj(x), and the vector function

F (x) is the unfold of the vector function f(x).
�������	�

. Since f(x) is a compactly supported continuous solution of (1.1), we
have TF (x) = F (x). By (2.3) we have F (x) = Td1(x) . . . Tdk(x)F (τkx). Integrating
this over [Dk(x), Dk(x) + 1/2k] and by (2.3) again, we obtain

2k

∫ Dk(x)+1/2k

Dk(x)

F (t) dt = Td1(x) . . . Tdk(x)F0(x) = T kF0(x) = Fk(x),

which converges to F (x) as k →∞. Then v0 = F0(x) 6= 0. From TF (x) = F (x), we
have (T0 + T1)v0 = 2v0 by integrating both sides of (2.2) over [0,1], that is, v0 is a
2-eigenvector of (T0 + T1). �

Proof of the necessity part of Theorem 1.1. Let v0 be the vector defined
in Lemma 2.2. Let F0(x) = v0 for x ∈ [0, 1) and Fk(x) = TFk−1(x) for k > 1. By
Lemma 2.2 and the integral mean value theorem we have

max
di=0 or 1

‖Td1 . . . Tdm ṽ‖ = ‖Td1(x) . . . Tdm(x)T0v0 − Td1(x) . . . Tdm(x)v0‖∞
= ‖Fm+1(x)− Fm(x)‖∞

=
∥∥∥∥2m+1

∫ Dm(x)+1/2m+1

Dm(x)

F (x) dx− 2m

∫ Dm(x)+1/2m

Dm(x)

F (x) dx

∥∥∥∥
∞

6 c
( 1

2m

)α

= cλm.

�
For any 2-eigenvector v of (T0 +T1), let ṽ = T0v− v and let H(ṽ) be the subspace

in
� dN defined by

(2.10) H(ṽ) = span{ṽ, Td1 . . . Tdn ṽ : dj = 0 or 1, 1 6 j 6 n, n = 1, 2, . . .}.
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Proposition 2.3. H(ṽ) is the smallest common invariant subspace of T0 and T1

which contains ṽ.
�������	�

. It is trivial by the definition of H(ṽ). �

Theorem 2.4. The following statements are equivalent:
(a) The matrix refinement equation (1.1) has a nonzero compactly supported con-
tinuous solution.

(b) There exists a 2-eigenvector v of the matrix (T0 + T1) satisfying

(2.11) lim
n→∞

max
di=0or 1

‖Td1 . . . Tdn ṽ‖ = 0.

(c) There exists a 2-eigenvector v of the matrix (T0 + T1) such that there exists an
integer m > 1 satisfying

(2.12) αm = max
di=0or 1

‖Td1 . . . Tdm |H(ṽ)‖
1
m < 1.

�������	�
. (a) ⇒ (b). Let F0(x) = v0 = (

∫ 1

0
fT (x) dx, . . . ,

∫ N

N−1
fT (x) dx)T for

x ∈ [0, 1) and Fk(x) = TFk−1(x) for all k > 1. By Lemma 2.2,

Fk(x) = 2k

∫ Dk(x)+1/2k

Dk(x)

F (t) dt

converges to F (x) uniformly on [0, 1). Hence

sup
x∈[0,1)

‖Fm+1(x) − Fm(x)‖ → 0

as m →∞, and (b) follows immediately by (2.9).
(b) ⇒ (c). Note that αm

m has an equivalent form

max
di=0or 1

‖Td1 . . . Tdmu‖ < 1

for all u ∈ H(ṽ) and ‖u‖ 6 1. The subspace H(ṽ) is finite dimensional and has a
finite basis consisting of Td′1

. . . Td′
l
ṽ’s. Let u = Td′1

. . . Td′
l
ṽ be one of the elements of

the basis. Then we have

(2.13) max
dj=0or 1

‖Td1 . . . Tdmu‖ 6 max
dj ,d′i=0 or 1

‖Td1 . . . TdmTd′1
. . . Td′

l
ṽ‖ → 0

as m → ∞, hence (2.13) holds for all elements of the basis uniformly. So the
convergence is uniform for all ‖u‖ 6 1. Hence (c) follows by taking m sufficiently
large.
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(c) ⇒ (a). For any u ∈ H(ṽ) we have

max
dj=0or 1

‖Td1 . . . Tdmu‖ 6 αm
m‖u‖.

Let n = qm + r with q, r ∈ 
 and 0 6 r < m. Then

max
dj=0or 1

‖Td1 . . . Tdn ṽ‖ 6 αqm
m αr

r 6 max(1, α1, . . . , α
m−1
m−1)α

−m+1
m αn

m = cαn
m.

By Theorem 1.1, (a) follows. �

Using the notation from Theorem 2.4, we remark that if a solution of (1.1) exists,
then v /∈ H(ṽ) and the dimension of H(ṽ) is not more than dN − 1. In fact, if
v ∈ H(ṽ), then

‖v‖ =
1

2m
‖(T0 + T1)mv‖ 6 max

dj=0 or 1
‖Td1 . . . Tdmv‖ 6 cλm → 0

as m →∞. This contradicts v 6= 0.

Corollary 2.5. If the matrix refinement equation (1.1) has a compactly contin-
uous solution, then the solution is Hölder continuous.

3. Smooth solutions of the matrix refinement equation (1.1)

In this section we assume that the matrixM(0) satisfies the condition E(1), which
is necessary for constructing multi-wavelet by the multiresolution analysis. Now we
consider the matrix refinement equation

(3.1) ϕ(x) = 2k
N∑

n=0

Cnϕ(2x− n),

where k is a positive integer. It’s easy to verify that supp ϕ(x) ⊆ [0, N ] if a solution
ϕ(x) of (3.1) has compact support.
Similarly to Section 2, we define an operator A on a vector function Φ(x) by

AΦ(x) = 2kT0Φ(2x) + 2kT1Φ(2x− 1)(3.2)

=





2kT0Φ(2x) if 0 6 x < 1
2 ,

2kT1Φ(2x− 1) if 1
2 6 x < 1,

0 otherwise,
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where T0 and T1 are the same matrices as defined in Section 1. Let Φ0(x) be a vector
function and Φm(x) = AΦm−1(x) for all m > 1. We have

(3.3) Φm(x) = 2mkTd1(x) . . . Tdm(x)Φ0(τmx)

for x ∈ [0, 1), where x =
∞∑

i=1

1
2i di(x), di = 0 or 1 for all i > 1.

Lemma 3.1. Assume that ϕ is a nonzero compactly supported continuous solu-
tion of (3.1). Then

w0 =
( ∫ 1

0

ϕT (x), . . . ,
∫ N

N−1

ϕT (x)
)T

6= 0

and w0 is a right 21−k-eigenvector of the matrix (T0 +T1). Moreover, let Φ0(x) = w0

for 0 6 x < 1, Φm(x) = AΦm−1(x), m = 1, 2, . . . . We have

Φm(x) = 2mkTd1(x) . . . Tdm(x)w0 = 2m

∫ Dm(x)+1/2m

Dm(x)

Φ(t) dt

where Dm(x) = 1
2d1(x) + . . .+ 1

2m dm(x) if x =
∞∑

m=1

1
2m dm(x), and Φ(x) is the unfold

of ϕ(x).

�������	�
. By AΦ(x) = Φ(x) and (3.2) we have

Φ(x) = AmΦ(x) = 2mkTd1(x) . . . Tdm(x)Φ(τmx).

Integrating the above equation over [Dm(x), Dm(x) + 1
2m ], we obtain

AmΦ0(x) = 2m

∫ Dm(x)+1/2m

Dm(x)

Φ(t) dt.

Since Φ(t) is continuous on [0, 1), it’s easy to show that

lim
m→∞

AmΦ0(x) = Φ(x) 6≡ 0.

Hence w0 = Φ0(x) 6= 0 for x ∈ [0, 1). The fact that w0 is a right 21−k-eigenvector of
(T0 + T1) follows by integrating (3.2) over [0,1]. �
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Proof of Theorem 1.3. First we prove sufficiency. Let Φ0(x) = w for x ∈ [0, 1)
and Φm(x) = AΦm−1(x) for m > 1. Then

‖Φm+1(x) − Φm(x)‖∞ = ‖2mkTd1(x) . . . Tdm(x)2kTdm+1w − 2mkTd1(x) . . . Tdm(x)w‖∞
6 2mk max

dj=0or 1
‖Td1 . . . Tdmw̃‖

6 cλm.

Similarly to the proof of Theorem 1.1, we know that the vector function sequence
{Φn(x)} converges uniformly to Φ(x) and Φ(x) 6≡ 0 on [0, 1). Let ϕ(x) be the fold of
Φ(x). Then ϕ(x) is a continuous solution of equation (3.1) and supp ϕ(x) ⊆ [0, N ].
Taking Fourier transforms of (3.1) gives

ϕ̂(ξ) = 2kn
n∏

i=1

M
( ξ

2i

)
ϕ̂
( ξ

2n

)
.

The results of Colella and Heil [5] show that
n∏

i=1

M( 1
2i ξ) converges to

∞∏
i=1

M( 1
2i ξ) 6= 0.

Hence ϕ̂(0) = 0, i.e.

(3.4)
∫ ∞

−∞
ϕ(x) dx = 0.

Let f1(x) =
∫ x

−∞ ϕ(t) dt. It’s clear that

f1(x) = 2k−1
N∑

n=0

Cnf1(2x− n)

and f1(x) has compact support contained in [0, N ].
Repeating the above procedure finite times, it’s easy to see that

f(x) =
∫ x

−∞

∫ x1

−∞
. . .

∫ xk−1

−∞
ϕ(t) dt

is a solution of (1.1) satisfying f ∈ Ck+α and supp f(x) ⊆ [0, N ].
Now suppose that there is a nonzero compactly supported solution f(x) of the

equation (1.1) in Ck+α. If we take k derivatives on both sides of (1.1), we see that
(3.1) has a Hölder continuous solution ϕ = f (k) with compact support in [0, N ] and
Hölder exponent α = |ln λ|/ ln 2. Let w0 = (

∫ 1

0 ϕT (x), . . . ,
∫ N

N−1 ϕT (x))T . From the

proof of sufficiency, we have (Ed, . . . , Ed)w0 =
∫ N

0 ϕ(x) dx = 0. Lemma 3.1 implies

2mkTd1(x) . . . Tdm(x)w0 = 2m

∫ Dm(x)+1/2m

Dm(x)

Φ(t) dt
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for x ∈ [Dm(x), Dm(x) + 1
2m ). By the integral mean value theorem, we get

‖Td1(x) . . . Tdm(x)w̃0‖ =
1

2mk
‖2mkTd1(x) . . . Tdm(x)2kT0w0 − 2mkTd1(x) . . . Tdm(x)w0‖

=
1

2mk

∥∥∥∥2m+1

∫ Dm(x)+1/2m+1

Dm(x)

Φ(x) dx− 2m

∫ Dm(x)+1/2m

Dm(x)

Φ(x) dx

∥∥∥∥

6 1
2mk

c
( 1

2m

)α

= c
( λ

2k

)m

.

The inequality (1.4) follows by taking maximum on the left hand side. �

Similarly to Theorem 2.4, the following theorem is obvious.

Theorem 3.2. The following statements are equivalent:
(a) The matrix refinement equation of (1.1) has a nonzero compactly supported
solution in Ck.

(b) There exists a 21−k-eigenvector w of the matrix (T0 +T1) satisfying (Ed, . . . Ed)
w = 0 and

max
di=0 or 1

‖Td1 . . . Tdnw̃‖ −→ 0, as n −→∞,

where w̃ = 2kT0w − w.
(c) There exists a 21−k-eigenvector w of (T0 +T1) with (Ed, . . . Ed)w = 0 such that
there exists an integer m > 1 satisfying

αm = max
di=0or 1

‖Td1 . . . Tdm |H(w̃)‖
1
m <

1
2k

.

4. Examples

Example 4.1. Consider the refinement equation

f(x) = 3
4f(2x)− 1

2f(2x− 1) + 3
2f(2x− 2)− 1

2f(2x− 3) + 3
4f(2x− 4).

It has a compactly supported solution which is continuous but not continuously
differentiable.
�������	�

. By definitions in Section 1 we obtain that

T0 =




3/4 0 0 0
3/2 −1/2 3/4 0
3/4 −1/2 3/2 −1/2
0 0 3/4 −1/2


 , T1 =




−1/2 3/4 0 0
−1/2 3/2 −1/2 3/4

0 3/4 −1/2 3/2
0 0 0 3/4


 .
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Then there is a 2-eigenvector v = (1, 7
3 , 7

3 , 1)T of T0 + T1 and ṽ = T0v − v =
1
4 (−1,−1, 1, 1)T . Let e1 = 2−1/2(1, 0,−1, 0)T and e2 = 2−1/2(0, 1, 0,−1)T . We
have

H(ṽ) = span{e1, e2}

and {e1, e2} is an orthonormal basis of the linear subspace H(ṽ). Note that

T0(e1, e2) = (e1, e2)
(

3/4 0
3/4 −1/2

)
, T1(e1, e2) = (e1, e2)

(−1/2 3/4
0 3/4

)
.

Therefore

‖T0T0|H(ṽ)‖ = ‖T1T1|H(ṽ)‖ = (1/256(53 + 15131/2))1/2 .= 0.599144,

‖T1T0|H(ṽ)‖ = ‖T0T1|H(ṽ)‖ = (9/256(9 + 651/2))1/2 .= 0.774497.

By Theorem 2.4, it follows that the refinement equation has a continuous solution
with compact support.
Moreover, since w = (−1,−1, 1, 1)T is a unique 1-eigenvector of (T0 + T1) up to

a scalar multiple, then w̃ = 2T0w − w = 1
2 (−1, 1, 1,−1) and H(w̃) = H(ṽ) by the

definitions in Section 3. It is clear that

max
di=0or 1

‖Td1 . . . Tdm |H(w̃)‖1/m > ‖T0 . . . T0|H(w̃)‖1/m > 3
4 > 1

2

for all positive integers m. By Theorem 3.2 we conclude that the solution is not
continuously differentiable. �

We remark that the coefficients of the refinement equation of Example 4.1 do not
satisfy the ‘sum rule’ conditions.

Example 4.2. Consider the refinement equation

f(x) =
(

3/4 1/2
1/4 1/4

)
f(2x) +

(
1/2 0
0 3/4

)
f(2x− 1) +

(
3/4 −1/2
−1/4 0

)
f(2x− 2).

It has a continuous but not continuously differentiable solution with compact sup-
port.
�������	�

. Since

T0 =




3/4 1/2 0 0
1/4 1/4 0 0
3/4 −1/2 1/2 0
−1/4 0 0 3/4


 , T1 =




1/2 0 3/4 1/2
0 3/4 1/4 1/4
0 0 3/4 −1/2
0 0 −1/4 0


 ,
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it is easy to obtain that one of the 2-eigenvectors of T0 + T1 is

v = (−0.65653,−0.26261,−0.65653, 0.26261)T

and
ṽ = T0v − v = (0.032827, 0.032827,−0.032827, 0.09848)T .

Let

e1 = (−0.42329,−0.3415, 0.41397,−0.72996)T ,

e2 = (−0.16734,−0.27631, 0.70811, 0.62788)T ,

e3 = (−0.88816, 0.15176,−0.36223, 0.2386)T .

Then e1, e2 and e3 form an orthonormal basis of H(ṽ). Note that

T0 [e1, e2, e3] = [e1, e2, e3] A, T1 [e1, e2, e3] = [e1, e2, e3] B,

where

A =




0.61928 −0.072999 −0.36214
−0.1001 0.65638 −0.25226
0.27739 0.20685 0.92634


 ,

B =




0.58226 −0.14645 −0.0037973
0.55045 −0.11982 −0.14309
−0.083846 −0.77786 0.70556


 .

We have

‖T 4
0 |H(ṽ)‖ = (0.55976)1/2 = 0.74817 < 1,

‖T 3
0 T1|H(ṽ)‖ = (0.83747)1/2 = 0.91513 < 1,

‖T 2
0 T 2

1 |H(ṽ)‖ = (0.6987)1/2 = 0.83588 < 1,

‖T0T
3
1 |H(ṽ)‖ = (0.76482)1/2 = 0.87454 < 1,

‖T 4
1 |H(ṽ)‖ = (0.58474)1/2 = 0.76468 < 1,

‖T 3
1 T0|H(ṽ)‖ = (0.65839)1/2 = 0.81141 < 1,

‖T 2
1 T 2

0 |H(ṽ)‖ = (0.87568)1/2 = 0.93578 < 1,

‖T1T
3
0 |H(ṽ)‖ = (0.79495)1/2 = 0.89160 < 1,

‖T0T1T0T1|H(ṽ)‖ = (0.97618)1/2 = 0.9880 < 1,

‖T0T
2
1 T0|H(ṽ)‖ = (0.82331)1/2 = 0.90736 < 1,

‖T1T0T1T0|H(ṽ)‖ = (0.93476)1/2 = 0.96683 < 1,

‖T1T
2
0 T1|H(ṽ)‖ = (0.9385)1/2 = 0.9688 < 1,

‖T 2
0 T1T0|H(ṽ)‖ = (0.85229)1/2 = 0.92319 < 1,
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‖T0T1T
2
0 |H(ṽ)‖ = (0.90202)1/2 = 0.94975 < 1,

‖T 2
1 T0T1|H(ṽ)‖ = (0.90416)1/2 = 0.95087 < 1,

‖T1T0T
2
1 |H(ṽ)‖ = (0.87117)1/2 = 0.93336 < 1.

According to Theorem 2.4, the refinement equation has a continuous solution with
compact support.
Moreover, since all the 1-eigenvectors of T0 + T1 are {λw : λ ∈ � } where w =

(0.57735, 0.57735,−0.57735, 0.00000)T , we have (E2, E2, E2, E2)w = 0.57735 6= 0.
By Theorem 3.2 we conclude that the solution is not continuously differentiable. �
Acknowledgement. The authors wish to thank the referee for his (or her) in-
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